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Abstract

Background: More than fifty percent of neuroblastoma (NB) patients with adverse prognosis do not benefit from
treatment making the identification of new potential targets mandatory. Hypoxia is a condition of low oxygen
tension, occurring in poorly vascularized tissues, which activates specific genes and contributes to the acquisition of
the tumor aggressive phenotype. We defined a gene expression signature (NB-hypo), which measures the hypoxic
status of the neuroblastoma tumor. We aimed at developing a classifier predicting neuroblastoma patients’
outcome based on the assessment of the adverse effects of tumor hypoxia on the progression of the disease.

Methods: Multi-layer perceptron (MLP) was trained on the expression values of the 62 probe sets constituting
NB-hypo signature to develop a predictive model for neuroblastoma patients’ outcome. We utilized the expression
data of 100 tumors in a leave-one-out analysis to select and construct the classifier and the expression data of the
remaining 82 tumors to test the classifier performance in an external dataset. We utilized the Gene set enrichment
analysis (GSEA) to evaluate the enrichment of hypoxia related gene sets in patients predicted with “Poor” or “Good”
outcome.

Results: We utilized the expression of the 62 probe sets of the NB-Hypo signature in 182 neuroblastoma tumors to
develop a MLP classifier predicting patients’ outcome (NB-hypo classifier). We trained and validated the classifier in
a leave-one-out cross-validation analysis on 100 tumor gene expression profiles. We externally tested the resulting
NB-hypo classifier on an independent 82 tumors’ set. The NB-hypo classifier predicted the patients’ outcome with
the remarkable accuracy of 87 %. NB-hypo classifier prediction resulted in 2 % classification error when applied to
clinically defined low-intermediate risk neuroblastoma patients. The prediction was 100 % accurate in assessing the
death of five low/intermediated risk patients. GSEA of tumor gene expression profile demonstrated the hypoxic
status of the tumor in patients with poor prognosis.

Conclusions: We developed a robust classifier predicting neuroblastoma patients’ outcome with a very low error
rate and we provided independent evidence that the poor outcome patients had hypoxic tumors, supporting the
potential of using hypoxia as target for neuroblastoma treatment.
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Background
Neuroblastoma is the most common pediatric solid
tumor of the sympathetic nervous system deriving from
ganglionic lineage precursors [1]. It is diagnosed during
infancy and shows notable heterogeneity with regard to
both histology and clinical behavior [2, 3], ranging from
rapid progression associated with metastatic spread
and poor clinical outcome to spontaneous, or therapy-
induced, regression into benign ganglioneuroma [4]. Age
at diagnosis, International Neuroblastoma Staging System
(INSS stage), histology, grade of differentiation, chromo-
somal aberrations, and amplification of the Myelocytoma-
tosis viral related oncogene Neuroblastoma derived
(MYCN) are clinical and molecular risk factors [2, 5, 6]
commonly combined to classify patients into high, inter-
mediate and low risk subgroups on which current thera-
peutic strategy is based [7, 8]. Although the survival of
children with neuroblastoma improved over the last
25 years [9], more than fifty percent of patients with ad-
verse prognosis do not get benefit from treatment making
the exploration of new therapeutic approaches and the
identification of new potential targets mandatory [10].
Patients with localized tumors have a more favorable
outcome although the survival of stage 3 patients does not
exceed 67 % [9]. The progression of localized tumors is
closely associated to their growth rather than to their
metastatic spread and understanding the molecular pro-
gram at the time of diagnosis may be the key for improv-
ing the stratification and deciding the correct therapy.
The availability of neuroblastoma genomic profiles

improved our prognostic ability. Several groups have
developed gene expression-based approaches to stratify
neuroblastoma patients [11–28] and described prognos-
tic gene signatures. We studied outcome prediction in
neuroblastoma patients utilizing a biology-driven ap-
proach, in which the gene expression profile under investi-
gation is associated to “a priori” knowledge of a biological
process that has a major impact on tumor growth [29].
Specifically, we studied the response of neuroblastoma to
hypoxia and used this information to derive a novel prog-
nostic signature [12, 29].
Hypoxia, a condition of low oxygen tension occurring

