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1 Introduction

The standard model (SM) has been worked very well for a long time, and its last missing

piece, the Higgs boson, was finally discovered by the Large Hadron Collider (LHC) experi-

ment at CERN [1, 2]. This is a triumph of the SM and a great step to understand physics

at the electroweak scale. However, there are many unsolved problems within the SM, for

example, the observed dark matter particles and baryon asymmetry in the Universe. From

theoretical viewpoint, the gauge hierarchy problem is still in question. Hence, there have

been many attempts to solve such problems in frameworks beyond the SM.

In a bottom-up approach towards new physics beyond the SM, an attractive option is

to study the two-Higgs doublet models (2HDMs). They are simple and may be low-energy

effective theories of various new physics models. Since 2HDMs generally have dangerous

flavor changing neutral currents (FCNCs), we particularly consider 2HDMs with softly

broken Z2 symmetry which suppresses the FCNCs. If two Higgs fields do not distinguish

the generations of quarks and leptons, the models are classified, with respect to the Yukawa

interactions, into four types: type-I, type-II, type-X, and type-Y. One of the important

feature of 2HDMs is that there is a new CP violation source in the Higgs potential.

In general, the powerful tool to seek new physics including 2HDMs is of course the

LHC which may directly probe physics up to a few TeV. Another possibility is provided

by low energy precision measurements, such as in flavor physics. The remarkable feature

is that these measurements have a potential to investigate new physics beyond the LHC

reach by orders of magnitude. In particular, the electric dipole moments (EDMs) are

interesting because the EDMs are highly sensitive to CP violation in physics beyond the

SM. While the SM predictions of EDMs are much lower than the current experimental

bounds, assuming the strong CP problem is solved by some mechanism, such as the Peccei-

Quinn symmetry [3, 4], new physics around TeV scale would give large values within the

reach of the future EDM measurements [5–7]. In addition, the electroweak baryogenesis

(EWBG) [8–11], which needs a new CP violation source, may lead to larger values of EDMs

than the SM predictions.

The EDM measurements, therefore, are concrete tests on 2HDMs containing a new

CP phase. In the models, the one-loop contributions to the fermionic EDMs are too small

to observed since those contributions are proportional to the third power of small Yukawa

couplings. Some two-loop diagrams, called the Barr-Zee diagrams [12], which we show in

figure 1, may give sizable contributions to the EDMs, since they are suppressed by only

one power of small Yukawa couplings. These diagrams contain one-loop effective vertices,

hγγ, hγZ, and H∓W±γ. The Type-II case was evaluated in refs. [13, 14], but the results

in the previous works are not gauge invariant. We improve this point by using the pinch

technique [15–17] and make the Barr-Zee diagrams gauge invariant. We also study EDMs

in the other three types as well as the type-II.

We organize this paper as follows. In section 2, we briefly review the 2HDMs with

softly-broken Z2 symmetry. In section 3, we study the tensor structure of the effective

vertices which are needed to evaluate the Barr-Zee diagrams, and show the gauge invariant

tensor structure. After that, we calculate the effective vertices explicitly and show that the

diagrams which include the gauge bosons are not gauge invariant. This implies that we
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(a) (b) (c) (d)

Figure 1. Barr-Zee diagrams, which contribute to fermionic EDMs at two-loop level.

need some non-Barr-Zee diagrams to make the effective vertices gauge invariant. We show

it by using the pinch technique. The formulae of the gauge invariant Barr-Zee diagrams

are given in section 4, and their numerical evaluation is presented in section 5. There

we discuss the complementarity between the electron and neutron EDM measurements in

discrimination of 2HDMs, and also prospects of future experiments. Section 6 is devoted

to conclusions and discussion. Notations and details of the calculation are given in the

appendices.

2 Models

We briefly review the models discussed in this paper. We have two Higgs doublets, H1

and H2, and they have the vacuum expectation values (VEVs). The Higgs doublets are

parametrized as follows,

Hi =

(
π+i

1√
2

(
vi + σi − iπ3i

)
)
, (i = 1, 2) . (2.1)

In order to avoid the dangerous FCNC problems, we introduce the Z2 symmetry. The

Z2 symmetry is assumed to be softly broken so that the domain-wall formation in the

early universe is suppressed. Under this symmetry, the Higgs doublets are translated into

H1 → +H1 and H2 → −H2, and the Higgs potential is given as

V = m2
1H

†
1H1 +m2

2H
†
2H2 −

((
Rem2

3 + iImm2
3

)
H†

1H2 + (h.c.)
)

+
1

2
λ1

(
H†

1H1

)2
+

1

2
λ2

(
H†

2H2

)2
+ λ3

(
H†

1H1

)(
H†

2H2

)
+ λ4

(
H†

1H2

)(
H†

2H1

)

+

(
λ5e

i2φ
(
H†

1H2

)2
+ (h.c.)

)
. (2.2)

The third and last terms in this potential contain complex parameters. While one of them

can be eliminated by redefinition of Higgs fields, another phase is physical so that CP

symmetry is broken. In this paper we take the Higgs VEVs, v1 and v2, real using the gauge

symmetry and also redefinition of a Higgs field. In this basis, two phases in the potential

are related to each others by the stationary condition of the potential, V ′ = 0. In this

paper we choose φ as an input parameter for CP violation.

We also use the following variables for convenience in this paper,

cosβ =
v1
v
, sinβ =

v2
v
, (2.3)

M2 ≡ v21 + v22
v1v2

Rem2
3 , (2.4)
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Type I II X Y

u H2 H2 H2 H2

d H2 H1 H2 H1

ℓ H2 H1 H1 H2

Table 1. Summary of the Higgs fields which couple to quarks and leptons in four types.

Figure 2. Effective Higgs boson-vector boson-vector boson vertices.

and where

v =
√
v21 + v22 =

(√
2GF

)−1/2
≃ 246GeV . (2.5)

GF is the Fermi constant. It is easy to find the charged Higgs boson mass,

m2
H± =M2 − 1

2
v2(λ4 + λ5 cos(2φ)). (2.6)

On the other hand, since CP symmetry is broken in the Higgs potential, we need to

diagonalize a 3 by 3 matrix to find the neutral Higgs masses.

The Yukawa interaction in this model is given by

LYukawa = −qLH̃2yuuR − qLHiyddR − ℓLHjyeeR + h.c. , (2.7)

where H̃2 = ǫH∗
2 , and i, j = 1 or 2, depending on the type of 2HDMs. While up-type

quarks couple to only to H2, leptons and down-type quarks couple to either H1 or H2 due

to the Z2 symmetry. We summarize which Higgs fields couple to fermions in table 1.

The detail information of the models, such as mass eigenvalues, mixings, and interac-

tions of the Higgs bosons, are given in appendix A.

3 Effective vertices

In this section we calculate effective vertices relevant for the Barr-Zee diagrams in a gauge

invariant way. To make our point clear, we start by exploring the relevant form of the

effective vertices shown in figure 2. Then we calculate effective hγγ, hZγ and H∓W±γ

vertices . We also calculate the pinch terms to make the vertices gauge invariant.

3.1 Tensor structure of the effective vertices

We study the tensor structure of the effective vertices shown in figure 2. This part has two

Lorentz indices, and does not contain γ-matrices. Then it is generally written as

Γµν = A0g
µν +A1p

µ
1p

ν
1 +A2p

µ
2p

ν
2 +A12p

µ
1p

ν
2 +A21p

µ
2p

ν
1 + iΓ5ǫ

µνρσp1ρp2σ, (3.1)
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where pµ1 and pν2 are the momenta of V1 and V2, respectively, and their direction is outgoing.

We consider the case that V1 is on-shell photon, and thus the terms proportional to pµ1 are

dropped. In addition, the gauge symmetry of photon requires Γµνp1µ = 0. Then, the

effective vertex for h-V1-V2 in the case that V1 is on-shell photon is defined with only two

form factors as

Γµν(p1, p2) = Γ(p1, p2) (−(p1p2)g
µν + pµ2p

ν
1) + iΓ5(p1, p2)ǫ

µνρσp1ρp2σ . (3.2)

Note that this tensor structure is led from the gauge symmetry of on-shell photon. Then all

the effective vertices must be this form. We emphasize this point because sometimes this

point seems overlooked, for example the tensor structure in eq. (9) in ref. [13] is different

from eq. (3.2).

