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The role of cytokines in the 
pathogenesis and staging of Trypanosoma 
brucei rhodesiense sleeping sickness
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Abstract 

Human African trypanosomiasis due to Trypanosoma brucei rhodesiense is invariably fatal if untreated with up to 12.3 
million people at a risk of developing the disease in Sub-Saharan Africa. The disease is characterized by a wide spec-
trum of clinical presentation coupled with differences in disease progression and severity. While the factors determin-
ing this varied response have not been clearly characterized, inflammatory cytokines have been partially implicated 
as key players. In this review, we consolidate available literature on the role of specific cytokines in the pathogenesis 
of T. b. rhodesiense sleeping sickness and further discuss their potential as stage biomarkers. Such information would 
guide upcoming research on the immunology of sleeping sickness and further assist in the selection and evaluation 
of cytokines as disease stage or diagnostic biomarkers.
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Background
Human African trypanosomiasis (HAT) or sleeping sick-
ness is caused by tsetse fly transmitted extra-cellular 
protozoan parasites Trypanosoma brucei rhodesiense 
(east and southern Africa) and T. b. gambiense (west and 
central Africa). It is considered that these species are 
clinically and epidemiological different thus requiring 
different therapeutic management [1]. Disease due to T. 
b. rhodesiense is classified as acute with rapid progression 
while T. b. gambiense disease is characterized as chronic 
[2, 3]. A reduction in the number of new HAT cases has 
been reported [4]. However, in endemic areas an esti-
mated 12.3 million people living in or around national 
parks, forest land and large water bodies are still at a 
risk of acquiring T. b. rhodesiense disease. More so fatal-
ity cases are estimated to be higher than reported since 
40 % of cases go undetected and subsequently untreated 
[5, 6]. T. b. rhodesiense HAT being a zoonotic disease and 

endemic in vast areas of continental/tropical Africa [4], 
elimination cannot be easily achieved.

Previously, T. b. rhodesiense HAT has been classified 
as an acute disease with death occurring within weeks 
or few months if untreated [2, 3]. Recently, a wide spec-
trum of clinical presentation coupled with differences in 
disease progression and severity was reported [7–9]. It 
is now believed that the disease is chronic in south east 
Africa and progressively more severe and acute towards 
the north [8, 10]. It has been demonstrated that individu-
als from non-endemic areas suffer a more severe disease 
than those in endemic countries [11, 12]. Furthermore, 
there seems to be differences in disease progression irre-
spective of whether the foci are geographically related. 
A study comparing early stage patients recruited in two 
geographically distinct areas noted median duration 
of illness to be longer among Malawi patients (30  days) 
compared to patients in Uganda (21 days) [8]. In addition, 
dramatic differences in disease progression and degree of 
neurological impairment were reported among Ugandan 
patients in geographically related foci [13]. Subsequently, 
it is not yet clear if these differences in disease progres-
sion and severity are related to the parasite diversity, to 
host related differences regulating immune responses 
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or to both. However, compelling evidence suggests that 
cytokines might be key players in HAT inflammatory 
processes [8, 13, 14].

Reports from animal models and the few studies involv-
ing humans suggest that high levels of pro-inflammatory 
cytokines might be associated with moderate to severe 
neuropathy [15, 16]. Furthermore, late stage disease has 
been associated with elevated levels of counter-inflam-
matory cytokines in both HAT patients and experimen-
tal animal models [16]. Counter-inflammatory cytokines 
(IL-10 and IL-6) have been associated with a reduction 
in the severity of neuropathology, suggesting a possible 
protective role [15]. However, there remains controversy 
on the role of specific cytokines in disease progression 
and severity [17, 18]. In this review, we aim to consoli-
date available literature on the role of specific cytokines 
in T. b. rhodesiense HAT pathogenesis and to further dis-
cuss their potential as stage biomarkers. Such informa-
tion would guide upcoming research in the immunology 
of HAT and further assist in the selection and evaluation 
of cytokines as stage biomarkers and/or develop novel 
chemotherapeutic interventions.