in poorly vascularized areas, has profound effects on
tumor cell growth, genotype selection, susceptibility to

apoptosis and resistance to radio- and chemotherapy,
tumor angiogenesis, epithelial to mesenchymal transition
and propagation of cancer stem cells [30–33]. Hypoxia
activates specific genes encoding angiogenic, metabolic
and metastatic factors [31, 34, 35] and contributes to the
acquisition of the tumor aggressive phenotype [31, 36–38].
We derived a 62-probe set neuroblastoma hypoxia
signature (NB-hypo) [29, 39] and we demonstrated
that NB-hypo is an independent risk factor for neuro-
blastoma patients [12]. The importance of hypoxia and
hypoxia inducible genes in the progression, differentiation
and spreading of neuroblastoma has been the subject of
several reports [12, 34, 40–42].
Here, we describe a robust classifier, based on NB-

hypo, predicting neuroblastoma patients’ outcome with
a very low error rate.

Methods
Patients
A total of 182 neuroblastoma patients belonging to four
independent cohorts were enrolled on the basis of the
availability of gene expression profile by Affymetrix
GeneChip HG-U133plus2.0 and clinical and molecular
information. Eighty-eight patients were collected by
the Academic Medical Center (AMC; Amsterdam,
Netherlands) [12, 43]; 21 patients were collected by
the University Children’s Hospital, Essen, Germany
and were treated according to the German Neuroblastoma
trials, either NB 97 or NB 2004; 51 patients were collected
at Hiroshima University Hospital or affiliated hospitals
and were treated according to the Japanese neuroblastoma
protocols [44]; 22 patients were collected at Gaslini
Institute and were treated according to Associazione
Italiana Ematologia e Oncologia Pediatrica (AIEOP) or
International Society of Pediatric Oncology Europe
Neuroblastoma (SIOPEN) protocols. The data are stored
in the R2 repository (http://r2.amc.nl) or in the BIT-NB
Biobank of the Gaslini Institute. Informed consent was
obtained in accordance with institutional policies in use in
each country. Tumor samples were obtained before treat-
ment at the time of diagnosis. Median follow-up was
longer than 5 years. Tumor stage was defined according
to the International Neuroblastoma Staging System [45].
We randomly divided the cohort in two groups of 100
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and 82 patients. We utilized the expression data of 100 tu-
mors in a leave-one-out analysis to select and construct
the classifier and the expression data of the remaining 82
tumors constituted the external test dataset (Fig. 1). The
clinical characteristics of the 182 neuroblastoma tumors
are detailed in Table 1. Good and poor outcome were
defined as patient’s status (alive or dead) 5 years after
diagnosis.

Gene expression analysis
Gene expression profiles for the 182 tumors were ob-
tained by microarray experiment using Affymetrix Gene-
Chip HG-U133plus2.0 [46] and the data were processed
by MAS5.0 software according Affymetrix’ s guideline.

Classifiers
Multi-Layer Perceptron (MLP) is a feedforward artificial
neural network (ANN). MLP was trained on the expres-
sion values of the 62 probe sets constituting NB-hypo
signature [12] to develop a predictive model for neuro-
blastoma patients’ outcome.
ANNs are organized in a number of input nodes,

representing the attributes in the data, one or more

hidden layers, where each layer is composed by a num-
ber of processing elements (hidden units), and one or
more output nodes representing the output of the net-
work. The input nodes receive the input data as a vector
of variables and this information is passed through to
the units in the first hidden layer and processed by a set
of associated weights. Each hidden node calculates the
output as follows [47]:

vk ¼
Xn

i¼1

wkixi

and

yk ¼ Φ vk þ v
k0

� �

where x1,…,xn are input variables, converging to the unit
k. wk1,…,wkn are the weights connecting unit k. vk is the

Fig. 1 Schematic representation of the procedures used to build the
NB-hypo classifier. The gene expression of 182 neuroblastoma
tumors was measured by microarray on Affymetrix GeneChip
HG-U133plus2.0. The dataset was divided into training (100 patients)
and test (82 patients) sets. ANN model was applied to the training
set in a 100 loops cross-validation scheme. The classifier was then
applied to the test set. GSEA evaluated the enrichment of hypoxia
related gene sets in the groups defined by the NB-hypo classifier

