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Abstract
Background: The availability of interaction databases provides an opportunity for researchers to
utilize immense amounts of data exclusively in silico. Recently there has been an emphasis on
studying the global properties of biological interactions using network analysis. While this type of
analysis offers a wide variety of global insights it has surprisingly not been used to examine more
localized interactions based on mechanism. In as such we have particular interest in the role of key
topological components in signal transduction cascades as they are vital regulators of healthy and
diseased cell states.

Results: We have used publicly available databases and a novel software tool termed Hubview to
model the interactions of a subset of the yeast interactome, specifically protein kinases and their
interaction partners. Analysis of the connectivity distribution has inferred a fat-tailed degree
distribution with parameters consistent with those found in other biological networks. In addition,
Hubview identified a functional clustering of a large group of kinases, distributed between three
separate groupings. The complexity and average degree for each of these clusters is indicative of a
specialized function (cell cycle propagation, DNA repair and pheromone response) and relative age
for each cluster.

Conclusion: Using connectivity analysis on a functional subset of proteins we have evidence that
reinforces the scale free topology as a model for protein network evolution. We have identified
the hub components of the kinase network and observed a tendency for these kinases to cluster
together on a functional basis. As such, these results suggest an inherent trend to preserve scale
free characteristics at a domain based modular level within large evolvable networks.

Background
The Barabási and Albert scale free network model is a
mathematical precept that describes the innate connectiv-
ity and distribution within complex networks. These scale
free networks defy the traditional random graph model of
Erdös and Renyi and display a connectivity distribution
where the occurrence of highly interacting components of

the network, defined as nodes decay as a power law, P(k)
~ k-γ [1-3]. In turn, growth of a scale free network is char-
acterized by a preferential attachment scheme in which
new nodes attach to older more connected nodes with a
higher probability [2,4,5]. This model facilitates a rich-
get-richer schema and allows for the existence of a very
important class of highly connected hubs [1,6]. These
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hubs are largely responsible for the non-Gaussian connec-
tivity distribution of scale free networks and are com-
monly orders of magnitude more connected than the
average node. The existence of the hubs also provide a
robust environment that is tolerant of random attack and
failure but is very sensitive to hub perturbation [3,7-10].

This scale free topology has been demonstrated in a vari-
ety of man-made networks such as the World Wide Web
and the actor collaboration network [1,2]. Scale free prin-
ciples have also been noted in biologic systems such as the
yeast protein-protein interaction dataset and the meta-
bolic protein network [3,6]. Nevertheless, the suitability
of the static scale free construct across diverse biologic sys-
tems has been challenged as a universal principle. For
example, the yeast protein interaction network has been
described as a date and party hub scale free network, in
which these hubs are defined by variable or consistent
interactions, respectively [10]. More critically, mathemat-
ical models of network growth have shown that preferen-
tial attachment may follow a random geometric topology
rather than a scale free distribution [11]. Another study
uses a learning algorithm to infer duplication-mutation-
complementation as the central topology mechanism in
the Drosophila melanogaster protein interaction network
[12]. Indeed, it has been reported that the essential pro-
teins within the larger yeast protein interaction network
form an exponential connectivity distribution rather than
a scale free distribution [13]. These observations raise
intriguing possibilities, one of which suggests that
broader scale free systems may evolve from a compilation
of sub networks of different topology. Alternatively, this

non-scale free structure may be an anomaly that originates
from examining essential hubs versus non-essential hubs
in the framework of an already established network.

Within this context, phosphorylation dependent signal
transduction pathways provide an interesting venue to
examine network behavior. In eukaryotic organisms,
kinase directed phosphorylation is one of the most com-
mon forms of post-translational modification and as such
this protein class is noted as a vital regulator of cellular
function [14-16]. In addition, kinase families are well
conserved across diverse phyla, suggesting that network
organization may be similarly conserved. However, phos-
phorylation pathways are commonly studied as linear
events connecting stimulus to response through a simple
ladder of molecular interactions, a concept that is based
largely on experimental perturbation and observation of
directly connected proteins.