Diagnosis and diagnostic problems
Since the clinical signs of HAT are non-specific, in most 
cases the disease is only suspected in geographical areas 
where it is endemic. Sleeping sickness is endemic in 
areas where other tropical diseases like malaria exist [7, 
19, 20], making HAT an incidental finding on a blood 
smear meant for malaria diagnosis. Currently there is an 
increased bias towards the use of rapid diagnostic tests 
(RDTs) for the diagnosis of malaria [21]. Therefore, the 
advent of RDT’s for malaria will consequentially lead to 
reduced detection T. b. rhodesiense HAT as this relies on 
the detection of trypanosomes on blood smears. Sleep-
ing sickness occurs in rural sub-Saharan Africa neces-
sitating diagnostic techniques that are simple and cheap 
to perform [22]. A major constraint in T. b. rhodesiense 
HAT diagnosis as compared to T. b. gambiense HAT is 
the fact that no suspicion serological tests are yet avail-
able thus impairing greatly the detection of cases (both for 
passive and active detection). Therefore, the most feasible 
approach for the detection of T. b. rhodesiense infections 
is through direct microscopic observation of trypano-
somes in blood, lymph node aspirates or in cerebrospinal 
fluids (CSF) of highly suspected individuals [23]. Unlike T. 
b. gambiense HAT, parasitemia due to T. b. rhodesiense is 
in most cases above the threshold for microscopic detec-
tion reaching values of up to 10,000 trypanosomes/ml 
[24]. Thick blood films prepared from a finger prick have 
limited sensitivity (detection limit is 5000 trypanosomes/
ml) but are easy to perform with quick results [25]. In 
cases of low parasitemia, concentrations/enrichment 

methods have been used to improve sensitivity. The 
micro-hematocrit centrifugation technique (mHCT) has 
a detection limit of 500 trypanosomes/ml [26, 27] while 
the quantitative buffy coat technique offers an improved 
detection limit of <500 trypanosomes/ml [28, 29]. Mini-
anion-exchange centrifugation technique [30] offers an 
improved sensitivity, detecting  <30 trypanosomes/ml 
while its improvement on buffy coat goes lower than 10 
trypanosomes/ml [31]. Molecular biology techniques that 
detect parasite nucleic acids with increased sensitivity are 
becoming more common. The most commonly used PCR 
technique in research laboratory settings has been the 
detection of the serum resistance antigen (SRA) to con-
firm the presence of T. b. rhodesiense [32]. The SRA gene 
is reported to be responsible for T. b. rhodesiense human 
serum resistance but is absent in T. b. gambiense sub spe-
cies that is also resistant to lysis by human serum [33]. 
SRA is able to discriminate T. b. rhodesiense from other 
T. b. brucei sub species with a sensitivity equivalent to 1 
trypanosome/ml [34]. Although PCR based techniques 
have a sensitivity of up to 96 % [35], the techniques have 
limited application in a field setting due to the need for 
a thermocycler, power supply and a cold chain for rea-
gents. To improve on their applicability, an isothermal 
DNA amplification technique called loop mediated iso-
thermal amplification (LAMP) has been developed [36, 
37]. LAMP is easier to perform and requires less sophisti-
cated equipment than conventional PCR. However, before 
its adoption as a diagnostic tool, further clinical valida-
tion and standardization on large cohorts is required. 
Other alternatives like the RNA based real-time nucleic 
sequence based amplification [38] and oligochromatogra-
phy-PCR [39] have been developed but are yet to undergo 
clinical evaluation and validation.

Disease staging
Since drug treatment for both early and late stage disease 
differs, it is paramount to accurately determine disease 
stage. Since it is impossible to stage the disease based on 
clinical signs, invasive examination of CSF following a 
lumber puncture is routinely done. Disease stage deter-
mination is vital for appropriate treatment. Patients with 
no trypanosomes in CSF but with a white blood cell count 
of  ≤5 WBC/µl are classified as early stage while those 
with  >5 WBC/µl or with trypanosomes in the CSF are 
considered late stage patients [23]. With inconsistences 
and the invasive nature of the current staging method, 
new stage biomarkers are being proposed [40, 41].