Table 1 Neuroblastoma patient’s dataset

Patients’ characteristics Training seta Test seta

Age at diagnosisb

< 1 year 50 (50 %) 36 (44 %)

≥ 1 year 50 (50 %) 46 (56 %)

INSS stagec

1,2,3,4s 67 (67 %) 49 (60 %)

4 33 (33 %) 33 (40 %)

MYCN statusd

normal 84 (84 %) 68 (83 %)

amplified 16 (16 %) 14 (17 %)

Outcomee

Good 72 (72 %) 59 (72 %)

Poor 28 (28 %) 23 (28 %)
aThe 182 patients’ dataset is split into two groups of 100 and 82 patients
representing the training and test set, respectively
The total number of patients and the relative percentage in each subdivision
is shown
bAge at diagnosis is defined as the patient’s age before or after 1 year
cINSS stage is defined according to the International Neuroblasma Staging
System (INSS) [2]
INSS divided tumors into 5 stages (1,2,3,4,4s)
Stage 1 indicates localised tumour with incomplete gross excision;
representative ipsilateral non-adherent lymph nodes negative for tumour
microscopically. Stage 2 indicates localised tumour with or without complete
gross excision, with ipsilateral non-adherent lymph nodes positive for tumour.
Enlarged contralateral lymph nodes should be negative microscopically. Stage
3 indicates unresectable unilateral tumour infiltrating across the midline, with
or without regional lymph node involvement; or localised unilateral tumour
with contralateral regional lymph node involvement; or midline tumour with
bilateral extension by infiltration (unresectable) or by lymph node involvement.
Stage 4 indicates any primary tumour with dissemination to distant lymph nodes,
bone, bone marrow, liver, skin, or other organs (except as defined by stage 4s).
Stage 4s indicates localised primary tumour in infants younger than 1 year with
dissemination limited to skin, liver, or bone marrow
dThe status of the N-myc proto-oncogene is defined as amplified or normal
according to the copy number of the gene on chromosome 2
eGood and poor outcome were defined as patient’s status (alive or dead)
5 years after diagnosis

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):347 Page 157 of 212



net input. yk is the output of the unit where vk0 is a bias
term and Φ(⋅) is the activation function commonly of
the form:

Φ vð Þ ¼ 1
1þ e−v

for the sigmoid activation function. Ultimately, the
modified information reaches the output nodes as out-
put of the ANN.
ANNs are trained to be capable of accurately modeling

a set of examples and predicting their output [47]. The
backpropagation training algorithm is a computationally
straightforward algorithm for training the multi-layer
perceptron [48], which uses the gradient descent proced-
ure to find the combination of weights, resulting in the
smallest error [48]. A learning rate controls the size of the
weights changes and a momentum term prevents the net-
work in becoming trapped in local minima, or being stuck
along flat regions in error space [47]. Regularization tech-
niques are applied to prevent the risk of low generalization
ability [47]. One commonly used regularization technique
stops the training process when a predetermined number
of iterations have completed.
We set up a three-layer neural network architecture

containing a single hidden layer with 32 hidden units.
The number of hidden units is calculated as the fraction
between, the sum of the number of probe sets and the
number of outcomes, and two. The activation function
of the hidden layer units was the sigmoid function. We
scaled data for improving the performance of the net-
work. We utilized the back-propagation process with
learning rate and momentum set to 0.3 and 0.2, respect-
ively. The predetermined maximum number of iterations
was set to 500.
The Support Vector Machine (SVM) [49], the Logistic

regression (LOR) [50], and the Naïve Bayesian (NAB)
[51] algorithms were also utilized for classification.
LibSVM implementation of SVM was ran with homoge-
neous polynomial kernel, degree of the polynomials set
to 3, gamma parameter set to 0.05 and tolerance of the
termination criterion set to 0.001.We ran NAB with no
supervised discretization and no kernel estimator for nu-
meric attributes and LOR with ridge parameter set to
1.0e-7 and Broyden–Fletcher–Goldfarb–Shanno (BFGS)
regularization.
The algorithms were implemented by the Waikato En-

vironment for Knowledge Analysis (WEKA) software
version 3.7.10 [52].

