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Abstract

Motivation: In this paper we demonstrate the usage of RIO; a framework for detecting syntactic regularities using
cluster analysis of the entities in the signature of an ontology. Quality assurance in ontologies is vital for their use in
real applications, as well as a complex and difficult task. It is also important to have such methods and tools when the
ontology lacks documentation and the user cannot consult the ontology developers to understand its construction.
One aspect of quality assurance is checking how well an ontology complies with established ‘coding standards’; is the
ontology regular in how descriptions of different types of entities are axiomatised? Is there a similar way to describe
them and are there any corner cases that are not covered by a pattern? Detection of regularities and irregularities in
axiom patterns should provide ontology authors and quality inspectors with a level of abstraction such that
compliance to coding standards can be automated. However, there is a lack of such reverse ontology engineering
methods and tools.

Results: RIO framework allows regularities to be detected in an OWL ontology, i.e. repetitive structures in the axioms
of an ontology. We describe the use of standard machine learning approaches to make clusters of similar entities and
generalise over their axioms to find regularities. This abstraction allows matches to, and deviations from, an ontology’s
patterns to be shown. We demonstrate its usage with the inspection of three modules from SNOMED-CT, a large
medical terminology, that cover “Present” and “Absent” findings, as well as “Chronic” and “Acute” findings. The module
sizes are 5 065, 20 688 and 19 812 asserted axioms. They are analysed in terms of their types and number of regularities
and irregularities in the asserted axioms of the ontology. The analysis showed that some modules of the terminology,
which were expected to instantiate a pattern described in the SNOMED-CT technical guide, were found to have a
high number of regularity deviations. A subset of these were categorised as “design defects” by verifying them with
past work on the quality assurance of SNOMED-CT. These were mainly incomplete descriptions. In the worst case, the
expected patterns described in the technical guide were followed by only 5% of the axioms in the module.

Conclusion: It is possible to automatically detect regularities and then inspect irregularities in an ontology. We argue
that RIO is a tool to find and report such matches and mismatches, for evaluations by the domain experts. We have
demonstrated that standard clustering techniques from machine learning can offer a tool in the drive for quality
assurance in ontologies.
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Background
Ontologies provide an effective way for creating, using and
sharing medical and biological vocabularies [1]. However,
one problem with authoring ontologies is that, as they
grow in size, they become more complex to both under-
stand and maintain. An example is SNOMED-CT [2]; a
leading healthcare terminology maintained across many
countries [3] that have joined the International Health
Care Terminology Standards Development Organisation
(for a list see [2]).
Ontology construction can be based upon patterns of

different abstraction level; these can be notes from the
developers, general guidelines, formal documentation of
the ontology, published papers describing the ontology,
spreadsheets of fillers for ontology templates etc [4-6].
Such documentation or coding standards should offer an
opportunity for quality assurance, if deviations from those
guidelines can be found. The question is how does an
ontology author effectively and efficiently find, not only
those classes that conform to the pattern, but those classes
that do not conform?
To give an example, consider the description of ’present

findings’ in SNOMED-CT; these are 59 classes that have
the keyword present in their label. Two example defini-
tions of classes ’Dizziness present (situation)’, ’Paralysis
present (situation)’ is shown in Additional file 1: Figure
S1. Both definitions are very similar, thus a general pat-
tern that could express them is shown in Additional file 2:
Figure S2.
The expression in Additional file 2: Figure S2 has the

variable ?PresentSituation, which holds all present classes
and the variable ?Finding, which holds the corresponding
clinical findings (represented as classes in SNOMED-CT).
The expression in Additional file 2: Figure S2 is an abstrac-
tion over the regular structural description of present
findings in the ontology. It is a design template, which
is expected to cover most of the ‘present’ findings in
SNOMED-CT. To the best of our knowledge, the detec-
tion of such patterns is done manually by the ontology
engineer in the form of a query or rule.
On the other hand, deviations from this general pattern

can exist in the ontology. One such deviation is shown
in Additional file 3: Figure S3. The ’On examination -
joint effusion present (disorder)’ even though it has the
keyword ‘present’ in its label, it does not have the same
definition as the classes of Additional file 1: Figure S1.
This deviation is not necessarily a design defect, but

having tools for highlighting them can reveal how the
ontology was built and facilitate quality assurance. The
manual detection of these deviations in a large and com-
plex ontology like SNOMED-CT is not currently feasible.
We propose the use of the Regularity Inspector for

Ontologies (RIO) framework as a means of bootstrap-
ping the quality assurance process for ontologies. We use

the SNOMED-CT terminology as an example ontology to
demonstrate the use of RIO:

1. To find regularities (like the one in Additional file 2:
Figure S2) in the use of axioms in entity description.

2. To find deviations from axiom patterns described in
the SNOMED-CT documentation.

We argue that such a framework should facilitate the
process of inspecting and reporting defects and poten-
tial defects to the domain experts for the ontology. We
are interested in revealing the composition styles of the
modules to an ontology engineer who is not necessarily
a domain expert. Thus, they will not have to spend more
time than is necessary to find ways of isolating defects
in the ontology, such as the manual inspection of tan-
gled hierarchies of classes containing many deeply nested
restrictions.