Host immune responses to trypanosomes
It is now clear that sera from humans and non-human pri-
mates has the ability to kill trypanosomes [42, 43]. This 
ability to kill trypanosomes has been linked to the innate 
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trypanosome lytic factors (TLF). Compelling evidence 
suggests that apolipoprotein LI (ApoLI) and haptoglobin-
related protein (Hpr) might be crucial elements of the 
TLF [43, 44]. T. b. brucei has been shown to neutralize the 
trypanolytic activity of normal human serum through the 
serum resistance associated protein (SRA) that binds to 
ApoA1 [32]. Trypanosomes escape host immune recogni-
tion through antigenic variation of the membrane bound 
variant-specific surface glycoprotein, VSG [45]. The VSG 
acts as a barrier preventing components of the immune 
responses from accessing the underlying plasma mem-
brane [46]. At peak parasitemia, the parasite releases VSG 
into circulation [47] thus inducing inflammatory responses. 
It has been shown that coat switching trypanosomes fail 
to activate B-cells until coat VSG homogeneity is achieved 
thus evading recognition [48]. Previously, the main mecha-
nism involved in controlling parasitemia was through anti-
body production [49–51] with trypanosome specific IgM 
and IgG reported in the cerebral spinal fluid of late stage 
patients [52]. In a murine T. b. brucei model using B cell 
(µMT) and IgM-deficient mice, the role of B-cells and IgM 
antibodies in parasitemia control was investigated [53]. 
The authors demonstrated that B-cells played a critical role 
in peak parasitemia clearance while IgM antibodies only 
played a limited role. However, in another study, a T-cell-
independent anti-VSG IgM response was proposed as the 

first line of defense against proliferating parasites [54]. 
However, gaps still exist on how and whether antibodies 
play a significant role in parasite control [55]. Evidence is 
building up suggesting that cytokines might be key players 
in HAT pathogenesis [14, 15, 56].

Most studies on cytokine dysregulations in HAT have 
used experimental animal models making it possible to 
follow immunological responses with disease progres-
sion [15, 57–61]. Compelling evidence from these studies 
points to a profound dysregulation in cytokine profiles as 
a driver for HAT pathogenesis. In general, the early stage 
of infection is characterized by an elevation in pro-inflam-
matory cytokines (IFN-γ and TNF-α) with a switch to a 
counter-inflammatory response in late stage infection [15, 
62]. It has been demonstrated that prolonged survival to 
murine African trypanosomiasis might be infection stage 
dependent, with pro-inflammatory cytokine responses 
playing a critical role during early stage infection while 
counter-inflammatory cytokines determine survival dur-
ing late stage [62]. Furthermore, cytokines in the CNS 
have been shown to revert to normal levels after treatment 
making them biomarker candidates for CNS invasion [63, 
64]. The role of specific cytokines in HAT progression with 
emphasis on T. b. rhodesiense is hereby discussed. The 
potential roles of cytokines in sleeping sickness and gaps in 
cytokine research are summarized in Table 1.

Table 1 Potential roles and inconsistencies associated with cytokines in sleeping sickness

TNF-α: Tumour necrosis factor- alpha, IFN-γ: Interferon gamma, IL-1β: Interleukin-1 beta, TGF-β: Transforming growth factor- beta, IL-6: Interleukin-6, IL-10: 
Interleukin-10, HAT: Human African trypanosomiasis

Cytokine Experimental trypanosomiasis HAT

TNF-α

 1) Parasite growth control and extended survival [49, 66, 109] Associated with rapid disease progression [8]

 2) Control of infection induced pathology [49, 65] No clear role in disease pathogenesis [71, 72]

 3) Mediate development of anemia [68] No data

 4) Involvement in neuropathology and blood brain barrier dysfunction  
[15, 70]

No data

IFN-γ

 1) Enhance parasite growth [74] Neurological response involvement [13]