However, in the actual calculation, we would find terms proportional to pµ2p
ν
2 and gµν ,

which should vanish and do not appear in eq. (3.2), namely we would find the effective

vertices become

Γ̃µν(p1, p2) = Γµν(p1, p2) + ΓP (p1, p2)g
µν + ΓD(p1, p2)p

µ
2p

ν
2 , (3.3)

where Γµν(p1, p2) is defined in eq. (3.2). These extra terms, ΓP and ΓD, are apparently

against the gauge invariance, but, nevertheless, they would appear. See, for example,

eq. (9) in ref. [13]. As we will see the following sections, we find they disappear if we take

on-shell conditions for all the external legs. However, we should keep them off-shell except

for a single photon because we use the effective vertices to calculate the Barr-Zee diagrams.

Hence we need to consider how to deal with these gauge variant terms.

Fortunately, it is found that the pµ2p
ν
2 term does not contribute to the EDMs at two-loop

level. If Γµν(p1, p2) contains terms proportional to pµ2p
ν
2 , the diagrams shown in figure 1

contain the following structures,

u(p+ q)ℓ/
1

/p+ q/− ℓ/−mf
u(p) , (3.4)

u(p+ q)
1

/p+ ℓ/−mf
ℓ/u(p) , (3.5)

where eq. (3.4) (eq. (3.5)) comes from figures 1(a) and 1(c) (figures 1(b) and 1(d)). If we

omit O(y2f ) terms, we can ignore the mass term in the fermion propagator and the mass of

the external fermions. Then, by using the equation of motion of the external fermions,

u(p+ q)(ℓ/− /p− q/)
1

/p+ q/− ℓ/
u(p) , (3.6)

u(p+ q)
1

/p+ ℓ/
(ℓ/+ /p)u(p) . (3.7)

Now it is apparent that these terms do not contain σµνγ5 structure because all the

γ-matrices are canceled out. Therefore the terms which are proportional to pµ2p
ν
2 in the

effective vertices do not contribute to the EDMs. Then we can safely drop the ΓD term

from eq. (3.3).

On the other hand, the ΓP term in eq. (3.3) remains as long as we take off-shell condi-

tions. This is nothing strange because the gauge invariance is promised for S-matrix, not

for effective coupling. Then the gauge invariance will recover once we calculate non-Barr-

Zee diagrams as well as the Barr-Zee diagrams, namely a full two-loop order calculation

– 5 –
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manifestly gives the gauge invariant results. However, it is very tough work to accomplish

it. Instead of the full two-loop order calculation, we make the effective vertex gauge invari-

ant by borrowing some terms from non-Barr-Zee diagrams. This technique is known as the

pinch technique, and the borrowed terms are called pinch terms [15–17]. As we will see in

the fallowing section, we find that ΓP term in eq. (3.3) is completely compensate with the

pinch terms.

Hereafter we calculate both −(p1p2)g
µν + pµ2p

ν
1 and gµν terms, and demonstrate the

latter term completely vanishes thanks to the pinch terms.

3.2 Effective hγγ and hZγ vertices — W boson loop —

Now we move on to calculate the effective vertices for hγγ and hZγ, which appear in

figures 1(a) and 1(b). In the following, p1 is the momentum of the external (on-shell)

photon where p21 = 0, and p2 is the momentum of the virtual gauge boson in the Barr-Zee

diagram. Note that the diagrams which contain both W and H± in the loop are absent in

the 2HDM because gγW±H∓ = gZW±H∓ = 0, where H± is a physical charged scalar not a

NG boson.

In this subsection, we focus on W boson loops of the hγγ and hZγ effective vertices

because we find these are not gauge invariant as long as we keep off-shell conditions. We

work in ’t Hooft-Feynman gauge and find the hγγ and hZγ effective vertices are given by

Γµν
hGγ(p1, p2) = +

e

(4π)2
1

m2
W

gWWhgWWG

×
[
ΓA
hGγ (p

µ
2p

ν
1 − p2p1g

µν) + ΓP
hGγ

(
p22 −m2

G

)
gµν + ΓB

hGγp
µ
2p

ν
2

+ ΓC
hGγ

[
(p1 + p2)

2 −m2
h

]
gµν

]
, (3.8)

where

ΓA
hGγ=4

(
−4J1

(
m2

W

)
+6J2

(
m2

W

)
+
m2

G

m2
W

(
J1
(
m2

W

)
−J2

(
m2

W

))
+

(
1− 1

2

m2
G

m2
W

)
m2

h

m2
W

J2
(
m2

W

))
,

(3.9)

ΓP
hGγ=+3J1

(
m2

W

)
, (3.10)

ΓB
hGγ=−3J1

(
m2

W

)
+
m2

G

m2
W

(
J1
(
m2

W

)
− J2

(
m2

W

))
+

1

2

m2
G

p22

(
1− 2J1

(
m2

W

))

+
m2

G

m2
W

(p1 + p2)
2

p22
J2
(
m2

W

)
, (3.11)

ΓC
hGγ = −

(
1− m2

G

m2
W

)
J1
(
m2

W

)
, (3.12)

where G stands for Z or γ, and where

J1
(
m2
)
=

∫ 1

0
dx

∫ 1−x

0
dy

1

1− p22
m2x(1− x)− (p1+p2)2−p22

m2 xy
, (3.13)

J2
(
m2
)
=

∫ 1

0
dx

∫ 1−x

0
dy

xy

1− p22
m2x(1− x)− (p1+p2)2−p22

m2 xy
. (3.14)
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(a) (b) (c) (d)

Figure 3. Diagrams containing the pinch terms for the effective hγγ and hZγ vertices. We pinch

the fermion lines shown with red color. The dashed lines attached to the fermion lines are the

physical scalars, and those not attached are would-be NG bosons.

The explicit forms of couplings, such as gWWh and gWWG, are given in appendix A. This

result is consistent with previous works, for example in eq. (9) in ref. [13].

Although the gauge invariance requires ΓP = ΓB = ΓC = 0 as we discussed in section 3,

it is not satisfied in eq. (3.8). So we should consider the gauge invariance for the EDM

calculation carefully. As discussed in ref. [13], the ΓC term does not contribute to the

EDMs. Because this term is proportional to inverse of neutral Higgs propagator, it can

reduce neutral Higgs propagator in Barr-Zee diagram. Then we can apply the vertex

relation1
∑

h g
A
ℓℓhgWWh = 0, where gAℓℓh is axial-scalar coupling of external fermion ℓ with

neutral Higgs bosons h and
∑

h is summation for three neutral Higgs bosons. The ΓB terms

do not contribute to the EDMs neither, because these terms do not keep σµνγ5 structure

as we discussed in section 3.1. Then only the ΓP terms are problematic. Actually the ΓP

terms vanish once we consider the pinch contributions as will be shown.

There are many two-loop diagrams which contribute to the EDMs, as well as the Barr-

Zee diagrams. Once we calculate all the diagrams, the result must be gauge invariant.

Therefore the gauge variant terms we discussed above should be canceled out by contri-

butions from non-Barr-Zee diagrams. In order to see this cancellation, we do not need

to calculate all the diagrams, but only the pinch contributions. The gauge invariance of

eq. (3.8) would be recovered by borrowing some terms from non-Barr-Zee diagrams.

For this purpose, we calculate the diagrams shown in figure 3. These diagrams contain

derivative couplings which are contracted with the gamma matrices by the Lorentz index.

Then, these terms cancel out internal fermion propagators. We pick up the terms in

which the fermion lines with red color in figure 3 are canceled out, and they are just the

pinch contributions which make Barr-Zee contributions gauge invariant. These terms are

schematically shown in figure 4. In ’t Hooft-Feynman gauge,2 we find

Fig. 3|pinch=
∑

h

∫

ℓ
iΓ̃µν

hGγ(−q, ℓ)
i

(q − ℓ)2 −m2
h

−igνρ
ℓ2 −m2

G

(−iγρgGℓℓ)
i

/p+q/−ℓ/−mf
(−igℓℓh),

(3.15)

where

Γ̃µν
hGγ(p1, p2) = −gµν3 e

(4π)2
gWWh

m2
W

gWWG(p
2
2 −m2

G)J1(m
2
W ). (3.16)

1We show this vertex relation in appendix A.3.4.
2In other gauge, we would need other diagrams as well as shown in figure 3.
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(a) (b)

Figure 4. Diagrams (a) and (b) are the diagrams after pinched away the red lines. Figures 3(a)

and 3(b) and figures 3(c) and 3(d) become diagrams (a) and (b), respectively.