SNOMED-CT and Description Logics
This paper focuses on the Web Ontology Language
(OWL) [7] representation of SNOMED-CT. OWL is
based on Description Logics allowing for inferences after
automated reasoning [8,9]. SNOMED-CT is deliberately
based on a relatively simple variant of OWL for which
computation is guaranteed to be efficient, EL++ [10],
which corresponds to the OWL-EL profile [11]. This
allows for two types of formulating terminology:

1. A stated form that defines each concept is asserted
manually by SNOMED-CT’s authors. The stated
form can be also called as asserted form.

2. An automated reasoner is then used to organize the
concepts logically into hierarchies based on their
stated definitions. Inferences will be generated about
the relationships among classes and instances.

For example, the definitions of Additional file 1: Figure
S1 belong to the stated form of the ontology; they are
asserted axioms. After automated reasoning, it will be
then inferred that both ’Dizziness present (situation)’,
’Paralysis present (situation)’ are specialisations of the
’Clinical finding present (situation)’ class. This is an infer-
ence derived from the definition of these classes. On the
other hand, the ’On examination - joint effusion present
(disorder)’, whose definition is shown in Additional file
3: Figure S3 does not imply a ’Clinical finding present
(situation)’ after reasoning.
Quality assurance of SNOMED-CT is done in two lev-

els; on the asserted axioms of the ontology and on the
inferences. The Unified Medical Language System main-
tains a “Core Problem List Subset”a consisting of around
9 000 concepts. New technologies make it possible to
identify all other concepts that affect the classification of
members of the subset consisting of fewer than 40 000
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concepts. The “Core Problem List Subset” includes poten-
tial design errors in the concepts of the ontology. These
aremainly wrong descriptions of the concepts, resulting in
wrong inferences. It should be noted that these errors are
not logically wrong; the reasoner will not find any unsat-
isfiable concepts [12]. But in terms of semantic meaning
mapped to the domain, they are incorrect (e.g. an injury
of the pelvis is implied to be an injury of the foot [13]).
There are many efforts towards methods for qual-

ity assurance in SNOMED-CT [3,14-17]. However, these
mainly focus on how to find modelling defects in the
ontology from a domain expert’s or ontological perspec-
tive, rather than adherence to a ‘house-style’ or guidelines.
Such guidelines may or may not be good modelling prac-
tise, but conforming to an ontology’s own guidelines is one
aspect of quality assurance.
In the following we focus on methods that can be

used for the quality assurance of the asserted form of
SNOMED-CT. These methods are centered on the detec-
tion of repetitive structures in the axioms of an ontology,
named as syntactic regularities. What is ‘in’ and what is
‘out’ of those patterns should give ontology developers a
means of checking their ontology and, eventually, be an
aid to ontology comprehension—that is, understanding
how an ontology has been authored.

Syntactic regularities
The existence of patterns gives rise to syntactic regulari-
ties like the one described in Additional file 1: Figure S1.
These are axioms of similar syntax [18]. All the regularities
that can exist in an ontology do not necessarily highlight a
corresponding ‘design’ pattern. However, the recognition
of syntactic regularities should be helpful for understand-
ing the composition of the ontology, as it should reveal
parts of the ontology that were designed in similar ways.
This should enable the user to complete tasks, such as
the extension of the ontology, its integration with other
ontologies, quality assurance and so on.
Syntactic regularities can be inspectedmanually by writ-

ing a query or a rule. A way to do this is with OPPL (http://
oppl2.sourceforge.net); which is a scripting language for
manipulating ontologies [19]. For example, the pattern of
Additional file 2: Figure S2 can be expressed as shown in
Additional file 4: Figure S4 for obtaining the axioms that
instantiate it.
OPPL has been used for quality assurance of SNOMED-

CT [17] and for manual analysis of patterns in ontologies
[20]. However, the ontology engineer has to inspect the
ontology first and then manually write the query to check
if a pattern is used.
The Regularity Inspector for Ontologies (RIO) is a

framework that detects regularities based on unsuper-
vised cluster analysis. In this paper we describe a refine-
ment of the framework from [18] and we demonstrate its

usage with three modules [21] from SNOMED-CT. We
wanted to detect and further analyse the regularities and
irregularities in the modules of the ontology, and find
how these can be linked to potential design defects in
the ontology that have been reported in past work. The
assumption made for these defects is that entities that
follow naming conventions should also follow a similar
pattern in the description of their usage axioms. For exam-
ple, any concept in the ontology that is labeled as Chronic,
should also have an explicit or implicit reference to the
‘Chronic (qualifier value)’ class. Entities that do not follow
this pattern are categorised as:

1. Design discrepancies in the asserted axioms in an
ontology.

2. Deliberate deviations of a pattern.

We pinpoint such defects in the ontology and we verify
a portion of them by referring to the SNOMED-CT liter-
ature. The design discrepancies we highlight mainly refer
to missing restrictions. The rest are categorised as devia-
tions from an expected pattern. We show that parts of the
ontology that do not follow a particular pattern are more
prone to design discrepancies, such as missing restric-
tions, incorrect descriptions etc. That is expected, since
the developers have a higher level of freedom to describe
concepts that do not have a general pattern, and, therefore,
there is more room for error.