As such, identification of the select kinase hubs and inter-
action profiling should offer an insight into the functional
complexities of cellular signaling in yeast and higher
eukaryotes. Here, we examined the subset of the S. cerevi-
siae interaction data, which include protein kinases and
their direct protein interactions. In all cases, analysis was
performed on filtered datasets available in public data-
bases to identify likely hub kinases and their interactivity.
We confirmed scale free behaviour of this dataset using
connectivity analysis and observed parameters as applied
to a novel computer program/visualization tool we
termed Hubview [17]. Interactions between the 19 most
connected kinases, which we identified as super-hubs,

Degree distributions giving the probability that a given protein will interact with exactly k other proteins forFigure 1
Degree distributions giving the probability that a given protein will interact with exactly k other proteins for: a. the core KPI 
with γcore = 2.32 b. the complete KPI with γcomplete= 2.38. In both cases γ determined by maximum likeliness estimation (MLE) 
and goodness of fit determined by Kolomogorov-Smirnov (KS) test. The self organization of scale free topology is normally 
associated with much larger datasets yet we still find the scale free characteristics.
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were mapped along with less connected hub kinases.
From this map we were able to discern three distinct clus-
ters of kinase proteins, with each cluster retaining a com-
mon biologic function, i.e. cell cycle control, DNA repair/
recombination and the pheromone/mating response.
Together these observations suggest that scale free topol-
ogy of the yeast kinome co-evolved with the emergence of
distinct biologic domains.

Results and discussion
To study the topological properties of kinase mediated
phosphorylation it was necessary to isolate the signaling
component of the S. Cerevisiae proteome which we refer
to as the Kinase-Partner Interaction set (KPI). The KPI node
set was assembled from the concatenation of kinases from
the database of interacting proteins (DIP) kinase search,
the yeast kinases identified by Hunter and Plowman [18]
and their non-kinase interaction partners. The interac-
tions of the KPI nodes were considered bidirectional, as
no directionality can be consistently inferred in most
experimental conditions, and consisted of kinase-kinase
and kinase-non-kinase interactions only (i.e. any poten-
tial interactions between non-kinases have been filtered).
The core and complete KPI consisted of 607 nodes with
834 interactions and 1085 nodes and 1481 interactions
respectively. Analysis using maximum likelihood estima-
tion (MLE) of the degree distributions (Figure 1) resulted
in derived γ values of γ = 2.32 in the core KPI and γ = 2.38
in the complete KPI which is in the biologically robust
range of 2 < γ < 3 [19]. The Kolmogorov-Smirnov test for
Power Law Distribution [20] of both MLEs (Core: N =

500, K = 0.021; Complete: N = 1000, K = 0.015) support
the hypothesis that the KPI networks are indeed both
power-law distributions and hence scale free in topology.
The γ-values found for the KPIs are very consistent with
reports from complete protein interaction data analysis
and the deterministic scale free model [21,22] which con-
firms that the selection criteria for the KPI is not biased to
any connectivity class. A study of metabolic networks has
shown that the largest most connected part of a network
(in the case of metabolic networks the largest component
is less than 33% the size of the full network) tends to
dominate the parameters found through topological anal-
ysis [23]. Here the degree distribution is challenged as a
global property and treated as a local property of the net-
work. It is worth noting that while the KPI does contain a
limited number of segregated modules, the size of the
largest component accounts for roughly 95% of the net-
work and the degree distribution does represent a global
property of the network.

The KPI interaction data was analyzed by our visualiza-
tion tool, Hubview. The hub-star-satellite view separates
nodes with degrees higher than a user defined cut-off and
their substrates of unary degree, groups the rest of the
nodes within a sphere, and places the hub-stars around
the sphere as satellites. The core and complete KPI were
viewed with a cut-off of 10 and 15 respectively (Figure 2)
and in both cases resulted in 28 satellites responsible for
about 69% and 71% of the interactions respectively. The
average node degree for both the core and complete KPI
was found to be <k> ≅ 1.3.

a. Hubview Fruchterman-Rheingold visualization of Core KPI (607 nodes, 834 interactions)Figure 2
a. Hubview Fruchterman-Rheingold visualization of Core KPI (607 nodes, 834 interactions) b. Hub-Star-Satellite output of 
Hubview of complete KPI (1085 nodes with 1481 interactions) with hub degree cut-off of 15 yields 28 hubs.
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The putative hubs identified by Hubview were compiled
into a list of 33 distinct nodes and ranked by average
degree where the degree found in the core KPI was given
twice the weight (Table 1). Defining the actual cut-off
degree for a hub is a subjective task, here we defined 13
(10*<k>) as the cut-off for high confidence in super-hub
status. This cut-off retains 19 proteins as high confidence
hubs that still maintain ~64% of KPI interactions which
suggests that less understood signaling systems in higher
eukaryotes may be studied with higher efficiency by iden-
tifying likely hub kinases (using expression and activity
profiling) and mapping the complete set of their immedi-
ate interaction partners.