Here, J1 is given in eq. (3.13), gGℓℓ and gℓℓh are couplings of external fermion ℓ with gauge

and Higgs bosons, respectively, and
∫
ℓ =

∫
d4ℓ/(2π)4. Since figure 1(a) with effective hGγ

vertices is calculated as

Fig. 1(a) =
∑

h

∫

ℓ
iΓµν

hGγ(−q, ℓ)
−igνρ
ℓ2 −m2

G

i

(ℓ− q)2 −m2
h

(−iγρgℓℓG)
i

/p+ q/− ℓ/−mf
(−igℓℓh),

(3.17)

we find eq. (3.16) is nothing but parts of the effective vertices by comparing eq. (3.17) to

eq. (3.15), and cancels the second term in eq. (3.8) (ΓP ) which is gauge variant term. In

other words, the pinch term certainly cancels the gauge variant term and make the effective

coupling gauge invariant.

After adding the pinch terms, we finally find the gauge invariant W loop contributions

to the effective hγγ and hZγ vertices for the Barr-Zee diagrams,

Γµν
hGγ(p1, p2) =

e

(4π)2
1

m2
W

gWWhgWWGΓ
A
hGγ (−(p1p2)g

µν + pµ2p
ν
1) , (3.18)

where ΓA
hGγ is given in eq. (3.9).

3.3 Effective hγγ and hZγ vertices — fermion, H± loop —

For the Barr-Zee diagram calculation, we need other contributions to effective hγγ and

hZγ vertices. We calculate the fermion loop contribution to the effective hγγ and hZγ

vertices. We denote the fermion as f . Note that they are independent from the gauge fixing

terms. Hence ΓP and ΓD in eq. (3.3) are zero. We find Γ and Γ5 defined in eq. (3.2) are

ΓhGγ(p1, p2) = +
Nc

(4π)2
2eQfg

V
ffh

(
gLGff + gRGff

) 2

mf

(
J1
(
m2

f

)
− 4J2

(
m2

f

))
, (3.19)

Γ5
hGγ(p1, p2) = +

Nc

(4π)2
2eQf

(
igAffh

) (
gLGff + gRGff

) 2

mf
J1
(
m2

f

)
, (3.20)

where Nc is the color factor, for example Nc = 3 for the top quark loop, Qf is the QED

charge of the fermion in the loop, for example Qf = 2/3 for the top quark loop.

The diagrams with the charged Higgs boson loop are also independent from the gauge

fixing terms. Thus ΓP and ΓD in eq. (3.3) are zero. We find Γ and Γ5 defined in eq. (3.2) are

ΓhGγ(p1, p2) = −4
1

(4π)2
eghH+H−gGH+H−

2

m2
H

J2
(
m2

H

)
, (3.21)

Γ5
hGγ(p1, p2) = 0. (3.22)

– 8 –
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3.4 Effective H∓W±γ vertices — W , H± loop —

The effective vertices for H∓W±γ, shown in figures 1(c) and 1(d), are also necessary to

calculate the all the Barr-Zee diagrams. Note that these Barr-Zee contributions have not

been studied in the literature yet, and we first calculate them. To find a gauge invariant

set for the Barr-Zee diagrams, we need to take into account for the pinch contributions.

Calculations are tedious and long, so the details are given in appendix C. After summing

up all terms which are relevant for the EDM calculations, we find the following gauge

invariant effective vertex:

Γµν
H−W+γ(p1, p2) = +

1

(4π)2
(p2µp1ν − p2p1gµν) (3.23)

×


+

∑

h

egW+H−hgWWh

∫ 1

0

dz

∫ 1−z

0

dy
−2yz − 4z + 4− m2

H
−m2

h

m2
W

2yz

m2
W (1−z) +m2

hz − p22z(1− z)− 2p1p2yz

−
∑

h

egW+H−hgHHh

∫ 1

0

dz

∫ 1−z

0

dy
4yz

m2
H(1−z) +m2

hz−p22z(1−z)− 2p1p2yz


,

Γµν
H+W−γ(p1, p2) =

(
Γµν
H−W+γ(p1, p2)

)∗
. (3.24)

Here we have already omitted the terms which do not contribute to the EDM calculations.3

There might also be fermion loops in the effective H∓W±γ vertices. It is found that

the fermion loops in the effective H∓W±γ vertices do not contribute to the EDMs if we

consider only the CP phase in the Higgs potential in 2HDMs. While another CP phase

is present in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, the contributions to the

EDMs should be much suppressed due to the GIM mechanism. Then, we do not calculate

the fermion loop contributions to the effective H∓W±γ vertices in this paper.

4 EDM from Barr-Zee diagram

In this section we calculate diagrams in figure 1. The EDM, dℓ, for fermion ℓ is defined

through

Heff = i
dℓ
2
ψℓσµνγ5ψℓF

µν , (4.1)

where

σµν =
i

2
[γµ, γν ]. (4.2)

Once we get the gauge invariant effective vertex whose tensor structure is given in eq. (3.2),

we find the neutral Higgs boson contributions to dℓ as

(dℓ)
Fig. 1(a)
+Fig. 1(b) =

1

2

∑

G=Z,γ

∑

h

(
gLGℓℓ + gRGℓℓ

) ∫

ℓ

(
igAhℓℓΓhGγ(0, ℓ) + gVhℓℓΓ

5
hGγ(0, ℓ)

) 1

ℓ2 −m2
G

1

ℓ2 −m2
h

.

(4.3)

where g
L(R)
Gℓℓ is for couplings of left(right)-handed fermion ℓ with gauge boson G, and g

V (A)
ℓℓh

is for (axial) scalar couplings with scalar boson h. Here we keep only the leading term for

p and q, and ignore mass term in the fermion propagator, and we have used a relation,

ǫµναβγαγβ = −iγ5[γµ, γν ].
3These terms do not contribute to the on-shell H− → W−γ process neither.
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Note that we work in ’t Hooft-Feynman gauge in eq. (4.3). If we work in other gauge,

gauge boson propagators contain the terms that proportional to ℓν and contract with the

effective vertices. Since Γµν(−q, ℓ)ℓν = 0, the terms proportional to ℓν in the gauge boson

propagators always vanish. Therefore the Barr-Zee diagrams are gauge invariant as long

as the effective vertices are gauge invariant.

In the similar manner, we find the charged Higgs boson contribution to the leptonic

EDMs as

(dℓ)
Fig. 1(c)
+Fig. 1(d) =

1

2
√
2

e

sW

∫

ℓ

1

ℓ2 −m2
W

1

ℓ2 −m2
H

iIm
(
gRH+ν̄eΓH−W+γ(0, ℓ)

)
. (4.4)

Here we have used the following relations,

gLH−ēν =
(
gRH+ν̄e

)∗
, (4.5)

ΓH+W−γ(0, ℓ) =
(
ΓH−W+γ(0, ℓ)

)∗
. (4.6)

The charged Higgs contributions to the up-type and down-type quark EDMs are derived

by replacing gRH+ν̄eΓH−W+γ in eq. (4.4) by gR
H−d̄u

ΓH+W−γ and gRH+ūdΓH−W+γ , respectively.

The chromo-EDMs (cEDMs) also contribute to the neutron EDM. Its definition is

similar to eq. (4.1), replace Fµν by gsGµν ,

Heff = i
dcq
2
qgsσµνγ5G

µνq , (4.7)

where gs and Gµν are the QCD coupling and the field strength of the gluon, respectively.

The formulae of EDMs include complicated functions. Here, we show the approximated

expressions in the decoupling limit for qualitative discussion, while all plots are drawn by

using the exact formulae. The exact formula are given in appendix B. In the decoupling

limit all the non-SM particles are degenerated, heavier than the electroweak scale, and

decoupled from the SM sector. We can take such a limit by M → ∞ where M is defined

in eq. (2.4).