Materials andmethods
The RIO framework
In [18] we introduced RIO; a framework for spotting reg-
ularities in ontologies. The framework is based on cluster
analysis, the purpose of which is to partition data into
groups (clusters) that are meaningful, useful or both [22].
The RIO framework enables the partitioning of a set of
entities in an ontology according to similar usage, i.e.: enti-
ties in the same cluster occur with similar axioms playing
similar roles. Therefore, the detection of regularities is
based on the following two general steps:

1. The computation of clusters of similar entities in the
ontology.

2. The provision of a synthetic view of all the axioms
that contribute to generate a cluster of entities.

The first step is completed using hierarchical agglomer-
ative cluster analysis [22,23]. The second is accomplished
via generalisations, which capture the potential syntac-
tic regularities in the ontology. To give an example of
RIO’s goal, the expression in Additional file 2: Figure S2
is a generalisation expressing the regularity of the axioms
in Additional file 1: Figure S1. Cluster analysis helps to
generate groups of similar concepts, which are denoted
as variables in the generalisation. For example, in the

http://oppl2.sourceforge.net
http://oppl2.sourceforge.net
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generalisation in Additional file 2: Figure S2, variable ?Pre-
sentSituation would represent a cluster that holds present
finding classes.
Algorithm 1 shows the steps that are followed for the

computation of clusters in an ontology. Details about the
algorithm were previously reported in [18].

Algorithm 1. RIO algorithm
Input: A set of entities.
Output: set of clusters.
1: for Every pair of entities {e1, e2} in the set do
2: Obtain the usage axioms of {e1, e2}, Ax(e1), Ax(e2)
3: {Transform axioms. φ: placeholder replacement

function} Axφ(e1) ← φ(Ax(e1)),
4: Axφ(e2) ← φ(Ax(e2))
5: d(e1, e2) ← |(Axφ(e1)∪Axφ(e2)|−|Axφ(e1)∩Axφ(e2))|

|(Axφ(e1)∪Axφ(e2)|
{Calculate distance}

6: end for
7: Build a proximity matrix with distances d between all

entities
8: Assign to the current set of clusters the set of

singleton clusters, each representing an input entity.
9: repeat
10: Merge the closest two clusters, replace them with

the result of the merge in the current set of clusters.
11: Update the proximity matrix with the new distance

between the newly created cluster and the original
ones.

12: until distance between all possible pairs of elements
for all clusters is equal to 1

13: return The current set of clusters.

In algorithm 1, steps 7-13 are common steps of agglom-
erative hierarchical clustering [22] and are not discussed
further.
Steps 1-6 in the algorithm are the most important ones

in the implementation of the framework. Cluster analy-
sis relies on the notion of distance to quantify how similar
(or dissimilar) and, therefore, how close or far apart two
entities are in the clustering space. In our implementation,
we compute the distance between pairs of entities based
on their axiom usage. These axioms are transformed
into more abstract forms using a placeholder replace-
ment function φ, which is based on a heuristic approach.
The placeholder replacement function φ enables the com-
parison between pairs of entities and the control of the
granularity of the distance.

Placeholder replacement function
The placeholder replacement function is applied to
the axioms used in an entity’s description and decides
when an entity should be replaced by a placeholder.

More formally, given an ontology O, we define
� = {?owlClass, ?owlObjectProperty, ?owlDataProperty,
?owlAnnotationProperty, ?owlIndividual, ?*} a set of
six symbols that do not appear in the signatureb of
O - sig(O). A placeholder replacement is a function
φ : sig(O) → sig(O) ∪ � satisfying the following
constraints: Consider an entity e ∈ O then φ(e) =

• e or ?* or ?owlClass if e is a class name;
• e or ?* or ?owlObjectProperty if e is an object

property name;
• e or ?* or ?owlDataProperty if e is a data property

name;
• e or ?* or ?owlAnnotationProperty if e is an

annotation property name;
• e or ?* or ?owlIndividual if e is an individual name.

The notion behind the placeholder replacement func-
tion φ is that we want to abstract axioms in order to
capture their general structure and to calculate the dis-
tance between their referencing entities. Changing the
granularity of the placeholder replacement function pro-
duces more or less sensitive distance functions. Different
approaches can be adopted, such as:

1. Naive approaches
2. Popularity replacement
3. Structural replacement

The naive approaches covers two extremes; replacing
every entity with a placeholder or not replacing any at all.
Whilst the former produces a distance that is far too tol-
erant and puts together entities that seem unrelated, the
latter will most likely result in a distance that scores 1
(maximal distance) for most entity pairs.
In [18] we proposed a trade off where we delegated the

decision of whether to replace an entity in an axiom to a
measure of its popularity with respect to the other enti-
ties in the same kind of axiom within the ontology. We
regarded entities that are used frequently in the axioms
of the ontology to be more important, thus will not be
replaced by the function φ. This approach seemed to
work adequately for smaller andmedium sized ontologies.
However, for bigger ontologies this replacement policy
could overfit the data; the increased popularity of many
entities can result in a very sensitive distance, thus very
fine-grained regularities.