The 124 members of the protein kinase superfamily list
[18] were cross referenced with the list of essential yeast
proteins [24] to identify the yeast kinases with known
knockout lethal phenotypes. Of the 124 kinases only 16

were deemed to be lethal deleterious mutants yielding a
13% chance of lethality in an instance of random single
kinase deletion. In contrast, 6 of the 19 hubs named as
high confidence in table 1 are listed as essential resulting in
a 32% chance of lethality attributed to random deletion of
one of the 19 high confidence hubs. This marked increase
in lethality associated with directed hub attack is consist-
ent with existing studies of scale free networks [3] and
indicates a likely tendency for hub kinases to be preserved
in an evolutionary perspective.

24 of the 33 hubs listed in table 1 were found to interact
with one another. The interplay between these 24 con-
nected hubs forms a kinase signaling backbone (figure 3a)
through which 3 distinct groups of interacting hubs
(forthwith these interacting hubs are referred to as hub
clusters) can be identified. Presumably, the hub clusters
would provide vital functions as whole as in most cases

Table 1: Summary of hub kinases as identified by Hubview: Weighted mean calculated by giving double weight to degrees listed in the 
core KPI dataset. Hubs with knockout lethal phenotype listed as identified by Giaver et al [35].

Name DIP Node Number Knockout Lethal Weighted Degree Confidence as a super-
hub

CDC28 DIP:1039N yes 150 ± 40 High
CKA1 DIP:48N no 50 ± 10 High
HRR25 DIP:157N yes 40 ± 10 High
SLT2 DIP:1448N no 37 ± 5 High
YCK1 DIP:719N no 34 ± 7 High
KSS1 DIP:60N no 33 ± 5 High
SNF1 DIP:18N no 24 ± 1 High

PHO85 DIP:1493N no 22 ± 2 High
RAD53 DIP:2322N yes 22 ± 2 High
CKB2 DIP:262N no 19 ± 5 High
CDC7 DIP:1235N yes 19 ± 6 High
RIM11 DIP:1566N no 19 ± 3 High
SSN3 DIP:2574N no 17 High
DBF2 DIP:2319N no 17 ± 2 High
DUN1 DIP:1772N no 16 ± 6 Uncertain
MKK2 DIP:1447N no 16 ± 2 High
CDC5 DIP:2321N yes 14 ± 1 High
STE11 DIP:861N no 14 ± 1 High
PKC1 DIP:1516N yes 14 ± 1 High
TPK3 DIP:550N no 14 ± 1 High
CKA2 DIP:1038N no 13 ± 5 Uncertain
SPS1 DIP:6598N no 13 ± 2 Uncertain
CLA4 DIP:2276N no 13 Uncertain
YAK1 DIP:1374N no 12 ± 4 Uncertain
STE20 DIP:712N no 12 ± 1 Uncertain
FUS3 DIP:714N no 12 ± 1 Uncertain
CHK1 DIP:1253N no 12 ± 2 Uncertain
KIN2 DIP:6276N no 12 ± 2 Uncertain