Since the results depend on the Yukawa structure, we introduce the following notation

to simplify our expressions:

GA
x =




Type-I Type-II Type-X Type-Y

u/c/t 1 1 1 1

d/s/b −1 tan2 β −1 tan2 β

e/µ/τ −1 tan2 β tan2 β −1


, (4.8)

Sx =




u/c/t −1

d/s/b 1

e/µ/τ 1


, (4.9)

where index A represents type of the model, and index x is for flavor.
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It is found that the EDMs for fermion ℓ in the decoupling limit are approximated to be

(
dℓ
e

)

W

≃ −XGA
ℓ ×

(
e

(
15 + 2 ln

(
M

TeV

))(
gLγℓℓ + gRγℓℓ

)

+ gZWW

(
6.5 + 0.71 ln

(
M

TeV

))(
gLZℓℓ + gRZℓℓ

)
)
, (4.10)

(
dℓ
e

)

top

≃ +X×
(
e
(
5.3GA

ℓ +7.6
) (
gLγℓℓ+g

R
γℓℓ

)
+e
(
1.4GA

ℓ +2.0
) (
gLZℓℓ+g

R
Zℓℓ

)
)
, (4.11)

(
dℓ
e

)

bottom

≃ +X ×
(
e
(
0.018GA

ℓ + 0.022GA
b

) (
gLγℓℓ + gRγℓℓ

)

+e
(
0.0075GA

ℓ + 0.0087GA
b

) (
gLZℓℓ + gRZℓℓ

)
)
, (4.12)

(
dℓ
e

)

tau

≃ +X ×
(
e
(
0.024GA

ℓ + 0.029GA
τ

) (
gLγℓℓ + gRγℓℓ

)

+e
(
0.00034GA

ℓ + 0.00038GA
τ

) (
gLZℓℓ + gRZℓℓ

)
)
, (4.13)

(
dℓ
e

)

H±

≃ +XGA
ℓ ×

(
0.34e

(
gLγℓℓ + gRγℓℓ

)
+ 0.34gZH+H−

(
gLZℓℓ + gRZℓℓ

)
)
, (4.14)

(
dℓ
e

)

HWγ

≃ −XGA
ℓ Sℓ ×

(
0.23 + 0.20 ln

(
M

TeV

))
, (4.15)

(dcq)top ≃ +X × g2s
(
4.0GA

q + 5.7
)
, (4.16)

(dcq)bottom ≃ +X × g2s
(
0.053GA

q + 0.065GA
b

)
, (4.17)

where

X =
1

(4π)4
mℓ

M2
cos2 βλ5 sin 2φ , (4.18)

and we use MS mass of MZ scale, me = 0.511MeV, mτ = 1.75GeV, mu = 1.40MeV,

mt = 170.9GeV, md = 2.92MeV and mb = 2.94GeV. Notice that the EDMs and cEDMs

are proportional to λ5 sin 2φ = Im[λ5 exp(i2φ)], namely the imaginary part of the coupling

which is needed for CP violation.

It is found that the W loop contributions are dominant in large parameter region.

Among the contributions from fermion loops, only the top quark contributions are relevant

in the decoupling limit as long as tanβ . 10. In the similar manner, we can make approx-

imation of cEDMs. The diagrams with charged Higgs boson in hγγ, hZγ, and H∓W±γ

couplings are smaller than the other contributions. Note that the contributions from Z

boson exchange diagrams are proportional to
(
gLZℓℓ + gRZℓℓ

)
. Although this factor is numer-

ically small at electron EDM case, one must not ignore at quark EDM case. Actually, Z

boson exchange diagrams occupy 30− 50% of all contribution at down quark EDM case.

In the decoupling limit the bottom quark and tau lepton contributions are small be-

cause of their small Yukawa couplings. In the non-decoupling region, however, these are not

– 11 –
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Figure 5. Numerical improvement of electron EDM by the pinch contributions in the type-II

2HDM. We take tanβ = 10, λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and require the 126GeV Higgs mass.

necessarily valid. Their leading contributions are given by diagrams in which heavy Higgs

propagate, and their values are approximately O
(
XGA

ℓ GA
b/τ

(
m2

h3
−m2

h2

)
/M2

)
, where h3

and h2 is the heaviest and the next heaviest Higgs bosons, respectively. These contribu-

tions are enhanced by tan2 β when tanβ ≫ 1. Thus, when tanβ is large, the contribution

may be sizable in the non decoupling region.

5 Numerical results

Now we evaluate the EDMs numerically. At first, in figure 5, we show the numerical

improvement by the pinch contributions. Here we consider the electron EDM in the

type-II 2HDM. The vertical axis in the figure 5 is difference of the gauge invariant EDM

contribution and non-invariant one, ∆, defined as

∆ =
(de)gauge non-inv. − (de)gauge inv.

(de)gauge inv.
, (5.1)

where the gauge non-invariant EDM contribution (de)gauge non-inv. is gotten by calculating

only Barr-Zee diagrams [13, 14]. The horizontal axis is the mass of charged Higgs boson.

We take tanβ = 10, λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and require the mass of lightest neutral

scalar to be 126GeV, then λ2 is uniquely determined. We find that the pinch contributions

are 5%-8%. This is not big improvement from the numerical point of view. However, we

would like to emphasize that our result is now gauge invariant, which must be satisfied

when we discuss observables.

Next, we discuss dependence of the electron EDM on the types of 2HDMs. The

contributions from each types of diagrams to the electron EDM for type-I and II cases in

figures 6 and 7, respectively. Here we take tanβ = 3 or 50, and λ1 = λ3 = λ4 = λ5 sin 2φ =

0.5 as a benchmark. We also require the mass of lightest neutral Higgs to be 126GeV.

It is found that in the type-I case the W boson contribution to h → γγ is dominant

and that all contributions to the electron EDM are proportional to 1/ tan2 β for tanβ & 1.

On the other hand, the electron EDM in the type-II case is qualitatively different from

the type-I case. Even when tanβ is large, the W boson and top quark contributions are
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Figure 6. Anatomy of the type-I electron EDM. Various Barr-Zee contributions to the electron

EDM are shown as functions of charged Higgs mass M+
H . We take tanβ = 3 or 50, and λ1 = λ3 =

λ4 = λ5 sin 2φ = 0.5. The mass of lightest neutral Higgs is 126GeV. We see that W loop is the

dominant contribution. The qualitative feature are independent from tanβ.
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Figure 7. Anatomy of the type-II electron EDM. The input parameters are the same as in figure 6.

In contrast of the type-I case, the qualitative feature depends on tanβ. For large tanβ, bottom

quark and tau lepton contributions are sizable due to the tanβ enhancement of their Yukawa

couplings.

experiments sensitivities on de

Fr [18] 1× 10−29e cm

YbF molecule [19] 1× 10−30e cm

WN ion [20] 1× 10−30e cm

Table 2. Future prospects on electron EDM.

not suppressed and the bottom quark and tau lepton contributions also become dominant

due to the non-decoupling effect. Since the signs of the bottom quark and tau lepton

contributions are opposite to that of the W boson, the accidental cancellation occurs in

some parameter region. Thus, the tanβ dependence is non-trivial in the type-II case.

In figures 8, the electron EDM is shown in four types of 2HDMs as functions of tanβ

and charged Higgs boson mass. We take λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and λ2 = 0.25.

The regions filled with red color in the figures show the excluded regions by the latest

upper bound on electron EDM, which is derived by the ACME experiment,

|de| < 8.7× 10−29e cm (90% CL [3]) . (5.2)

The blue dashed lines are the future prospects given in table 2.
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Figure 8. Electron EDM on charged Higgs boson mass and tanβ plane in four types of 2HDMs.

We take λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and λ2 = 0.25. The regions filled with red color show the

current bound [3]. The blue dashed lines are the future prospects given in table 2.

The electron EDM in the type-X and Y models has similar behavior to the type-II and

I ones, respectively, because leptons couple to H2 in type-I and Y models, and to H1 in

type-II and X models. We find that type-II and type-X 2HDMs are strongly constrained by

the recent ACME experimental result, except for regions where the cancellation among di-

agrams occurs, as shown in figure 8. Furthermore, the future experiments could cover wide

parameter regions with charged Higgs mass smaller than 1TeV even in type-I and Y cases.
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experiments sensitivities on |dn|
cyro EDM [27] 1.7× 10−28e cm

PSI (Phase II) [28] 5× 10−28e cm

Table 3. Future prospects for neutron EDM.

Next let us consider the neutron EDM. Even when the Peccei-Quinn mechanism [21]

is operative, the neutron EDM is generated by higher-dimensional CP-violating operators

in QCD, such as quark EDMs and also cEDMs with mass dimension up to 5. The neutron

EDM is evaluated from the up and down quarks EDM and cEDM with the QCD sum

rules [22–24]. The evaluation still O(1) uncertainties from the excited state contribution

to the correlation function [22], and also from input parameters [23]. In this paper we use

the result in ref. [24] since it gives more conservative prediction for the neutron EDM,

dn = 0.79dd − 0.20du + e (0.59dcd + 0.30dcu) . (5.3)

Here, the Peccei-Quinn mechanism is assumed.

Before going to evaluate the neutron EDM, we discuss behaviors of the quark EDMs

and cEDMs in the 2HDMs. We plot the contributions from each types of diagrams to

the down and up quark EDMs and cEDMs in the type-I case in figures 9 and 10. The

input parameters are the same as in figure 6. We see that the W boson and top quark

contributions give the dominant contributions to the EDMs and cEDMs, respectively, and

the tanβ dependence is 1/ tan2 β, as expected from eq. (4.18). It is found that the sizes

of cEDMs and EDMs are comparable to each others so that both contributions have to be

included in evaluation of the neutron EDM.