Structural replacement function
In this paper we define a structural replacement function.
This approach is also heuristic and is based on the search
of an optimal split of the entities in a corresponding place-
holder as a preprocess of the clustering. The replacement
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function, applied in steps 3 and 4 of algorithm 1), works as
follows:

1. A structural variable replacement is applied in the
axioms of the ontology. This will create an
abstraction over different types of asserted axioms in
the ontology.

2. The variable replacements are refined by examining
better separation of instantiated axioms in different
groups.

We will demonstrate how this transformation func-
tion works in practice by using the example ontology in
Additional file 5: Figure S5. This ontology is just an exam-
ple to demonstrate how a particular replacement function
works. It has no relationship with SNOMED-CT.

Step 1: The first step is the representation of axioms
in abstract forms; This is done by replacing every
entity in an axiomwith a general variable based on the
type of the entity. Additional file 6: Figure S6 shows
the transformation result for the example ontology. It
should be noted that this abstraction over the axioms
is different from the final generalisation which
represent the detected syntactic regularities. This
transformation is an intermediate step of algorithm 1.
Step 2: For each one of the general axioms (14)-(16)
we retrieve their instantiations and check if a
replacement of a variable with an entity gives better
separation of axioms in different groups. The
examination of variable replacements depends on the
structural commonalities of the axioms. Our
criterion is that if there are more than two structural
differences between a pair of axioms then the
variable should be checked for further replacements.
The idea behind this criterion is that we want to find
an optimal variable replacement in the axioms that
will reflect the differences between the entities in the
ontology. In the example ontology in Additional file
6: Figure S6, the general axiom (14) abstracts the
axioms (1)-(8) in Additional file 5: Figure S5. Many of
these axioms have more than one structural

difference (1) and (5) or (2) and (14) etc.). Therefore,
further possible replacements should be examined.
The general axiom is the root of the tree. Then, the
branches of the tree show all possible values for each
variable of the general axiom. An example tree for
the generalisation (14) is shown in Figure 1. The leaf
nodes of the tree show the instantiations that result
from the replacement of the parent node.
Replacements that abstract only a single axiom are
discarded. Replacements that separate the values of
the other variables into different sets and abstract
more than one axiom are kept. For example, in
Additional file 6: Figure S6 all further splits of
variable ?class 2 are discarded as they abstract only a
single axiom. However, the replacements for ?class 1
are kept as they abstract more than one axiom.
Therefore, classes A, B and C in the axioms of the
form of (14) are marked as “relevant” and they are
not replaced by a placeholder. The same procedure is
followed for the general axioms (15) and (16). In
particular, none of the referenced entities of the
general axioms (15) and (16) are marked as “relevant”
because none of the possible replacements abstracts
more than one axiom. Thus, all of the referenced
entities will be replaced by a placeholder after the
application of the replacement function φ.

At this point we have demonstrated how the replace-
ment function φ works. The next step in algorithm 1
is the computation of pairwise distances (step 5). For
example, the distance d(B1, B3)=0 as the application of φ

on their referencing axioms will return the same set of
transformed (see Additional file 7: Figure S7).
Finally, steps 7-13 of Algorithm 1 describe the computa-

tion of the clusters. We should comment that we selected
our stopping criteria according to the maximal differ-
ence between pairs of entities. It is ∀O,φ, e1, e2 : 0 ≤
dφ(e1, e2) ≤ 1. Therefore, the algorithm will stop agglom-
erations when the distances between all possible pairs of
elements for all clusters is equal to 1 (meaning that these
entities are completely dissimilar).

?class_2 SubClassOf ?class_1

?class_2 = B1 ?class_2 = B2 ?class_2 = B3 ?class_1 = B ?class_1 = A ?class_1 = C

B1 SubClassOf BB1 SubClassOf B B2 SubClassOf B B3 SubClassOf B

B2 SubClassOf B

B3 SubClassOf B

C SubClassOf A

B SubClassOf A

C1 SubClassOf C

C2 SubClassOf C

C3 SubClassOf C

?class_2 = C1 ?class_2 = C2 ?class_2 = C3

C1 SubClassOf C C2 SubClassOf C

?class_2 ?class_1

?class_2 = B

B SubClassOf A

?class_2 = C

C SubClassOf A

Figure 1 Tree showing possible variable replacements.
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Syntactic regularities expressed with generalisations
Finally, the description of the clusters is given by generali-
sations. Generalisations provide a synthetic view of all the
axioms that contribute to generate a cluster of entities. In
practice they are axioms including variables that hold sim-
ilar entities. Each of these axioms can be regarded as an
instantiation of a generalisation, as they can be obtained
by replacing each variable in the generalisation with enti-
ties in the signature of the ontology. Additional file 8:
Figure S8 shows the generalisations and instantiations of
our example ontology. The first generalisation instanti-
ates axioms (1)-(3). The second generalisation instantiates
axioms (9), (11), (13). The instantiations of the third gen-
eralisation are axioms (10), (12). Finally, the instantiations
of the fourth generalisation are axioms (6)-(8) and of fifth
generalisation are axioms (4), (5). In RIO, the vocabulary
from OPPL [19] is used for expressing the variables in the
generalisations. We also use OPPL scripts as an additional
verification of the results we find.