 2) Parasite growth control [18, 61, 73] No neurological response involvement [76]

 3) Mediate development of anemia [73] No data

 4) Involvement in neuropathology and blood brain barrier dysfunction  
[15, 75]

No data

 5) Fever induction [60] No data

IL-1β

 1) Involvement in neuropathology [15, 82, 83] No involvement in disease progression or pathology [13]

TGF-β

 1) No data Involvement in pathology [8] No involvement in pathology [13]

IL-6

 1) Reduction in neuropathology [15] No defined role despite elevation in late stage [13, 72, 76, 92, 93]

IL-10

 1) Reduced pathology and extended survival [15, 61] No defined role despite elevation in late stage [8, 71, 72, 76, 93]
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Tumour necrosis factor‑ α (TNF‑α)
Tumour necrosis factor-α (TNF-α) is a pro-inflammatory 
cytokine predominantly produced by macrophages and 
is involved in the innate immunity against intracellular 
pathogens. Soluble VSGs shed by live trypanosomes are 
thought to be the major TNF-α inducing factors [65]. 
To date there is still controversy on the role of TNF-α in 
HAT infection. Some of the studies using animal mod-
els indicate that TNF-α is likely to be a key mediator in 
the control of T. brucei infections [66–68]. In one study, 
a direct dose dependent lytic effect of TNF-α on puri-
fied T. b. gambiense parasites was reported suggesting an 
involvement in parasite growth control [69]. However, 
detrimental roles of TNF-α have also been reported. In 
a murine model, TNF-α knockout mice exhibited trypa-
nosome-mediated immunopathological features such as, 
lymphnode associated immunosuppression and lipopol-
ysaccharide hypersensitivity [67]. High levels of brain 
TNF-α were associated with moderate to severe neuropa-
thy [15]. In a T. b. rhodesiense vervet monkey model, CNS 
TNF-α levels did not differ from controls and no asso-
ciation with clinical presentation was reported [60]. Fur-
thermore, it has been demonstrated in a murine model 
that TNF-α might be involved in anemia associated with 
T. b. rhodesiense infections and not in T. congolense [68]. 
This demonstrates the challenges in comparing studies 
utilizing different trypanosome or host species. There is 
evidence pointing to a possible role of TNF-α in trypa-
nosome penetration of the blood brain barrier, especially 
through Toll-like receptor (TLR)–MyD88–mediated 
signaling [70]. Human T. b. rhodesiense studies test-
ing predictions from experimental animal models have 
started to emerge. A study comparing plasma cytokine 
levels between geographically isolated HAT foci reported 
elevated levels of TNF-α in Ugandan patients as com-
pared to their counterparts in Malawi [8]. The author’s 
proposed that TNF-α might play a role in the rapid dis-
ease progression reported among Uganda patients. On 
the contrary, in another study in Uganda both plasma 
and CSF TNF-α levels remained at baseline [71], just as 
previously reported among T. b. gambiense patients [72]. 
From available literature for both animal models and 
human studies, the role of TNF-α in T. b. rhodesiense dis-
ease pathology remains largely unclear.

Interferon gamma (IFN‑γ)
Interferon gamma is a pro-inflammatory cytokine 
secreted primarily by T- and natural killer (NK) cells 
with a role in innate immunity and also as an inducer 
of the adaptive immune response. The role of IFN-γ in 
HAT progression has been investigated using experi-
mental animal models and in few human studies. In a 