In figures 11 and 12, the contributions from each types of diagrams to the down and up

quark EDMs and cEDMs in the type-II case are also shown. The EDMs and cEDMs have

qualitatively different behaviors from the type-I case. We find that the largest contribution

to the neutron EDM comes from down quark cEDM. The top quark loop dominates in the

down quark cEDM (and also the up quark cEDM) for small tanβ, while the bottom quark

one quickly dominates it when tanβ is large. The later comes from the non-decoupling

effect. Thus, the neutron EDM would be enhanced when tanβ is large. It is also found

that the down quark EDM has similar behavior to the electron EDM in the type-II case,

though it is smaller than the down quark cEDM in the neutron EDM.

Here, we ignore the QCD corrections to the quark EDMs and cEDMs. The QCD

corrections may change them up to O(10)% [25, 26], while the neutron EDM evaluation

from the quark EDMs and cEDMs may have larger uncertainties. See ref. [26] for evaluation

for the QCD corrections to the Barr-Zee diagrams.

Now we show the neutron EDM in four types of 2HDMs in figure 13. The regions filled

with red color in figure 13 show the excluded region by the current neutron EDM data,

|dn| < 2.9× 10−26e cm (90% CL [4]). (5.4)

The blue dashed lines are the future prospects given in table 3.
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Figure 9. Anatomy of the type-I down quark EDM and cEDM. Various Barr-Zee contributions

to the EDM and cEDM are shown as functions of charged Higgs mass M+
H . We take tanβ = 3 and

50. Other input parameters are the same as in figure 6. We see that W and top give dominant

contributions to EDM and cEDM, respectively.
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Figure 10. Anatomy of the type-I up quark EDM and cEDM. We taketan β = 3 and 50. Other

input parameters are the same as in figure 6. We see that W and top give dominant contributions.
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Figure 11. Anatomy of the type-II down quark EDM and cEDM. We take tanβ = 3 and 50.

Other input parameters are the same as in figure 6. In contrast of the type-I case, the qualitative

feature depends on tanβ. For large tanβ, the bottom quark and tau lepton contributions are sizable

due to the tanβ enhancement of their Yukawa couplings.
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Figure 12. Anatomy of the type-II up quark EDM and cEDM. We take tanβ = 3 and 50.

Other input parameters are the same as in figure 6. In contrast of the type-I case, the qualitative

feature depends on tanβ. For large tanβ, bottom and tau contributions are sizable due to the tanβ

enhancement of their Yukawa couplings.
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Figure 13. Neutron EDM on charged Higgs boson mass and tanβ plane. The input parameters

are the same as in figure fig:eEDM. The region filled with red color show the current bound [4].

The blue dashed lines are the future prospects given in table 3.

It is found that the neutron EDM in the type-X case has similar behavior to the type-I

in low tanβ region because the down quark Yukawa couplings in these two types are the

same. The difference in high tanβ region between figures 13(a) and 13(c) is due to the

large tanβ enhancement of the tau lepton Yukawa coupling. The behavior of the neutron

EDM in the type-Y case is quite similar to the type-II case. This is because the cEDM

contribution is dominant in both cases.

It is found in comparison of figure 8 with figure 13 that both measurements of the

electron and neutron EDMs are complementary to each others in order to discriminate the

2HDMs. We may choose one from the four models in future.
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Figure 14. Electron and Neutron EDMs at largem±

H region in the type-II case. We take tanβ = 10,

λ1 = λ3 = λ4 = λ5 sin 2φ = 0.5 and require the 126GeV Higgs boson mass. The red and blue lines

are current bounds [3, 4] and future prospects given in tables 2 and 3, respectively.

Before closing this section, we would like to give a comment on the constraints on

the parameter space. We have shown that some parameter regions are constrained by

EDMs in figures 8 and 13. The constrained regions have an overlap with other constraints,

such as flavor physics [29, 30] or direct search of heavy Higgs bosons [31]. Note that it

is known that the custodial SU(2) symmetry is broken in the Higgs potential in 2HDMs

with the CP violation, and ρ parameter might deviate from one at the one loop level [32].

However, if heavy Higgs boson mass scale M is large or if coupling λ1 − λ5 are not large,

this contribution is small. We checked that this contribution does not conflict with the

current bound in all figure of this paper.

6 Conclusions and discussion

In this paper, we evaluated fermionic EDMs in 2HDMs with softly broken Z2 symmetry. We

started by calculating the Barr-Zee diagrams in a gauge invariant way by using the pinch

technique. The modification by the gauge invariant calculation is 5%–8% numerically. This

does not change the previous result drastically, but important because physical quantities

must be calculated in a gauge invariant way. We evaluated the electron and neutron

EDMs in all four types in the 2HDMs. We find that type-II and type-X 2HDMs are

strongly constrained by the latest ACME experiment bound on the electron EDM. The

electron and neutron EDM measurements will improve in the future experiments. They are

possible to seek physics at O(10) TeV scale (figure 14). The electron and neutron EDMs
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have different sensitivities on the 2HDMs, and they are complementary to each other in

discrimination of the type of 2HDMs.

We have not addressed that the contributions from non-Barr-Zee type diagrams in

this paper. Although they are naively expected to be smaller than the contributions from

the Barr-Zee diagrams, they would become important once experiments find the EDMs

and start precise measurements. To evaluate them, we need to calculate all diagrams at

two-loop level. This issue may be discussed elsewhere.

It is worth referring to relation between EWBG and EDMs. In the 2HDMs, it is known

that EWBG may occur through a strongly first order electroweak phase transition [33–38].

For example, ref. [37] numerically showed that the 2HDMs with softly-broken Z2 symmetry

may accommodate a strongly first order phase transition when the lightest neutral Higgs

boson is around 125GeV. In order to achieve the EWBG, one needs some CP violation

phases in Higgs potential. The EDM searches could indirectly constrain parameter space

which achieve the EWBG. In this paper, we find that low tanβ regions in 2HDMs are

disfavored by electron EDM. On the other hand, in fact, a strongly first order phase

transition, which is needed for EWBG, prefers low tanβ region [37]. Therefore there is a

tension between EWBG and current bound on the EDM.
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A 2HDMs

In this appendix, we present mass spectrum and also interactions in 2HDMs, which are

used in text.

A.1 Relations between mass and gauge eigenstates

While eight scalar fields are present in 2HDMs,

σ1,2 , π±1,2 , π31,2 ,

as in eq. (2.1), those states are not mass eigenstates, namely their mass matrices are not

diagonalized. We call them the gauge eigenstates. Corresponding to them, there are eight
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mass eigenstates, which we denote them as

h1,2,3 (neutral Higgs bosons),

H± (charged Higgs bosons),

πZ,W± (would-be NG bosons).

These two-types of states are related with orthogonal or unitary matrices which diagonalize

the mass matrices. For the fields which include would-be NG bosons the matrices are

given as

(
πZ
πA

)
=

(
cosβ sinβ

− sinβ cosβ

)(
π31
π32

)
,

(
πW±

H±

)
=

(
cosβ sinβ

− sinβ cosβ

)(
π±1
π±2

)
. (A.1)

The matrix U for physical neutral Higgs bosons is given by a 3 by 3 matrix as



h1
h2
h3


 = UT



σ1
σ2
πA


 =



ωσ1

h1 ω
σ2

h1 ω
πA

h1

ωσ1

h2 ω
σ2

h2 ω
πA

h2

ωσ1

h3 ω
σ2

h3 ω
πA

h3






σ1
σ2
πA


 (A.2)

where ∑

X

ωX
i ω

X
j = δij ,

∑

i

ωX
i ω

Y
i = δXY . (A.3)

These relations are useful to find relations among some couplings.

A.2 Higgs masses in 2HDMs

The mass terms for the neutral physical Higgs bosons are given by

L ⊃ 1

2

(
σ1 σ2 πA

)
M̃2

N



σ1
σ2
πA


 , (A.4)

where

(
M̃2

N

)
11

= v21λ1 +M2 sin2 β ,
(
M̃2

N

)
22

= v22λ2 +M2 cos2 β ,
(
M̃2

N

)
33

=M2 − v2λ5 cos(2φ) ,
(
M̃2

N

)
21

=
(
M̃2

N

)
12

=
(
v2λ345 −M2

)
sinβ cosβ ,

(
M̃2

N

)
31

=
(
M̃2

N

)
13

=
1

2
v2λ5 sin(2φ) sinβ ,

(
M̃2

N

)
32

=
(
M̃2

N

)
23

=
1

2
v2λ5 sin(2φ) cosβ , (A.5)
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where

λ345 = λ3 + λ4 + λ5 cos(2φ) , (A.6)

and M2 is defined in eq. (2.4). This mass matrix satisfies

M̃2
N = U



m2

h1

m2
h2

m2
h3


UT . (A.7)

In large M limit, we find the following expressions for mass and mixing angles.

m2
h1

=
v41λ1 + v42λ2 + 2v21v

2
2λ345

v2
+O

(
M−2

)
,

m2
h2

=M2
(
1 +O

(
M−2

))
,

m2
h3

=M2
(
1 +O

(
M−2

))
.