SNOMED-CT modules
The steps that were followed for the analysis of the regu-
larities in SNOMED-CT were:

1. Extraction of three SNOMED-CT modules
2. Application of the RIO on the asserted ontologies
3. Analysis of the regularities and verification with

published work and SNOMED-CT documentation.

For the extraction of the modules we used the July 31
2010 IHTSDO (International Health Terminology Stan-
dards Development Organisation) release of SNOMED
CT converted to OWL using the Perl script provided with
the release.
The procedure for extracting the modules from the

ontology is the same as the one described in [17]. Formod-
ule extraction, we used the methods in the OWL API [24]
(http://owlapi.sourceforge.net) packaged in an applica-
tion, which is available online (http://owl.cs.manchester.
ac.uk/research/topics/snomed/).

The analysis of syntactic regularities mainly focuses on
the description of four groups of terms in the ontology.
These groups of terms have a naming convention and it
is also expected to instantiate a pattern. In the remain-
der of the paper they will be called target entities. We
also will refer to terms in the ontology by using their
labels as they were found in the OWL ontology. The
extracted modules refer to “chronic” and “acute” diseases,
together with “present” and “absent” clinical findings.
Some metrics describing the modules are presented in
Table 1.
The extraction of the modules was based on a set of

terms that were expected to instantiate a pattern in their
axioms. For example, it is expected that all chronic find-
ings to have an axiom that relates them with ’Chronic
(qualifier value)’. Similarly all acute findings are expected
to be related with ’Acute (qualifier value)’. The modules
describe classes that are findings and have the words
“Present” and “Absent” in the beginning or middle of their
label. These can be gathered using the OPPL script in
Additional file 9: Figure S9:
The OPPL script gives 0 candidate classes whose name

starts with the word “Present” and 59 classes with the
word “present” in the middle of their name. For the
“absent” case, there was only 1 class whose label started
with the word “Absent” and 24 classes with the word
“absent in the middle of their name.
Similarly, the “Acute” and “Chronic” modules were

extracted based on a set of terms which have the words
“Acute” and “Chronic” in their name and describe acute
and chronic clinical findings respectively. Similar scripts
as the ones presented in Additional file 9: Figure S9 gave
420 candidate “Chronic” classes and 509 “Acute” candi-
date classes.
In our analysis the patterns which are described in

the technical guide are manually formulated using OPPL
scripts, which returns all possible candidate axioms that
are instantiations of this pattern. These are compared with
RIO’s results and we further discuss the strengths and
weaknesses of the two methods.

Table 1 General metrics on the three extractedmodules of SNOMED-CT

Present and absent Chronic findings Acute findings

clinical findings

Target entities Classes whose labels Classes whose labels Classes whose labels

have the keywords have the keywords have the keywords

“present” or “absent” “chronic” “acute”

Axioms 5 065 20 688 19 812

Classes 1 687 6 842 6 599

Object properties 16 25 25

Mean class hierarchy depth 9.76 11.2 10.09

http://owlapi.sourceforge.net
http://owl.cs.manchester.ac.uk/research/topics/snomed/
http://owl.cs.manchester.ac.uk/research/topics/snomed/
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Table 2 Results of the application of the RIO framework in the three SNOMED-CTmodules

Module # Clusters Cluster coverage per Mean Instantiations

generalisation (%) per Generalisation

Present and absent clinical findings 41 8.50 6.42

Chronic findings 75 6.40 6.13

Acute findings 76 6.80 5.70

Results
Table 2 showsmetrics of the application of the RIO frame-
work on each module. There are two main metrics we use
in order to measure the regularity of an ontology:

1. Mean cluster coverage per generalisation;
2. Mean number of instantiations per generalisation.

The mean cluster coverage per generalisation shows the
level of coverage of a cluster by a single generalisation. In
principle, the variable of a generalisation does not neces-
sarily hold all members of a cluster, but a subset of them.
For example, the third generalisation in Additional file 8:
Figure S8 has two instantiations and covers 66% of entities
of cluster2 and 50% of entities of cluster1.
The mean number of instantiations per generalisation

shows howmany axioms can be abstracted by a single gen-
eralisation. An ontology with a high cluster coverage per
generalisation (close to 100%) and a high mean of instan-
tiations per generalisation is a strong indication of a very
regular ontology.
The results show that the present and absent clinical

findings module is the most regular of all three mod-
ules, as it has the highest cluster coverage and mean
instantiations per generalisations. However, the overall
cluster coverage percentage does not exceed 8.5%. There
are two reasons for this result; First, the ontology is not
highly regular. Secondly, in some cases the clustering algo-
rithm is too “greedy”, resulting in big clusters that are not
completely homogeneous.
Most of the regularities that were captured by RIO

refer to restrictions using the RoleGroup attribute [25] for
grouping relationships. This is also the main regularity
that is described in the technical guide of the release
we used [26]. The purpose of the RoleGroup attribute
in SNOMED-CT was to provide a simple way to indi-
cate that certain roles should be grouped together [25].
However, we want to check how this general regularity
is formed when describing different sets of terms in the
ontology. In the remainder of the section, we will focus on
the regularities we found in the entities from the ontology,
which have:

• The words “Present” or “Absent” at the beginning or
in the middle of their name.