Metrics
Let TP to be the number of true positives, TN the num-
ber of true negatives, FP the number of false positives
and FN the number of false negatives in a confusion

matrix, we defined good outcome as positive and poor
outcome as the negative.
Accuracy, sensitivity, precision, specificity, negative

predictive value (NPV), Matthew’s Correlation Coeffi-
cient (MCC) and F1-score metrics measured the per-
formance of the classifier.
Accuracy measures the proportion of correctly classi-

fied patients [53] and it is calculated by the formula:

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

Sensitivity, also named True Positive Rate or Recall,
measures the proportion of good outcome patients cor-
rectly classified as such [53] and it is calculated by the
formula:

Sensitivity ¼ TP
TP þ FN

Precision measures the proportion of correctly classi-
fied good outcome patients [53] and it is calculated by
the formula:

Precision ¼ TP
TP þ FP

Specificity measures the proportion of poor outcome
patients correctly classified as such [53] and it is calcu-
lated by the formula:

Specificity ¼ TN
TN þ FP

NPV measures the proportion of correctly classified
poor outcome patients. NPV is calculated by the formula:

NPV ¼ TN
TN þ FN

MCC measures the correlation between a classifier
prediction and the observed outcomes. We calculated
MCC by the formula:

MCC ¼ TP�TNð Þ− FP�FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

When MCC equals 0, the performance is comparable
with that of a random prediction.
F1-score measures the weighted average of the preci-

sion and sensitivity. We calculated the F1-score by the
formula:

F1−score ¼ 2
Precision � Sensitivity
Precisionþ Sensitivity

Statistical analysis
We estimated the probability of overall survival (OS)
and event-free survival (EFS) using the Kaplan-Meier
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method, and we measured the significance of the difference
between Kaplan-Meier curves by log-rank test using Prism
6.1 (GraphPad Software, Inc.). Independence among the
clinical variables and NB-hypo prediction was assessed by
multivariate cox analysis. MYCN status, INSS stage and
Age at diagnosis were included in the analysis as binary
variables.

Gene set enrichment analysis
We utilized the GSEA [54] to evaluate the enrichment
of hypoxia related gene sets in patients predicted with
“Poor” or “Good” outcome. We carried out the analysis
on all probe sets of the HG-U133 Plus 2.0 GeneChip.
GSEA calculates an enrichment score (ES) and norma-
lized enrichment score (NES) for each gene set and
estimates the statistical significance of the NES by an
empirical permutation test using 1.000 gene permuta-
tions to obtain the nominal p-value. However, when
multiple gene sets are evaluated, GSEA adjusts the esti-
mate of the significance level to account for multiple
hypothesis testing. To this end, GSEA computes the
False Discovery Rate q-value (FDR q-value) measuring
the estimated probability that the normalized enrich-
ment score represents a false positive finding [54]. The
gene sets used in the analysis belong to the Chemical
and genetic perturbation (C2.CGP) collection of the
Molecular Signature Database (MSigDB) v5 database
[54]. We selected 14 gene sets related to the hypoxia
response from the C2.CGP collection using “hypoxia”
as keyword and containing between 20 and 300 probe
sets (see Additional file 1). FDR q-value smaller than
0.25 is considered significant.

Results
We analyzed the gene expression of 182 neuroblastoma
tumors profiled by the Affymetrix HG-U133plus2.0 plat-
form [46]. The clinical characteristics of the 182 neuro-
blastoma patients are detailed in the Table 1. “Good” or
“poor” outcome is defined, from here on, as the patient’s
status “alive” or “dead” 5 years after diagnosis, respect-
ively. We randomly divided the cohort into two groups
of 100 (55 %) and 82 (45 %) patients to create the train-
ing and test set, respectively (Fig. 1). We utilized the
expression data of the training set to construct the clas-
sifier and the leave-one-out approach to measure the
performance of the algorithms. The classifier was then
tested on the independent 82 patients dataset. We previ-
ously described a 62 probe sets signature that represents
the hypoxic response of neuroblastoma cell lines [29]
(NB-hypo) and we used this signature to develop a
hypoxia-based classifier to predict the patients’ outcome
(NB-hypo classifier).
To this end, we compared the performances of Multi-