ωσ1

h1

ωσ2

h1

ωπA

h1


 =



cosβ

(
1−X sin2 β

)

sinβ
(
1 +X cos2 β

)

−v1v2λ5 sin(2φ)
M2


+O

(
M−4

)
,



ωσ1

h2

ωσ2

h2

ωπA

h2


 =



− sinβ sin θ

cosβ sin θ

cos θ


+O

(
M−2

)
,



ωσ1

h3

ωσ2

h3

ωπA

h3


 =



− sinβ cos θ

cosβ cos θ

− sin θ


+O

(
M−2

)
, (A.8)

where

tan(2θ) =

(
cos2 β − sin2 β

)

sin2 β cos2 β (λ1 + λ2 − 2λ345)− λ5 cos2 φ
v2λ5 sin(2φ),

X =
v21λ1 − v22λ2 −

(
v21 − v22

)
λ345

M2
. (A.9)

A.3 Interactions in 2HDMs

Couplings which are relevant to calculation for the gauge invariant Barr-Zee contributions

are written in this subsection. Our convention of the sign in covariant derivative is

Dµ = ∂µ + igVµ . (A.10)

We denote s and c as sine and cosine of the Weinberg angle, respectively, in the following.

A.3.1 f̄-f-V couplings

These couplings are the same as the SM case, but we show them here to establish our

conventions. For neutral gauge bosons,

L ⊃ −
∑

G=γ,Z

fγµgGfffGµ , (A.11)
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where gGff contains chirality structure,

gGff = gLGffPL + gRGffPR , (A.12)

where

gLγff = eQ ,

gRγff = eQ ,

gLZff =
e

sc

(
T 3 − s2Q

)
,

gRZff =
e

sc

(
−s2Q

)
. (A.13)

For W boson,

L ⊃ − 1√
2
uγµgWuddW

+
µ + h.c. , (A.14)

where

gWud = VCKM
e

s
PL , (A.15)

where VCKM is for the CKM matrix.

A.3.2 Yukawa couplings

The Yukawa interaction terms are described as

−
(
u d
)(mdiag.

u +
∑

s guuss
∑

s guds+s
+

∑
s gdus−s

− mdiag.
d +

∑
s gddss

)(
u

d

)
, (A.16)

where s = h1, h2, h3, πZ , and s
± = H±, πW± . We define gV and gA as

g = gV + iγ5gA. (A.17)

Finally we find explicit expressions of the couplings. For the neutral Higgs bosons,

gVuuh =
mdiag.

u

v

1

sinβ
ωσ2

h ,

gAuuh =
mdiag.

u

v

1

tanβ
ωπA

h ,

gVddh =





mdiag.

d

v
1

cosβω
σ1

h (i = 1)
mdiag.

d

v
1

sinβω
σ2

h (i = 2)
,

gAddh =





mdiag.

d

v tanβωπA

h (i = 1)

−mdiag.

d

v
1

tanβω
πA

h (i = 2)
. (A.18)

Here, i corresponds to the same suffix of Hi which couples to down-type quarks.
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For the physical charged Higgs boson,

gVudH+ =
1√
2

(
VCKM

mdiag.
d

vi
(−δ1i sinβ + δ2i cosβ)−

mdiag.
u

v2
VCKM cosβ

)
,

gAudH+ = − i√
2

(
VCKM

mdiag.
d

vi
(−δ1i sinβ + δ2i cosβ) +

mdiag.
u

v2
VCKM cosβ

)
,

gV
duH− = − 1√

2

(
V †
CKM

mdiag.
u

v2
cosβ − mdiag.

d

vi
V †
CKM (−δ1i sinβ + δ2i cosβ)

)
,

gA
duH− =

i√
2

(
V †
CKM

mdiag.
u

v2
cosβ +

mdiag.
d

vi
V †
CKM (−δ1i sinβ + δ2i cosβ)

)
, (A.19)

where i in the suffix is again the same suffix of Hi which couples to down-type quarks.

Sometime the followings are useful:

gudH+ = gLudH+PL + gRudH+PR (A.20)

= +
√
2

[(
−m

diag.
u

v
VCKM

1

tanβ

)
PL+

(
VCKM

mdiag.
d

v

(
−δ1i tanβ + δ2i

1

tanβ

))
PR

]
,

gduH− = gL
duH−PL + gR

duH−PR

= −
√
2

[(
−m

diag.
d

v
V †
CKM

(
−δ1i tanβ + δ2i

1

tanβ

))
PL+

(
V †
CKM

mdiag.
u

v

1

tanβ

)
PR

]
.

A.3.3 LWWW

These couplings are the same as the SM case, but we show them here to establish our

conventions.

L ⊃−
∑

G=γ,Z

igWWG

{(
∂αW+β

)
W−µGν(gαµgβν − gανgβµ)

+W+β(∂αW−µ)Gν(gανgβµ − gαβgµν)

+W+βW−µ(∂αGν)(gαβgµν − gαµgβν)

}
, (A.21)

where

gWWA = e ,

gWWZ =
e

s
c . (A.22)

A.3.4 W+-W−-h couplings

L ⊃
∑

h

gWWhW
+
µ W

−µh+
1

2
gZZhZµZ

−µh , (A.23)

where

gWWh = 2
m2

W

v

[
cosβωσ1

h + sinβωσ2

h

]
,

gZZh = 2
m2

Z

v

[
cosβωσ1

h + sinβωσ2

h

]
. (A.24)
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By using eq. (A.3), we find that
∑

h

gAℓℓhgWWh = 0 . (A.25)

A.3.5 V -H+-H− couplings

L ⊃ +i
(
H+∂µH

− −H−∂µH
+
) (
gγH+H−Aµ + gZH+H−Zµ

)
, (A.26)

where

gγH+H− = e,

gZH+H− =
1

2

e

sc

(
c2 − s2

)
. (A.27)

A.3.6 W±-H∓-h couplings

L ⊃+ ighW−H+

(
h∂µH

+ −H+∂µh
)
W−µ

+ ighW+H−

(
h∂µH

− −H−∂µh
)
W+µ, (A.28)

where

ghW±H∓ = ±1

2

e

s

(
− sinβωσ1

h + cosβωσ2

h ∓ iωπA

h

)
. (A.29)

By using eq. (A.3), we find that
∑

h

ghW+H−gWWh = 0 . (A.30)

A.3.7 s+-s−-h couplings

L ⊃+ gH+H−hH
+H−h

+ gπ
W+π

W−hπW+πW−h

+ gπ
W+H−hπW+H−h+ gH+π

W−hH
+πW−h

+
1

2
gπZπZhπZπZh, (A.31)

where

gH+H−h = +
v1
v2
(
−v21λ3 + v22(−λ1 + λ4 + λ5 cos(2φ))

)
ωσ1

h

+
v2
v2
(
−v22λ3 + v21(−λ2 + λ4 + λ5 cos(2φ))

)
ωσ2

h

+
v1v2
v
λ5 sin(2φ)ω

πA

h ,

gπ
W+π

W−h = − m2
h

2m2
W

gW+W−h ,

gπ
W+H−h = −m

2
H± −m2

h

mW
ghW+H− ,

gH+π
W−h = +

m2
H± −m2

h

mW
ghW−H+ ,

ghπZπZ
= − m2

h

2m2
Z

gZZh . (A.32)
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A.3.8 W±-π∓-h couplings

L ⊃+ ighW−π+

(
h∂µπ

+ − π+∂µh
)
W−µ

+ ighW+π−

(
h∂µπ

− − π−∂µh
)
W+µ, (A.33)

where

ghW±π∓ = ± 1

2mW
gWWh . (A.34)

A.3.9 V -W±- π∓ couplings

L ⊃ +
∑

V=γ,Z

(
gVW−π+VµW

−µπ+ + gVW+π−VµW
+µπ−

)
, (A.35)

where

gγW∓π± = +emW ,

gZW∓π± = −esWmZ . (A.36)

A.3.10 Some four-point couplings

L ⊃+ gH−π
W+π

W−π
W+

H−πW+πW−πW+

+
1

2
gH−π

W+πZπZ
H−πW+πZπZ

+ gH−π
W+H−H+H−πW+H−H+ (A.37)

where

gH−π
W+π

W−π
W+

=
∑

h

1

mW
ghW+H−gπ

W+π
W−h ,

gH−π
W+πZπZ

=
∑

h

1

mW
ghW+H−gπZπZh ,

gH−π
W+H−H+ =

∑

h

1

mW
ghW+H−ghH+H− . (A.38)

B EDM formula details

In this section we present formulae for the Barr-Zee contributions to fermionic EDMs and

cEDMs.