• The words “Chronic” or “Acute” at the beginning or
in the middle of their name.

“Present” and “absent” cases
Table 3 shows the results of the regularities referring to
entities, whose names included the words “present” or
“absent”. There are 58 out of 59 “present” entities which
are distributed in 6 clusters. Similarly, all the 25 “absent”
entities are distributed in 5 clusters.
There is one “present” clinical finding that is not

included in the clusters (‘Definitely present (qualifier
value)’). The reason is that this class is never used in any
other axiom, apart from its declaration and position in
the class hierarchy (It is a subclass of the ‘Known present
(qualifier value)’ and superclass of the ‘Confirmed present
(qualifier value)’. Fifty of the “present” entities appear to
be in the same cluster and described by 16 generalisa-
tions. Additional file 10: Figure S10 shows an example
generalisation and instantiation referring to this cluster
(cluster1).
The structure of the 16 generalisations describing

“present” classes is similar; in many cases the only thing

Table 3 Selected results of the analysis of regularities in
present and absent cases

Present Absent

Total number of entities starting with
“Present” or “Absent”

0 1

Total number of entities having “present” or
“absent” in the middle of their name

59 24

Number of clusters that include the target
entities

6 5

Number of generalisations describing the
target entities

65 39

Number of instantiations referring to the tar-
get entities

404 236

Number of target entities that were not in
any cluster.

1 0

Number of clusters including entities with
multiple role groups (RoleGroup) in their
axioms

3 3

Number of clustered entities using multiple
role groups (RoleGroup) in their axioms

4 3

Number of generalisations which instantia-
tions explicitly refer to the present (Known
present (qualifier value)) or absent qualifier
(Known absent (qualifier value))

23 (35%) 15 (39%)

Number of instantiations that explicitly refer
to the present or absent qualifier

127 (31%) 81 (34%)
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that changes is a single variable in the generalisation. A
reason for this is that entities participating in axioms of
similar syntax fall into different clusters due to their differ-
ent usage in other axioms. The expected pattern for all the
present and absent cases is their explicit reference to the
’Knownpresent (qualifier value)’ and ’Known absent (qual-
ifier value)’ respectively. An example instantiation pattern
is shown in Additional file 10: Figure S10.
The analysis of the regularities (Table 3) showed that

the 31% (127) of the usage axioms of the present enti-
ties are using this pattern. These axioms are abstracted
by 23 (35%) of the generalisations. Similarly, for the
absent classes, 81 (34%) instantiations explicitly refer to
the absent qualifier value and these are abstracted by 15
(39%) by the generalisations. Note that the total num-
ber of instantiations in Table 3 refer to all the axioms
that were generalised and reference by at least one tar-
get entity (including both left and right hand side of the
axiom). Also these numbers refer to the expected syntac-
tic pattern, which is an explicit reference to a qualifier
value (e.g. ’Known present (qualifier value)’). However, an
implicit pattern can exist, such as propagation through
the class hierarchy, which can infer such a connection.
This explains the relatively low percentage of the axioms
following the pattern.
Similarly, 21 of the “absent” clinical findings are in the

same cluster described by 10 generalisations. Both absent
and present classes seem to follow the same type of regu-
larity in their definition. This is also described as a com-
mon pattern in the SNOMED-CT online resources [26].
Most of the entities are described using the RoleGroup
attribute for grouping relationships using the ‘Associated
finding (attribute)’, ‘Finding context (attribute)’, ‘Tempo-
ral context (attribute)’ and ‘Subject relationship context
(attribute) attributes. However, in both cases, we found
deviations from this pattern. For example the class ‘On
examination - joint effusion present (disorder)’ belongs to
a different cluster as it is defined differently (Additional
file 3: Figure S3).
There were also clusters including entities with different

forms of class expressions. An example is the ‘Clinical find-
ing absent (situation)’. The analysis of the module gave
in total 17 classes that included the ’RoleGroup’ attribute
more than once in their definition. Additional file 11:
Figure S11 shows three example clusters with such enti-
ties. The usage of role groups and multiple role groups in
SNOMED-CT is described in [27].
These examples might be deliberately defined in this

way, however it is a deviation from the design style of
most classes, that leads to deeply nested class expressions.
It might be also a case of malformed axioms, as it is not
clear in which cases the ’RoleGroup’ attribute should be
used more than once in the same axiom [27] and when
a relationship should be grouped with an existing role

group. Table 3 shows that 3 clusters were detected with
4 “present” classes using multiple role groups in their
axioms. Likewise, 3 clusters were detected with 3 “absent”
classes whose axioms used multiple role groups. Our
aim is to highlight such cases, which should be further
assessed by experts.