murine T. b. brucei model, IFN-γ knockout mice suffered 
uncontrolled parasitemia with a significant reduction in 
survival time compared to the wild type mice [61, 73]. 
Similar observations were made in a T. b. rhodesiense 
murine model in which IFN-γ was associated with a 
decrease in parasite numbers and resistance to infection 
[18]. These findings show that IFN-γ might be essential 
in parasite control. On the contrary, in a study utilizing 
mononuclear cell cultures, rat IFN-γ was associated with 
an increase in parasite numbers [74]. Furthermore, in a 
murine T. b. brucei model an exponential increase in the 
severity of the neurological response was associated with 
increased levels of brain IFN-γ [15]. IFN-γ was further 
demonstrated to be a prerequisite for T. b. brucei para-
site transmigration across the blood brain barrier (BBB) 
[75]. In a T. b. rhodesiense vervet monkey model, serum 
IFN-γ was upregulated in the infected group with a posi-
tive correlation to body temperature during the early 
phase of disease. In this model, IFN-γ was never detected 
in CSF up to day 42 post-infection [60]. Similarly, in 
human patients, serum IFN-γ was significantly elevated 
in early stage patients compared to late stage patients and 
for both stages higher than control levels [71]. In another 
related T. b. rhodesiense sleeping sickness study com-
paring CSF cytokine levels between two geographically 
similar HAT foci (Soroti and Tororo), elevated IFN-γ 
levels were associated with moderate to severe comma 
[13]. This study provided for the first time, clinical evi-
dence that IFN-γ might be associated with clinical signs 
of neurological involvement in T. b. rhodesiense HAT. 
In a related study in Eastern Uganda, when CSF IFN-γ 
concentrations were compared across disease stage no 
significant differences were noted [76]. Moreover, in the 
latter study no significant association was noted regard-
ing presence or absence of neuropathology with IFN-γ 
levels. Within the current literature, the role of IFN-γ in 
T. b. rhodesiense disease remains uncertain.

Interleukin‑1 beta (IL‑1β)
Interleukin-1 beta is a pro-inflammatory cytokine 
belonging to IL-1 family of cytokines [77]. It is produced 
mainly by monocytes and macrophages [78]. In a num-
ber of inflammatory disorders, IL-1β has been associ-
ated with both innate and adaptive immune responses 
[79, 80], with a possible role in BBB dysfunction [81]. 
However, its role in HAT, is not well defined. In a murine 
model utilizing a T. b. brucei cloned stabilate (GVR35/
C1.8), there was an apparent increase in plasma levels of 
IL-1β but not significantly different from controls [15]. In 
this study, IL-1β levels were not correlated to the degree 
of neuro-inflammation. However, in a stepwise multi-
ple linear regression analysis, it was noted that IL-1β, 



Page 5 of 10Kato et al. Allergy Asthma Clin Immunol  (2016) 12:4 

TNF-α and IFN-γ levels in the brain accounted for over 
94.8 % of the variation in neuropathology. Furthermore, 
intraventricular injection of an IL-1 receptor antagonist 
together with sTNF-r1 antagonist augment the reduc-
tion in neurodegeneration caused by trypanosome infec-
tion compared with infusion of sTNF-r1 antagonist alone 
[82]. In a T. b. brucei murine model, mRNA transcripts 
for IL-1β were localized in areas showing apoptosis and 
nerve fiber degeneration [83]. In this study, neuropathol-
ogy was not solely attributed to IL-1β. A study involv-
ing T. b. rhodesiense HAT patients in two Ugandan foci 
(Tororo and Soroti) reported no significant differences in 
plasma IL-1β levels despite variations in disease progres-
sion and severity between the two foci [13]. In this study, 
the authors were unsuccessful in detecting IL-1β in the 
CSF. Available literature does not clearly define the role 
played by IL-1β in HAT pathogenesis.