BUD32 DIP:5008N no 11 ± 9 Uncertain
SWE1 DIP:2410N no 11 Low
CKB1 DIP:282N no 11 ± 7 Uncertain
GIN4 DIP:2260N no 11 ± 1 Low
BCY1 DIP:551N no 10 ± 3 Low
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the constituent hubs are not directly essential themselves.
The structure of this backbone may offer some insight in
identifying synthetic lethality strategies, i.e. CKA1 and
CKA2 knockouts are both viable but double deletion
mutant has a lethal phenotype [25]. Backbone hubs have
been ordered by degree to illustrate a possible correlation
between degree and phylogenetic age where, by direct
consequence of the growth and preferential attachment
conditions in scale free systems, more connected hubs are
likely to be older than less connected hubs [26]. A cross
genome study of four organisms from different regions of
the phylogenetic tree has been used to identify connectiv-
ity and emergence time of yeast proteins [5]. The results of
this study support the preferential attachment and growth
criteria as outlined by the scale free theory. Older proteins
appear to be more connected than younger proteins.
Another explanation of the degree arrangement is that the
average size or degree of a cluster is associated with the
evolutionary age of the clusters functional class [27]. This
perspective is based on a similar study using a more rigor-
ous phylogenetic profiling technique. The results suggest
a modified form of scale free preferential attachment
whereby proteins bind preferentially within their own
functional class and not globally or promiscuously. By
this model a younger protein may be more connected
than an older one simply because it is part of an older and
more connected functional grouping which emerged dur-

ing an earlier phylogenetic period. Here the average con-
nectivity of the functional group is proportional to the age
of that group i.e. older eukaryotic proteins are shown to
be more connected than yeast specific proteins. This per-
spective is very plausible as it suggests that proteins of
similar function will interact within the same pool.

In response to the latter interpretation we examined the
basic purpose of the individual hubs and observed a com-
mon functional theme concomitant with each cluster. The
largest cluster, containing cdc28, is functionally associ-
ated with cell cycle propagation through the various
phases. The second cluster, with CKA1 as a peak, is gener-
ally associated with kinase proteins that manipulate
response to DNA damage and the final KSS/MAPK cluster
is involved with the regulation of the pheromone
response. These results seem to offer a reasonable order to
the emergence of specialized functions central to all
eukaryotes i.e., the cell division cycle predates the DNA
verification mechanisms, which in turn predates the
youngest reproductive module, the mating response.

The entire core and complete kinomes were clustered
using the probabilistic method described by Samanta and
Liang [28]. This method identifies functional relation-
ships between proteins through redundancy of interac-
tion partners. A number of the associations in the
backbone clusters were confirmed using this algorithm
(figure 3b). Interestingly the proteins in the cell cycle
propagation cluster did not appear as functionally redun-
dant in the clustering. Presumably the three clusters con-
verge downstream to some extent but at the hub level this
indicates that these components offer highly specialized
non redundant services to the cell cycle cluster likely due
to the ancient nature of their function. This method can
also be used to identify likely synthetic lethality as many
viable knockouts are rescued through redundant interac-
tions. The full results of the clustering is available as sup-
porting information (see additional file 1) or can be
generated using Hubview.

In addition to the scale free topology, modeling of the
yeast kinome using the Hubview cascade crawler function
revealed other notable characteristics. Specifically, indi-
vidual clusters containing hub kinases also include
kinases that interact both inside and outside the scope of
the immediate functional cluster. This characteristic was
generally not observed with non-hub clusters. For exam-
ple, the cluster of kinases involved in the MAPK cascade (a
functional cluster with hub kinases) retain interactions
with a number of non-MAPK kinases i.e. single points that
interact both within and outside of the MAPK class. This
is a feature we refer to as an open loop signal (Figure 4).
Identifying open points within a cluster provides the user
with probable targets for regulation of that functional

a. Interplay between 24 of the hubs identified by HubView constituting the signaling backboneFigure 3
a. Interplay between 24 of the hubs identified by HubView 
constituting the signaling backbone. Red hubs are deemed as 
lethal knockout phenotypes as described in the systematic 
deletion project [35]. The nodes are separated by degree 
along the ordinate to illustrate a possible relationship 
between the degree of a hub and its phylogenetic age while 
the arrangement along the abscissa is purely aesthetic. The 
proposed function of the 3 clusters from left to right are: 
DNA damage/repair, cell cycle propagation and pheromone 
response. b. The dendrogram to the right confirms func-
tional interactions for a number of the backbone hubs using 
redundancy clustering of the entire KPI as described by 
Samanta & Liang [28]. Only clusters containing a hub kinase 
are depicted in the dendrogram.
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cluster or even likely paths for signaling crosstalk. Open
loop kinase cascades appear to reflect robust cellular
responses that require multiple alterations and as such
would require direct communication and signal propaga-
tion between numerous key regulatory factors/kinases
themselves. However, non hub kinase clusters such as the
TOR kinase cascade do not retain direct interactions
between unclustered kinases and as such conform to a
closed loop structure (Figure 4). Closed loop structures
are likely to be kinase directed cascades that perform a
very discrete cellular function in response to a limited or
very specific initiating event.