“Chronic” and “Acute” cases
Table 4 summarises the results of the regularities that were
found in the entities containing the words “acute” and
“chronic” in their label. The results showed that most of
the entities do not follow a general pattern. Therefore, the
entities are distributed in many clusters and are described
by many generalisations. From the technical guide, a gen-
eral pattern that is expected in these terms is the explicit
reference to the chronic or acute qualifiers in equivalent
or subclass axioms [17]. An example description is shown
in Additional file 12: Figure S12.
However, only 50(5%) of the generalisations for the

“Chronic” module were found to abstract axioms related
to “Chronic” entities and 114(10%) of the generalisa-
tions for the “Acute” module abstracted axioms related
to “Acute” entities. An example generalisation reflecting
the expected pattern for the chronic classes is shown in
Additional file 13: Figure S13.
We verified some of the results of this work with the

results described in [17]. However, this paper focuses
more on the analysis of the syntactic regularities from an

Table 4 Selected results on the analysis of regularities in
chronic and acute cases

Chronic Acute

Total number of entities starting with
“Chronic” or “Acute”

388 472

Total number of entities having “chronic” or
“acute” in the middle of their name

32 38

Number of clusters that include the target
entities

34 34

Number of generalisations describing the
target entities

919 1109

Number of instantiations referring to the tar-
get entities

1503 1849

Number of target entities that were not in
any cluster.

12 11

Number of clusters including entities with
multiple role groups (RoleGroup) in their
axioms

19 21

Number of clustered entities using multiple
role groups (RoleGroup) in their axioms

64 79

Number of generalisations whose instantia-
tions explicitly refer to the chronic (Chronic
(qualifier value)) or acute qualifier

50 (5%) 114 (10%)

Number of instantiations that explicitly refer
to the chronic or acute qualifier

76 (5%) 210 (11%)
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ontology engineering perspective. Subsets of these terms
might be expected to deviate from this pattern from a
medical perspective. For example, a subset of “chronic”
terms deviate from the pattern in Additional file 13: Figure
S13 reported in [17], as they are described according to
their morphology. Thus, there is no existential restriction
in their asserted axioms referring to the ’Chronic (qualifier
value)’. Since these terms do not have a reference to the
Chronic (qualifier value) they cannot be highlighted by a
syntactic tool like RIO; such a relationship is found in the
inferences of the ontology.
In addition, 20 entities from the target set of entities

were not clustered. Here, for the sake of brevity, we mainly
focus on the “Chronic” cases. Table 4 summarises some of
the results for all the cases. Additional file 15: Figure S15
shows the chronic entities, which were not included in any
cluster. Some of them, such as the ‘Chronic anxiety (find-
ing)’ were also reported in [17] as design defects. From
these, the “Chronic low back pain (finding)”, is reported
as having an incomplete description in [17]. In particu-
lar, the class has an existential restriction that is missing.
However, this type of irregularity is not clear from the
syntax of the axiom. The class is grouped with other
“chronic” classes, which have complete existential restric-
tions. Therefore, this type of irregularity is not easily
noticeable from the analysis of the results.
Finally, 10 clusters included entities participating in

nested class expressions with multiple role groups (using
multiple RoleGroup relationships). It should be noted that
clusters of smaller size tended to include such deviations
from the regular pattern (most of the class expressions
are described using a single role group in the examined
modules).

Verification of results
In order to verify some of the results, we manually ran
OPPL scripts whenever possible. In particular, we exam-
ined, which classes failed to follow the expected pattern by
running corresponding OPPL scripts. For example, for the
“chronic” classes we ran the queries of Additional file 16:
Figure S16 to select classes that had the word “Chronic”
in their label, but were missing the expected semantics.
The first OPPL script of Additional file 16: Figure S16 gave
131 candidate classes with incomplete semantics while the
second script will give 5 candidate classes with incom-
plete semantics. This set of candidate classes are potential
errors in the ontology since they aremissing the reason for
being “chronic” findings—despite this is indicated in their
label.
Comparing the results of the manual analysis using

OPPL scripts with the results of the automatic analysis
by RIO we can note that the analysis with RIO gave in
total 314 classes (Table 4) as potential deviations from the
expected pattern while manual OPPL scripts narrowed

this down to 131 candidate classes. The reason for this
difference is that OPPL scripts take into account both the
asserted and the inferred form of the ontology, thus the
instantiation of the expected pattern is in the inferences
of the ontology. However, this kind of semantic analy-
sis could not be done by RIO since we have a purely
syntactic approach. It should be mentioned, though, that
the 131 candidate classes from the OPPL script included
all these classes in Additional file 15: Figure S15. Similar
OPPL scripts gave 147 “acute”, 9 “present” and 2 “absent”
candidate classes with missing descriptions.