Transforming growth factor‑beta (TGF‑β)
Transforming growth factor- beta is a pluripotent 
cytokine with both pro- and counter-inflammatory 
effects depending on its environment and concentration 
[84]. At higher concentrations, TGF-β is reported to play 
an immuno-modulatory role through the suppression of 
TNF-α and IFN-γ synthesis by peripheral blood mono-
nuclear cells and peritoneal-derived macrophages [85]. In 
HAT, literature on the role of TGF-β in disease progres-
sion is scanty. Nevertheless, TGF-β has been proposed to 
influence pathogenesis of T. b. rhodesiense sleeping sick-
ness. A study comparing T. b. rhodesiense cytokine pro-
files in two geographically distinct HAT foci (Uganda and 
Malawi) reported a significant increase in plasma TGF-β 
levels in Malawi patients as compared to patients in 
Uganda [8]. The authors argued that the higher levels of 
TGF-β in plasma of Malawi patients might be responsible 
for the reduced pathology and prolonged survival in this 
group. On the contrary, Maclean et  al. [13] comparing 
plasma TGF-β levels in two HAT foci in Uganda did not 
find significant difference despite the disease being more 
severe in Tororo compared to Soroti. In this study plasma 
TGF-β levels were significantly higher in HAT patients 
than controls. These findings suggest an involvement of 
TGF-β in HAT pathogenesis though its specific role is 
not clearly understood. In experimental animal models, 
the role of TGF-β in trypanosomiasis has not been inves-
tigated making results from human studies difficult to 
interpret. Animal models might be helpful in refining the 
general observations made in human studies.

Interleukin‑6 (IL‑6)
Interleukin-6 is a multi-functional cytokine shown to 
possess both pro- and counter-inflammatory effects 
with varied implications in pathophysiology of many 

neurological and inflammatory disorders. In other dis-
orders, IL-6 was shown to possess beneficial effects 
involving metabolic control [86], neuronal survival [87], 
neuro-protective and analgesic effects in rats [88]. On 
the other hand, destructive properties have also been 
reported. IL-6 has been associated with neuronal degen-
eration and cell death in degenerative disorders [89]. 
Furthermore, in other neuropathological disorders, mice 
over expressing IL-6 were associated with increased BBB 
permeability coupled with neuropathological abnormali-
ties [90]. In a murine T. b. brucei model, high levels of 
IL-6 were observed in mice with less severe neuropathol-
ogy [15]. These findings were consistent with studies in a 
T. b. rhodesiense vervet monkey model in which CSF IL-6 
levels were up regulated in late stage disease [91]. Simi-
larly, in HAT patients CSF IL-6 was upregulated in late 
stage T. b. rhodesiense disease [76, 92] and in T. b. gam-
biense disease [72, 93]. However, in all these studies, the 
role of IL-6 in HAT pathogenesis was not investigated. A 
study comparing plasma levels of IL-6 in two HAT foci 
in Uganda reported higher levels in Soroti with mild dis-
ease as compared to Tororo with a more acute disease 
[13]. The implication for the elevated IL-6 levels in Soroti 
patients were not explained. However, it is possible that 
IL-6 plays a protective role as reported in experimental 
animals. Consequently, although murine models point to 
a protective role, in humans the role of IL-6 cannot yet be 
clearly defined.

Interleukin‑10 (IL‑10)
IL-10 is a regulatory cytokine that is produced presum-
ably to control excessive inflammation by a variety of 
cell types within the innate and adaptive immune sys-
tems including macrophages, T- and B-cells [94]. IL-10 
has been demonstrated to upregulate the production of 
antibodies and elevate MHC class II expression on B cells 
[95]. In a number of parasitic diseases, IL-10 has been 
shown to possess host protective roles, including malaria 
[96], toxoplasmosis and in autoimmune encephalitis [97]. 
Similar roles of IL10 have been described in T. brucei 
experimental murine models.

In one study, the absence of IL-10 in wild type mice was 
associated with decreased survival in T. b. brucei infected 
mice [61]. Furthermore, mice with increased IL-10 levels 
were associated with markedly reduced IFN-γ concen-
trations and subsequently survived longer than infected 
control animals. The authors thus suggested that IL-10 
might play a role in providing a balance between patho-
genic and protective immune response during T. b. bru-
cei infection [61]. Furthermore, in another murine model 
using T. b. brucei cloned stabilate, mice with elevated 
CNS IL-10 levels were associated with mild inflamma-
tory pathology [15]. In HAT, plasma and CNS levels of 
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IL-10 were upregulated particularly in the late stage 
of both T. b. rhodesiense [8, 71] and in T. b. gambiense 
[72, 93]. However, in all these studies the role of IL-10 
on HAT associated pathology was not investigated. In 
a study by Maclean et  al. [76] among T. b. rhodesiense 
patients in Uganda, CSF IL-10 did not significantly asso-
ciate with neurological signs of ataxia, tremors, or uri-
nary incontinence. Likewise, a related study comparing 
plasma cytokine profiles in two foci in Uganda (Tororo 
and Soroti) did not find a significant difference in IL-10 
levels despite the disease being more severe in Tororo. 
Notwithstanding, even if T. b. rhodesiense sleeping sick-
ness has been associated with dysregulation in IL-10 lev-
els, its significance in disease pathogenesis has not been 
clearly demonstrated.