The network of essential yeast proteins has been compiled
and identified as an exponential distribution [13]. This
distribution is normally associated with more stochastic
evolutionary mechanisms. It has been argued that this
network may represent an ancestral core about which the
rest of the yeast interactome has formed [13]. The exist-
ence of an exponential core does not directly contradict
the scale free topology observed in the protein interaction
network but may simply exist as a scaffold for scale free
mechanisms to adhere to. This possibility is interesting as
it may also suggest that different parts of the interactome
may have evolved by different evolutionary pressures

causing unequal distribution of topological properties
within the same interactome.

A recent investigation concerning the effects of sampling
on topology adds a small shard of doubt to studies of pro-
tein network topology. In this study the effects of various
large scale experiments were simulated by first generating
different networks of known topology and then sampling
interactions in a scale mimicking yeast two hybrid and co-
affinity purification [29]. They found that under some
conditions that non-scale free topologies (i.e. Erdös and
Renyi network with <K> = 10), when sampled, can gener-
ate sub-networks with scale free properties. Here the
kinome benefits from the fact that it is a widely studied
mechanistic class and many of the interactions, especially
in the core kinome, have been identified in smaller scale
experiments and not exclusively large scale experiments.
This suggests that the much smaller kinome network may
not suffer as much as networks derived solely from large
scale experiments. The results of this study certainly insist
on the caveat that the results of our KPI network cannot be
extrapolated to the complete yeast protein interaction net-
work with any amount of confidence.

Cascade crawler output of HubviewFigure 4
Cascade crawler output of Hubview. Gray spheres represent non-kinases while all other colored spheres represent kinases of 
varying degree. a) Depiction of closed loop TOR signaling: neither TOR protein is directly connected to another kinase indicat-
ing highly specified reaction. b) Depiction of open loop MAPK signaling: white spheres denote non-MAPK kinases that interact 
within and outside of the MAPK clusters representing possible regulatory and cross-talk channels associated with more compli-
cated cellular behaviour.
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Conclusion
Our analysis suggests that the yeast kinome is an evolved
scale free system. Moreover, these observations suggest
the intriguing possibility that the scale free topology of the
global protein-protein interaction network or any larger
biologic network may be the composite of smaller evolv-
ing topologies (such as the kinome), all of which are sub-
ject to their own selective pressures.

Methods
Interaction database
Both the core and complete yeast interaction data of the
manually curated DIP [30] were used as interaction data
sets. The complete dataset consists largely of high
throughput interaction data [19,31-33]. The core DIP
dataset consists of interactions found in small scale exper-
iments, two or more independent larger scale experiments
and, when paralogous interaction data exist, the Paralo-
gous Verification Method PVM [31,32]. The core dataset is
believed to correctly identify the core of interacting pro-
teins in yeast and provides a minimal interaction view of
the yeast interactome. For our purposes the complete
yeast interaction set is viewed as a hypothetical maximal
interaction set. The many false positives, negatives and
unlikely biologic interactions [19] available in the com-
plete dataset are still valuable as they may be representa-
tive of interactions in a diseased state based on possible
spatial and temporal protein delocalization. The DIP is
available online at http://dip.doe-mbi.ucla.edu.

Interaction filter
Both datasets were filtered to include only kinases and
direct interaction partners with kinases as found in the
DIP node search in conjunction with kinases listed in the
protein kinase superfamily found by Hunter and Plow-
man [18]. The resulting Kinase-Partner Interaction dataset
(KPI) consisted of 607 nodes with 834 interactions in the
case of the core dataset and 1085 nodes with 1481 inter-
actions in the case of the complete dataset.