B.1 Fermion loops (hγγ and hZγ)

After substituting eqs. (3.19) and (3.20) for eq. (4.3), we find the fermion loop contributions

to the EDMs for fermion ℓ are
(
dℓ
e

)

fermion

= − mℓ

(4π)4

√
2GF

∑

f

∑

h

∑

G=γ,Z

NcQf

(
gLGℓℓ + gRGℓℓ

)

×
[
gAhℓℓ
mℓ/v

gVhff
mf/v

IG
1 (mf ,mh) +

gVhℓℓ
mℓ/v

gAhff
mf/v

IG
2 (mf ,mh)

]
, (B.1)
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where

IG
1 (mf ,mh) =

(
gLGff + gRGff

) m2
f

m2
h −m2

G

(I1(mf ,mG)− I1(mf ,mh)) ,

IG
2 (mf ,mh) =

(
gLGff + gRGff

) m2
f

m2
h −m2

G

(I2(mf ,mG)− I2(mf ,mh)) , (B.2)

and where4

I1(m1,m2) =

∫ 1

0
dz (1− 2z(1− z))

m2
2

m2
1 −m2

2z(1− z)
ln
m2

2z(1− z)

m2
1

,

I2(m1,m2) =

∫ 1

0
dz

m2
2

m2
1 −m2

2z(1− z)
ln
m2

2z(1− z)

m2
1

. (B.4)

B.2 Charged Higgs loops (hγγ and hZγ)

By substituting the result in eq. (3.21) into eq. (4.3), we find the charged Higgs contribution

to the EDMs,

(
dℓ
e

)

scalar

= +
mℓ

(4π)4

√
2GF

∑

h

∑

G=γ,Z

(
gLGℓℓ + gRGℓℓ

) gAhℓℓ
mℓ/v

ghH+H−

v
IG
3 (m±

H ,mh) (B.5)

where

IG
3 (m±

H ,mh) = −1

2
gGH+H−

v2

m2
h −m2

G

(B.6)

×
[
(I1(mH± ,mG)− I1(mH± ,mh))− (I2(mH± ,mG)− I2(mH± ,mh))

]
.

B.3 W loops (hγγ and hZγ)

The EDM contributions from W boson loops are

(
dℓ
e

)

W

= +
mℓ

(4π)4

√
2GF

∑

h

∑

G=γ,Z

(
gLGℓℓ + gRGℓℓ

) gAhℓℓ
mℓ/v

gWWh

2m2
W /v

IG
W (mh) , (B.7)

where

IG
W (mh)= gWWG

2m2
W

m2
h −m2

G

(B.8)

×
[
−1

4

{(
6− m2

G

m2
W

)
+

(
1− m2

G

2m2
W

)
m2

h

m2
W

}[
I1(mW ,mh)− I1(mW ,mG)

]

+

{(
−4+

m2
G

m2
W

)
+
1

4

(
6− mG

m2
W

+

(
1− mG

2m2
W

)
m2

h

m2
W

)}[
I2(mW ,mh)− I2(mW ,mG)

]
]
.

4The functions f(z) and g(z) in refs. [12, 13] are related to I1 and I2 as follows:

I1(m1,m2) = −2
m2

2

m2
1

f

(

m2
1

m2
2

)

, I2(m1,m2) = −2
m2

2

m2
1

g

(

m2
1

m2
2

)

. (B.3)
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B.4 H∓W±γ

In this paper we first find the EDM contributions from H∓W±γ vertices which are

generated by W and charged Higgs boson loops. The detail of this derivation is given

in appendix C. The contributions to the EDMs are

dℓ
e

= − mℓ

(4π)4

√
2GFSℓ

∑

h

(
gAℓℓh
mℓ/v

gWWh

2m2
W /v

e2

2s2
I4(m2

h,m
2
H) +

gAℓℓh
mℓ/v

gHHh

v
I5(m2

h,m
2
H)

)
,

(B.9)

where

I4
(
m2

h,m
2
H

)
=

m2
W

m2
H −m2

W

(
I4
(
m2

W ,m
2
h

)
− I4

(
m2

H ,m
2
h

))
,

I5
(
m2

h,m
2
H

)
=

m2
W

m2
H −m2

W

(
I5
(
m2

W ,m
2
h

)
− I5

(
m2

H ,m
2
h

))
, (B.10)

and where

I4
(
m2

1,m
2
h

)
=

∫ 1

0
dz

(
z(1− z)2 − 4(1− z)2 +

m2
H −m2

h

m2
W

z(1− z)2
)

× m2
1

m2
W (1− z) +m2

hz −m2
1z(1− z)

ln

(
m2

W (1− z) +m2
hz

m2
1z(1− z)

)
,

I5
(
m2

1,m
2
h

)
= +2

∫ 1

0
dz

m2
1z(1− z)2

m2
H(1− z) +m2

hz −m2
1z(1− z)

ln

(
m2

H(1− z) +m2
hz

m2
1z(1− z)

)
, (B.11)

and s is sine of the Weinberg angle. Here we have used the following relations among

the coupling,

Im

(
gRH+ν̄e√
2me/v

gW+H−h

e/(2sW )

)
=

gAeeh
me/v

,

Im

(
gRH+ūd√
2md/v

gW+H−h

e/(2sW )

)
=

gAddh
md/v

,

Im

(
gR
H−d̄u√
2mu/v

gW−H+h

e/(2sW )

)
=

gAuuh
mu/v

. (B.12)

B.5 CEDMs

The effective Hamiltonian for the cEDM is defined as eq. (4.7). We find

dcq=+
mq

(4π)4

√
2GF

∑

f

∑

h

2g2s
m2

f

m2
h

[
gAhqq
mq/v

gVhff
mf/v

I1(mf ,mh)+
gVhqq
mq/v

gAhff
mf/v

I2(mf ,mh)

]
.

(B.13)

C Derivation for effective H−W+γ vertex

In this appendix, we present explicit derivation of the effective H−W+γ vertex, which is

generated from bosonic loop diagrams, in 2HDMs.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. Diagrams for the vertex corrections to H−W+γ. Figures 15(a)–15(f) depend on the

gauge fixing parameter ξ, while figures 15(g) and 15(h) are independent of ξ.

(a) (b) (c) (d)

Figure 16. Diagrams of wave function type corrections.

There are two types of loop diagrams; vertex corrections (figure 15) and wave function

corrections (figure 16). The diagrams in figure 16(d) give nothing because of C-invariance.

The contributions from figure 16(c) is always proportional to pν2 . Thus they do not con-

tribute to the on-shell amplitude of H∓ → W∓γ nor the EDM at two-loop level by the

same discussion in section 3. Hence what we need to calculate are only the diagrams

in figures 15, 16(a), and 16(b). In this section, we calculate these diagrams in ’t Hooft-

Feynman gauge.

First, let us consider the diagrams in figures 15(a)–15(f). These diagrams depend on
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the gauge fixing parameter of W boson. We find

∑
Figs. 15(a)-15(f)=+

i

(4π)D/2
Γ(3−D/2) (p2µp1ν − p2p1gµν)

∑

h

egW+H−hgWWh (C.1)

×
∫

x+y+z=1

−2yz − 4z + 4− m2
H
−m2

h

m2
W

2yz
[
m2

W (1− z) +m2
hz − p22z(1− z)− 2p1p2yz

]3−D/2

+
i

(4π)D/2
gµν

∑

h

egW+H−hgWWh

×
[
Γ(2−D/2)

∫ 1

0
dz

−(1 + z)
[
m2

W z +m2
h(1− z)− p2Hz(1− z)

]2−D/2

− m2
H−m2

h

m2
W

Γ(2−D/2)
∫ 1

0
dz

1
2(−1 + 2z)

[
m2

W z+m
2
h(1−z)−p2Hz(1−z)

]2−D/2

+
(
p2H −m2

H

)
Γ(3−D/2)

×
∫

x+y+z=1

1
[
m2

W (1− z) +m2
hz − p22z(1− z)− 2p1p2yz

]3−D/2

]
,

where p2H = (p1 + p2)
2. We find gµν terms, which are not gauge invariant. We will show

these terms are canceled with other diagrams, that is, the pinch contributions.