layer perceptron (MLP), Support Vector Machine (SVM),

Logistic regression (LOR), and Naïve Bayesian (NAB) al-
gorithms in classifying neuroblastoma patients’ outcome.
We evaluated the classification by measuring accuracy,
sensitivity, precision, specificity, negative predictive
value, Matthew’s correlation coefficient and F1-score
indicators by leave-one-out cross validation. The results
(see Additional file 2: Table S1) showed that MLP per-
formed similarly or better than the other algorithms
tested depending on the indicator and MLP was chosen
to generate the NB-hypo classifier.
We tested the MLP classifier on an independent test

set of 82 neuroblastoma patients and we found that it
predicted correctly 53/59 (90 %) good outcome and 18/
23 (78 %) poor outcome patients, resulting in an accur-
acy of 87 % (Fig. 1).
We compared the performance of NB-hypo classifier

with that of the known neuroblastoma risk factors: age
at diagnosis, INSS stage and MYCN status by subdivid-
ing the patients of the test set according to these risk
factors and calculating the prediction performances
(Table 2). NB-hypo classifier achieved the highest pre-
dictive accuracy (87 %) and MCC (67 %) compared to
the other risk factors (ranging from 72 to 84 % for ac-
curacy and from 48 to 58 % for MCC). MYCN status
had the highest sensitivity and NPV, but the lowest spe-
cificity and precision whereas age at diagnosis showed
the opposite trend indicating strong phenotype biases of
these risk factors. In contrast, NB-hypo classifier and
INSS stage obtained a more balanced specificity and sen-
sitivity indicating a less biased classification error distri-
bution between good and poor outcome. NB-hypo
classifier and MYCN had the highest F1-score indicating
the good balance of sensitivity and precision of these
two factors.
The overall and event free survival of the patients

divided according to the NB-hypo classifier are shown in
Fig. 2. Kaplan-Meier curves and log-rank test demon-
strated that patients with Good and Poor outcome pre-
diction had a significantly different survival (p < 0.0001).
In addition, NB-hypo classifier is an independent pre-
dictor of overall survival and event free survival (p <
0.05) of neuroblastoma patients when compared to the
common risk factors INSS stage, Age at diagnosis, and
MYCN status in a multivariate cox analysis (Table 3).
We concluded that NB-hypo classifier was an indepen-
dent prognostic factor for neuroblastoma and very ac-
curate in predicting the outcome of neuroblastoma
patients relative to other prognostic markers.
We assessed the concordance between NB-hypo pre-

diction and patients’ characteristics (Fig. 3). We divided
the patients by INSS stage reporting for each group the
outcome prediction by NB-hypo classifier, the concord-
ance between the prediction and the outcome, age at
diagnosis and MYCN status. Interestingly, we found the
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good 98 % concordance (48/49) between patient’s out-
come and prediction in localized (stage 1,2,3) and stage
4s tumors indicating that NB-hypo has 2 % classification
error in non-stage 4 patients. This result is particularly
interesting because the prediction was accurate in asses-
sing the uncommon death of 5 low or intermediated risk
patients. Among the correctly predicted patients, age at
diagnosis and MYCN amplification status were evenly
distributed (Fig. 3), demonstrating the independence be-
tween these risk factors and the NB-hypo classifier and
in agreement with results shown in Table 3. In contrast,
the majority of misclassified patients belonged to stage
4, in agreement with the fact that prognosis of this stage
is traditionally difficult [55]. Taken together, these results
demonstrate that NB-hypo classifier is a powerful tool to
predict neuroblastoma patients’ outcome.
We analyzed the hypoxic status of the tumors utilizing

the gene set enrichment analysis (GSEA) [54]. We utilized
GSEA to determine whether known sets of hypoxia-
inducible genes were significantly enriched in the tumor
gene expression profile in relationship to the “Poor” or
“Good” outcome prediction. We studied 14 gene sets
characteristic of the hypoxia response according to the

literature and included in the GSEA MSigDB database
(see Additional file 1 and Methods section for details).
These gene sets were independently derived by other
groups to assess the hypoxic status of various tissues dif-
ferent from neuroblastoma. Eleven hypoxia gene sets were
significantly enriched in the patients classified as “dead”
(FDR q-value < 0.25), whereas none was enriched in those
classified as “alive”, demonstrating association between
the poor outcome and the hypoxic status of the tumor
(Table 4). We concluded that poor prognosis patients have
a hypoxic phenotype.