Conclusions and future work
We have presented a refinement of RIO [18]; a frame-
work that detects syntactic regularities in an ontology
using cluster analysis, and applied it to three modules
from SNOMED-CT. In particular, we have presented a dif-
ferent transformation function for the calculation of the
distance that is used for the clustering. This transforma-
tion function finds optimal representations of entities by
placeholders according to structural differences in axioms.
The framework allows the use of different transforma-
tion functions, without affecting the implementation of
the remaining steps in the workflow; thus, future work
could include testing of other options. There may be bet-
ter transformation policies; what we have done here is to
show that clustering is possible and that it can be used to
spot regularities and irregularities in patterns of axioms
within an ontology.
We demonstrated the use of RIO with three modules

from SNOMED-CT. The modules were selected accord-
ing to a set of entities which were expected to follow
a pattern that also matches their label. Our aim was to
inspect the regularities and irregularities that might reveal
the composition style of the ontology to the ontology engi-
neer, whomay not be a domain expert. Some of the results
are confirmed through documentation of the ontology or
past publications related to quality assurance methods for
SNOMED-CT. In addition, OPPL scripts were used for
expressing expected patterns and comparing the results
with the ones from RIO. The results showed expected
regularities, as well as deviations from these regularities.
It revealed terms with incomplete descriptions, such as
missing existential restrictions (e.g. 12 “chronic” classes
with an incomplete description which were not included
in any cluster); classes, which were placed correctly in
the class hierarchy by the reasoner, but described with
long class expressions using multiple role groups (e.g.
79 “acute” classes whose definition makes use of multi-
ple role groups). In the worst case, the expected patterns
described in the technical guide of the ontology was
explicitly instantiated by only 5% of the corresponding
entities in the module (Table 4). The results also indicated
that parts of the ontology that did not follow an explicit
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pattern tended to have more potential “defects”. All these
can be detected and reported to domain experts who will
decide which ones should be modified.
In addition, with OPPL scripts (Additional file 16: Figure

S16) we verified a subset of entities which were also
highlighted with the analysis from RIO (e.g. entities of
Additional file 15: Figure S15). However, a number of tar-
get entities did not instantiate the expected pattern in
their asserted axioms, but the pattern was expressed in
the inferences of the ontology. These entities were high-
lighted by RIO as deviations from the expected pattern as
the inferences were not taken into account. The consider-
ation of inferences by RIO for detecting patterns in both
asserted and inferred ontology is future work.
There were frequently generalisations expressing the

same type of regularity. A future development could be to
check possible bindings of such generalisations into gen-
eralisations that will give a more uniform representation
of the regularity.
We argue that RIO should be useful as an intermedi-

ate step of a more systematic quality assurance procedure
for ontologies. Our use of a basic clustering approach has
a demonstrable use in finding regularities and irregular-
ities in an ontology. By itself RIO does not find defects,
it only finds syntactic regularities and irregularities; it is
for the ontology engineer and domain expert to deter-
mine whether or not the deviations are legitimate. It has
potential for offering authors a means to gain generali-
sations of the major portions of an ontology; to detect
deviations from a given style of representation and to facil-
itate the quality assurance of complex ontologies such as
SNOMED-CT and many others.

Endnotes
ahttp://www.nlm.nih.gov/research/umls/Snomed/core
subset.html.
bFor signature here we mean the set of class names,
data/object/annotation property names, individuals
referenced in the axioms of an ontologyO.

Additional files

Additional file 1: Figure S1. Two axioms defining the ’Dizziness present
(situation)’ and ’Paralysis present (situation)’ in SNOMED-CT. The
structure of these axioms is very similar.

Additional file 2: Figure S2. An example pattern for describing ’present’
clinical findings (e.g. ’Paralysis present (situation)’ and ’Dizziness present
(situation)’). This pattern contains variables (?PresentSituation, ?Finding),
which hold classes of similar axiom usage.

Additional file 3: Figure S3. The definition of a present disorder (’On
examination - joint effusion present (disorder)’). Its definition deviates
from the pattern of Additional file 2: Figure S2.

Additional file 4: Figure S4. Example OPPL script for detecting instances
of a pattern. It defines two class variables; ?PresentSituation,

?Finding. The SELECT statement will select all axioms that instantiate
this variable expression. The ADD statement will add all entities that
instantiate the SELECT statement as subclasses of the PatternInstance
class.

Additional file 5: Figure S5. Example ontology.

Additional file 6: Figure S6. Result of step 1 of the replacement
procedure. The transformation of the axioms of Additional file 5: Figure S5
is shown.

Additional file 7: Figure S7. Reason for d(B1,B3)=0. Both entities have
the same set of transformed axioms shown in this figure.

Additional file 8: Figure S8. Clusters, generalisations and covered
instantiations for the example ontology.

Additional file 9: Figure S9. OPPL scripts for gathering target terms for
the extraction of the “Present” module.

Additional file 10: Figure S10. Example generalisation and instantiation
for ?cluster1. The cluster includes 50 classes with the word “present” in
their name described by 16 generalisations. The example generalisation
and instantiation show the pattern that is used for describing these
entities, which is the usage of particular roles.

Additional file 11: Figure S11. Outlier clusters with multiple usage of the
RoleGroup attribute and example instantiation.

Additional file 12: Figure S12. Example description of a “chronic” class
(’Chronic urate nephropathy (disorder)’).
Additional file 13: Figure S13. Example syntactic regularity that covers
14 axioms describing 14 chronic disorders. This syntactic regularity reflects
a pattern that expected to be found for “chronic” classes (explicit reference
to the ’Chronic (qualifier value)’).
Additional file 14: Figure S14. Chronic entities that were not included in
a cluster.

Additional file 15: Figure S15. Absent entities that were not included in
a cluster.

Additional file 16: Figure S16. OPPL scripts for gathering chronic classes
with incomplete description.
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