Hubview description
We developed a program called Hubview to help us ana-
lyze the KPI network and visualize the hubs and hub inter-
actions found in the datasets. The degree distribution of
the loaded network can be obtained by pressing the prob-
ability distribution button. The main program and
OpenGL network interface utilize an undirected binary
adjacency matrix which is then interpreted in real-time
3D. Yeast specific information such as the naming con-
vention (DIP number, ORF and common name) and pro-
tein type (kinase or non-kinase) is hard coded into
Hubview minimizing the amount of data required to gen-
erate an interaction network. The 3D representation is
geared towards identifying nodes with degrees higher
than a user-defined cut-off and displaying them in either

a hub-star-satellite view whereby hub degree and inter-
hub interactions are plainly visible or a Fruchterman-
Rheingold (FR) force-directed placement arrangement
[34] which offers a less tangled, more visually appealing
interpretation.

Briefly, the FR algorithm causes the system to untangle
itself through iterative simulation of mechanical and elec-
trostatic forces. A connection between a pair of nodes is
treated as though a spring were connecting those nodes
creating attractive forces between all connected pairs.
Repulsive electrostatic forces are also generated by consid-
ering each node as a negative point charge. The nodes in
the analogous system move in 3 dimensional space
according to the attractive and repulsive forces. The final
arrangement is displayed once the system has evolved
through a set number of iterations resulting in an intelli-
gible and appealing graph.

The hub-star-satellite view is generated by placing all
nodes randomly within a sphere of radius ri. All nodes
with connectivity higher than the user defined cutoff are
identified as hubs and projected outside of the sphere to a
radial position, rf, outside the confines of the initial
sphere (rf > ri). Any substrates of the new hub with unary
degree are also moved to positions spherically centered
near the newly placed hub generating a hub-star-satellite.
The algorithm ends once all hubs are processed similarly.
The advantage of this view type is that it allows interac-
tions between hubs to be quickly and easily identified as
all visually interfering substrates remain pooled within
the initial sphere.

Another useful visualization method included in Hub-
view is the cascade crawler function. This view type is
geared towards depiction of smaller cascades (the imme-
diate and remote neighbors of a chosen protein) within
the complete network. The cascade crawler function is
controlled by a point and click interface whereby the user
can define a specific protein(s) as a starting point and dis-
play all of its substrates by clicking on it. Clicking subse-
quent nodes will display their interaction partners in turn.
Using this function along with the FR algorithm one can
develop appealing visual interpretations of specific cas-
cades and interactions (figure 4).

Hubview also utilizes the clustering method proposed by
Samanta & Liang [28]. The main suggestion of this algo-
rithm is that if two proteins in a network share a signifi-
cantly larger number of common interaction partners
than what is expected from a similar random network
then the pair of proteins likely share a close functional
relationship. This process assigns a P value between every
pair of proteins in the network representing the probabil-
ity that an association between proteins is random i.e. a
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higher P score means that the pair is not functionally asso-
ciated. The algorithm then merges the pair sharing the
lowest P value into a cluster and recalculates P values for
all possible pairs again treating the newly formed cluster
as though it were a single protein. This process repeats
until all P values are higher than a user defined cutoff.
Once a network is loaded one can access this method by
clicking the cluster button. Here a cutoff value can be
defined which represents the probability that a particular
association is random and a dendrogram is produced
(which can be saved as a .BMP file), Samanta & Liang
reported successful clustering of a large portion of the
yeast interactome (N = 4692) using a cutoff value of up to
2 × 10-4 [28] indicating that this cutoff can be considered
sharp and biologically relevant in our much smaller KPI
networks (Ncore = 607 and Ncomplete = 1085).

Topology analysis
To counter the distortion associated with log-log data
transformation the γ-value associated with the degree dis-
tribution of the KPI was analyzed using maximum likeli-
hood estimation of the zeta function (MLE) and goodness
of fit confirmed by the Kolmogorov-Smirnov test for
power law distributions [20]. Briefly, the γ parameter asso-
ciated with the pure power law,

is best approximated by the solution of:

Where:

- ζ(γ) is the Riemann Zeta function

- ki is the ith non-zero observed degree of the P(k) vs. k dis-
tribution.

- γ is the power law exponent [20]

Protein essentiality
Phenotypic profiles of gene-deletion mutants (nearly 96%
of known ORFs) have been systematically constructed and

analyzed by a PCR-based gene deletion strategy [35]. A list
of essential ORFs has been generated [24] and can be used
to predict a lethal protein knockout or disruption pheno-
type.
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