Discussion
We developed a classifier based on tumor gene expression
that predicts neuroblastoma patients’ outcome with high
accuracy. We utilized a bottom up, biology-driven, ap-
proach [12], which is based on the prior knowledge of the
influence of tumor hypoxia on neuroblastoma growth.
One advantage of this strategy is the immediate appre-
ciation of the molecular program related to the prognostic
indication [12, 56]. This process followed a rigorous se-
quence starting from the definition of neuroblastoma hyp-
oxic response signature in tumor cell lines [29]

Fig. 2 Kaplan-Meier and log-rank analysis for the 82 neuroblastoma patients belonging to the external test dataset. Overall survival (a) and event
free survival (b) of patients classified according to the NB-hypo classifier. Red and blue curves represent predicted Poor and Good outcome
patients, respectively. The p-value of the log-rank test is shown

Table 2 NB patients classification by different risk factors

Performancea

Predictor Accuracyb Sensitivityc Precisiond Specificitye NPVf MCCg F1-scoreh

NB-hypo classifier (Good vs Poor) 87 % 90 % 91 % 78 % 75 % 67 % 90 %

Age at diagnosis (< 1 year vs≥ 1 year) 72 % 61 % 100 % 100 % 50 % 55 % 76 %

INSS stage (1,2,3,4s vs 4) 76 % 75 % 90 % 78 % 55 % 78 % 82 %

MYCN status (normal vs amplified) 84 % 97 % 84 % 52 % 86 % 58 % 90 %
aPerformance of NB-hypo classifier and other commonly used neuroblastoma risk factors in the test set
For prediction of prognosis by age at diagnosis, patients older than one year were predicted with poor prognosis. For prediction by stage, patients with stage
1,2,3, and 4s were predicted with good prognosis and patients with stage 4 were predicted with poor prognosis. For prediction by MYCN status, patients with
amplified MYCN were predicted with poor prognosis while patients without MYCN amplification were predicted with good prognosis
bAccuracy measures the proportion of correctly classified patients
cSensitivity measures the proportion of good outcome patients correctly classified as such
dPrecision measures the proportion of correctly classified good outcome patients
eSpecificity measures the proportion of poor outcome patients correctly classified as such
fNPV(Negative Predictive Value) measures the proportion of correctly classified poor outcome patients
gMCC (Matthew's correlation coefficient) measures the correlation between a classifier prediction and the observed outcomes
hF1-score measures the weighted average of the precision and sensitivity
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followed by the demonstration that this signature is an
independent risk factor [12] and the findings, reported
here, that the MLP, applied to the 62 probe sets of the
signature generates a robust outcome and tumor hyp-
oxia predictor with potential clinical applications.
The importance of hypoxia in conditioning tumor ag-

gressiveness is documented by an extensive literature
[30, 32–34, 36, 37, 57]. Studies on the relationship
between hypoxia inducible factors and neuroblastoma
aggressiveness showed that high HIF-2 alpha expression
correlated with disseminated disease (for review see [58]).
However, there is little information on the potential of

hypoxia as a biomarker for patients’ stratification possibly
because it is difficult of quantifying hypoxia, patchy in na-
ture, in a tumor mass [59]. Microarray technology, applied
to tumors, has the potential to overcome this difficulty and
to provide a probe to monitor average hypoxia in the
tumor mass [60]. The use of gene expression signatures to
measure hypoxia has been reported [36, 56, 61] and their
potential as prognostic factors was shown, for example, in
soft tissues sarcomas [62] and hepatocellular carcinoma
[63].
Several statistical and machine learning techniques can

be used for classification [64, 65]. Here, we described the

Table 3 Multivariate Cox analysis results of the test set

Multivariate cox analysis (OS)a Multivariate cox analysis (EFS)b

Covariate Coefficientc HRd 95 % Cle P-valuef Coefficientc HRd 95 % Cle P-valuef

NB-hypo classifier (Good vs Poor) 1.1 3.3 (1.0, 10.6) 4.00E-02 1.1 3 (1.0, 9.0) 4.00E-02