The diagrams in figures 15(g) and 15(h) are independent from the gauge fixing

parameter.

Fig. 15(g)+Fig. 15(h) =− i

(4π)D/2
Γ(3−D/2) (p2µp1ν − p2p1gµν)

∑

h

egW+H−hgHHh

×
∫

x+y+z=1

4yz
[
m2

H(1−z)+m2
hz−p22z(1− z)− 2p1p2yz

]3−D/2

− i

(4π)D/2
Γ(2−D/2)gµν

∑

h

egW+H−hgHHh

×
∫ 1

0
dz

−1 + 2z
[
m2

Hz +m2
h(1− z)− p2Hz(1− z)

]2−D/2
. (C.2)

Next we calculate the diagrams in figures 16(a) and 16(b). First we define the following

notation for self-energies.

= iΠµ
H−W+(p) = ipµΠH−W+

(
p2
)
, (C.3)

= iΠH−π
W+

(
p2
)
. (C.4)

The direction of the momentum of Πµ
HW is shown in its figure. Using this notation, we find

Fig. 16(a) + Fig. 16(b) =
−igµν

p2H −m2
W

(
−emW iΠH−π

W+

(
p2H
)
− em2

WΠH−W+

(
p2H
))

+
(
p22 −m2

W

) −igµν
p2H −m2

W

(
−eΠH−W+

(
p2H
))
. (C.5)
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(a) (b) (c)

Figure 17. Diagrams for ΠH−W+ .

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18. Diagrams for ΠH−π
W+

. The last one is for the counter term.

Here we ignored pµ2p
ν
2 terms because they do not contribute to the EDMs as we discussed

in section 3. Note that the
(
p22 −m2

W

)
term does not also contribute to the on-shell

amplitudes nor the EDMs at two-loop level. If we calculate the EDMs with this term, we

immediately see that q2 dependence completely canceled out. Thus, we only need the first

term in eq. (C.5).

Figure 17 shows the diagrams for ΠH−W+(p2). We find

iΠH−W+(p2) = +
i

(4π)D/2
Γ(2−D/2)gWWhghW+H−

∫ 1

0

dx
−(2−x)+m2

H
−m2

h

m2
W

(x− 1
2 )

[m2
W (1−x)+m2

hx−p2x(1−x)]
2−D/2

+
i

(4π)D/2
Γ(2−D/2)gHHhghW+H−

∫ 1

0

dx
1−2x

[m2
Hx+m

2
h(1−x)−p2x(1−x)]

2−D/2
.

(C.6)

Figure 18 shows the diagrams for ΠH−π
W+

(p2). We find figures 18(d)–18(g) are can-

celed by figure 18(h), so we do not calculate them. Figure 18(h) is the counter term

for H − πW mixing, and it is also related with the counter terms for the Higgs tadpoles

(figure 19(i)),

δH−π
W+

=
∑

h

1

mW
ghW+H−δh , (C.7)

where δ’s are defined through

L ⊃ −δH−π
W+

H−πW+ +
∑

h

δhh . (C.8)

It is easy to find this relation by analyzing the Higgs potential. We take renormalization

conditions in which all tadpole diagrams are completely canceled by their counter terms.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 19. Tadpoles diagrams.

Then δH−π
W+

is not arbitrary but should be calculated from the tadpole diagrams and

eq. (C.8). We show the tadpole diagrams in figure 19. After calculating tadpole diagrams,

using eq. (C.7), we find

Fig. 18(h) = − (Fig. 18(d) + Fig. 18(e) + Fig. 18(f) + Fig. 18(g))

+ i
∑

h

(
m2

H −m2
h

2m3
W

gWWhghW+H− +
gHHhghW+H−

mW

)∫

ℓ

1

ℓ2 −m2
h

− i
∑

h

gHHhghW+H−

mW

∫

ℓ

1

ℓ2 −m2
H

+ i
∑

h

m2
h

2m3
W

gHHhghW+H−

∫

ℓ

1

ℓ2 −m2
W

. (C.9)

Now we have calculated all the diagrams shown in figure 18, and we find

iΠH−π
W+

= +
Γ(2−D/2)

(4π)D/2

1

2mW
gWWhgW+H−h (C.10)

×
∫ 1

0
dx

[
p2(1 + 2x) +m2

h[
m2

Wx+m2
h(1− x)− p2x(1− x)

]2−D/2

+
m2

H −m2
h

m2
W

m2
W − p2(1− 2x)

[
m2

Wx+m2
h(1− x)− p2x(1− x)

]2−D/2

]

− Γ(2−D/2)
(4π)D/2

1

mW
gHHhgW+H−hp

2

∫ 1

0
dx

1−2x
[
m2

Hx+m
2
h(1−x)− p2x(1−x)

]2−D/2
.

We have finished preparing to calculate figure 16(a) + figure 16(b). Substituting
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eqs. (C.6) and (C.10) into the first term in eq. (C.5), then we find

Fig. 16(a)+Fig. 16(b)= −igµν
1

(4π)D/2
Γ(2−D/2)egW+H−h

×


gWWh

∫ 1

0
dx

−(1 + x) +
m2

H
−m2

h

2m2
W

(1− 2x)
[
m2

Wx+m2
h(1− x)− p2Hx(1− x)

]2−D/2

+ gWWh
p2H−m2

H

2
(
p2H−m2

W

)
∫ 1

0
dx

1
[
m2

Wx+m
2
h(1−x)−p2Hx(1−x)

]2−D/2

+ gHHh

∫ 1

0
dx

(1− 2x)
[
m2

Hx+m2
h(1− x)− p2Hx(1− x)

]2−D/2


 .

(C.11)

Here we dropped the (p22 −m2
W )gµν term because it does not contribute to what we are

interested in. Note that the first term in the bracket in eq. (C.11) is canceled with eq. (C.1),

and the second term is canceled with eq. (C.2).

So far we have calculated many diagrams, vertex corrections and wave function cor-

rections. The corrections are not so simple and some of them canceled out, so we give a

short summary so far here. After summing up all the correction we have calculated so far,

we find

+
i

(4π)D/2
Γ(3−D/2) (p2µp1ν − p2p1gµν)

×


+

∑

h

egW+H−hgWWh

∫

x+y+z=1

−2yz − 4z + 4− m2
H
−m2

h

m2
W

2yz
[
m2

W (1−z) +m2
hz − p22z(1−z)− 2p1p2yz

]3−D/2

−
∑

h

egW+H−hgHHh

∫

x+y+z=1

4yz
[
m2

H(1−z)+m2
hz−p22z(1−z)−2p1p2yz

]3−D/2




+
i

(4π)D/2
gµν

(
p2H −m2

H

)∑

h

egW+H−hgWWh

×
[
+Γ(3−D/2)

∫

x+y+z=1

1
[
m2

W (1− z) +m2
hz − p22z(1− z)− 2p1p2yz

]3−D/2

−Γ(2−D/2) 1

2
(
p2H−m2

W

)
∫ 1

0
dx

1
[
m2

Wx+m
2
h(1−x)−p2Hx(1−x)

]2−D/2

]
. (C.12)

Note that the last two terms are not gauge invariant in the sense that we discussed in

section 3. Since they are proportional to p2H − m2
H , if we take the charged Higgs boson

on-shell, they are dropped and the result becomes gauge invariant. However, now we need

to take the charged Higgs boson off shell, so we still need some other terms to cancel them.

To find a gauge invariant set for the Barr-Zee diagrams, we need to take into account

for the pinch contributions shown in figure 20. After pinching the fermion propagators with
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(a) (b)

−→

(c) (d)

Figure 20. Pinch contributions.

red color in figures 20(a) and 20(b), the pinch contributions for H−W+γ effective vertex

for the Barr-Zee diagrams arise. They are schematically shown in figures 20(c) and 20(d).

We denote their contributions as Γµν
P and iΠP, respectively. Then we find

iΓµν
P (p1, p2) = −iΓ(3−D/2)

(4π)D/2
egW+H−hgWWhg

µν (C.13)

×
(
p2H −m2

H

) ∫

x+y+z=1

1
[
m2

W (1− z) +m2
hz − p22z(1− z)− 2p1p2yz)

]3−D/2
,

iΠP(p
2
H) = +

Γ(2−D/2)

(4π)2−D/2

1

2mW
gW+H−hgWWh

(
p2H −m2

H

)

×
∫ 1

0
dx

1
[
m2

Wx+m2
h(1− x)− p2Hx(1− x)

]2−D/2
. (C.14)

Using eq. (C.5), we find that Γµν
P and iΠP completely cancel the second term in eq. (C.12),

namely these pinch contributions really make the effective vertex correction gauge invariant.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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