Age group (<12 months vs≥ 12 months) 1.9 4E-08 (0.0, inf) 9.90E-01 1.2 3.6 (0.9, 14.2) 6.00E-02

INSS stage (1,2,3,4s vs 4) 0.6 1.9 (0.5, 6.4) 2.70E-01 0.4 1.5 (0.5, 4.5) 4.00E-04

MYCN status (nomal vs amplified) 0.3 1.3 (0.5, 3.5) 4.90E-01 0.4 1.5 (0.6, 3.9) 3.00E-01
aMultivariate cox regression analysis for overall survival
bMultivariate cox regression analysis for event - free survival
cCox regression coefficient
dHazard ratio
e95 % of confidence interval
fSignificance. Values smaller than 0.05 are acceptable

Fig. 3 The plot shows the concordance between NB-hypo prediction and the clinical characteristics of the 82 patients in the external test dataset.
Patients are grouped according to INSS staging. Rows represent individual patients. For each stage, the column “Prediction” indicates the prediction
results of NB-hypo classifier (Poor or Good). The column “Correct” represents the correctness of NB-hypo classifier prediction (true or false). The column
“Age” shows the age at diagnosis (>1 year vs. < 1 year). The column “MYCN” shows the MYCN amplification status (A = amplified; NA = not amplified).
Patients marked with a clearer color are the ones predicted as “Poor” by NB-hypo classifier
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successful application of the multi-layer perceptron for
NB patients’ outcome prediction. MLPs are a form of
machine learning with proven pattern recognition cap-
abilities that were utilized in many areas of bioinformat-
ics such as disease classification and identification of
biomarkers [47]. MLP demonstrated a similar/better per-
formance relative to SVM, NAB and LOR algorithms
proving to be a robust tool for the analysis of complex
gene expression data.
Utilizing the MLP algorithm with the NB-hypo signa-

ture previously described [12], we generated a robust
and independent classifier capable of stratifying patients
with distinct overall and event-free survival and predic-
ting patients’ good or poor outcome with 87 % accuracy
of and 67 % MCC. These values are better than what
can be achieved with other available risk factors (MYCN
amplification, age at diagnosis and INSS stage) on the
same cohort. These findings extend and complement
previous work on NB patients’ classifiers based on Logic
Learning machine (LLM) [11, 66] trained through an op-
timized version of the Shadow Clustering algorithm [67].
These studies were instrumental to demonstrate that
hypoxia based predictors could generate intelligible rules
translatable into the clinical settings [66]. However, the
feature selection system of LLM reshaped the feature
space definition for optimizing the rule construction and
only a fraction of the NB-hypo probe sets was tested in
these studies. The present work provides novel and crit-
ical evidence that the 62 probe sets of the NB-hypo sig-
nature will work as a whole, providing robustness to the

classifier generated by application of the Multi-layer
Perceptron algorithm.
Several groups have used gene expression-based ap-

proaches to stratify neuroblastoma patients and prog-
nostic gene signatures have been described [11, 13–22].
The performance of our NB-hypo classifier is compar-
able with that of the other prognostic gene expression
signatures proposed for neuroblastoma [68]. However,
some of them were obtained by supervised computa-
tional methods applied to the entire gene expression
profile of primary tumors or by meta-analysis of existing
data. These approaches generated interesting results but
the signatures, and the resulting classifiers, have some
limitations. On one hand, these gene signatures have
little overlap because of the high variability of the tumor
data sets. On the other, it is difficult to interpret the re-
sults with respect to the underlying biology because the
assembly of the signature is purely mathematical. Fin-
ding a predictor that can be linked to molecular mecha-
nisms of cancer development is critical for translating
these markers to the clinic. One added value of our pre-
dictor is that the choice of a biology driven approach
links our tumor selection to the hypoxia molecular pro-
gram that can be associated to the progress of the dis-
ease and exploited to manage the neuroblastoma.
When we evaluated the concordance between NB-

hypo prediction and INSS stage, we found that NB-hypo
correctly predicted the status of almost all patients with
localized or 4s stage tumors. More importantly, we iden-
tified, in this group, all patients with poor outcome that
may benefit from a more aggressive, and perhaps hyp-
oxia related treatment. Validation of this conclusion on
additional data sets is required.
The suggestion of developing hypoxia-related treat-

ments relies on the demonstration that poor outcome
tumors are hypoxic. The expression of the NB-hypo sig-
nature is the first line of evidence in this respect. The
GSEA analysis was an independent strategy to explore
the relationship between NB-hypo outcome prediction
and tumor hypoxia because it is based on the analysis of
all forty thousand probe sets of the tumor expression
profile. GSEA measures the representation of hypoxia-
related gene sets coming from independent, published
studies in the good or poor prognosis patients. We
demonstrated a great and selective enrichment of hyp-
oxia related gene sets in a large group of poor outcome
patients.
The characterization of the tumor at diagnosis is indis-

pensable for deciding the treatment and the NB-hypo
classifier poor outcome prediction may identify the
tumors that, as a result of the hypoxic status, express
high genetic instability [69], contain undifferentiated or
cancer stem cells [32, 40] or a higher metastatic poten-
tial [33, 34]. Therapeutic agents are being developed to

Table 4 Hypoxia-related gene sets enriched in patients
classified as Poor outcome

Gene seta ESb NESc FDR q-valued

WINTER_HYPOXIA_UP 0.72 2.22 0.00

HARRIS_HYPOXIA 0.52 1.90 0.02

JIANG_HYPOXIA_CANCER 0.42 1.83 0.03

ELVIDGE_HYPOXIA_BY_DMOG_DN 0.46 1.76 0.03

NB-HYPO_62-PBSETS 0.53 1.65 0.06

WACKER_HYPOXIA_TARGETS_OF_VHL 0.60 1.61 0.06

KRIEG_HYPOXIA_VIA_KDM3A 0.42 1.64 0.06

KIM_HYPOXIA 0.48 1.59 0.06

MENSE_HYPOXIA_UP 0.44 1.58 0.05

LEONARD_HYPOXIA 0.45 1.47 0.08

WEINMANN_ADAPTATION_TO_HYPOXIA_DN 0.36 1.19 0.24
aHypoxia-related gene sets enriched in the GSEA analysis
bES (enrichment score) is the maximum deviation from zero encountered in a
random walk for a gene set
cNES (normalized enrichment score) is the fraction between the ES and the
mean of the ES against a number of permutations of the dataset
dFDR q-value is the estimated probability that the normalized enrichment
score represents a false positive finding. Values <= 0.25 are
considered acceptable
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target hypoxia (for review see [59]) and are being tested
in the clinic. Our classifier may be instrumental for their
application to neuroblastoma.

Conclusions
We developed a robust classifier predicting neuroblast-
oma patient’s outcome with a very low error rate and we
provided independent evidence that the poor outcome
tumors are hypoxic, supporting the potential of using
hypoxia as target for neuroblastoma treatment. The de-
finitive validation of hypoxia as a prognostic factor in
clinical trials rests on the possibility to analyze a larger
dataset to validate the existence of small group of pa-
tients, with unique clinical history, in which tumor hyp-
oxia may be the driving force to poor outcome. We will
look at the potential of cross platform approaches to
compare and utilize existing neuroblastoma gene ex-
pression dataset obtained with different platforms.
This task is not easy but it is feasible and promises
to assemble a significant number of cases for improv-
ing the predictive value of hypoxia-related signatures
in neuroblastoma.
A second way to boost the robustness of the predic-

tion is to increase the spectrum of molecular data asso-
ciated to the patient. Ribonucleic acid (RNA) assessment
by microarray analysis is becoming an affordable and
reliable method to characterize hypoxia response. How-
ever, microRNAs, non coding RNA, protein patterns,
transcription factors analysis, promise to generate
equally important information to define the biology of
tumor hypoxia. The full exploitation of this wealth of
data will require a parallel bioinformatics effort to de-
velop the relevant multiplatform pathway analysis and
studies along this way are in progress.
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