Cytokines as potential stage biomarkers
According to a biomarker working group [98], a bio-
marker is an objectively measured and evaluated char-
acteristic indicating a physiological process, pathogenic 
process or pharmacological response to a therapeutic 
intervention. The current HAT staging criteria rely on 
WBC counting and the detection of parasites in CSF. 
However, in some cases these criteria have been shown 
to give false results since trypanosomes are not usually 
detected in CSF and an elevation in white blood cells 
is not necessarily specific to trypanosomes [99, 100]. 
Furthermore, the need for using a lumber puncture to 
obtain CSF is invasive, a discomfort to the patient and 
requires trained personnel. Due to these shortfalls in the 
current staging, a number of novel biomarkers are cur-
rently being sought. With the observation that specific 
cytokines are upregulated in late stage sleeping sick-
ness, they have been proposed as potential stage bio-
markers [76, 91]. Among the cytokines, IL-10 and IL-6 
have shown greater potential due to their association 
with late stage disease in the CNS. Additionally, both 
plasma and CSF IL-10 levels were reported to return to 
normal following treatment in a T. b. rhodesiense vervet 
monkey model [56], in T. b. gambiense sleeping sickness 
[101] and in T. b. rhodesiense sleeping sickness [71]. 
From these finding, IL-10 was proposed as a marker for 
cure. However, despite these promising observations, 
data from clinical evaluation of these markers is limited. 
In a T. b. rhodesiense study, CSF IL-10 was upregulated 
in late stage patients [76]. When its utility as a potential 
late stage marker was evaluated, CSF IL-10 was insuf-
ficiently sensitive detecting only 14 out of 100 late stage 
patients [76]. In a more recent study, a higher staging 
accuracy for both CSF IL-6 and IL-10 was reported 
[102]. From this study, at a specificity of 100  %, IL-10 
would detect around 86 out of 100 late stage patients 
while IL-6 detected around 83 out of 100 late stage 

patients. However, in this study the authors acknowl-
edged the fact that most patients were diagnosed as late 
stage hence limiting comparisons with the few early 
stage patients. Tiberti et  al. [100] demonstrated that 
when T. b. rhodesiense biomarkers are used as a panel, 
sensitivity and specificity is greatly enhanced. A num-
ber of other promising markers distinguishing between 
early and late stage patients have been proposed includ-
ing; chemokines and the heart-fatty acid binding pro-
tein [41, 100, 103], immunoglobulins [56, 101], cell 
adhesion molecules [104], neopterin [105], osteopontin 
and β2 microglobulin [106] and matrix metalloprotein-
ase-9 [104] and recently neuronal specific enolase [107]. 
Indeed, when CSF IL-10 was evaluated as a panel with 
TGF-β and IgM, the panel had an improved sensitiv-
ity, from detecting 14 out of 100 late stage patients to 
detecting 70 out of 100 late stage cases [76]. However, 
to date literature about the use of cytokines as panels to 
improve staging accuracy is scanty and therefore does 
not allow meaningful comparisons.

Basing on available literature, the possibility of trans-
lating cytokines into point-of-care tests for stage deter-
mination has some draw backs. Firstly, cytokine markers 
are not 100 % sensitive and their application might lead 
to wrong treatment choices that could lead to relapses 
since some late stage patients would be missed. In order 
to improve on sensitivity, studies analyzing cytokines as 
panels or in combination with other previously identified 
markers might be helpful. Secondly, the need to rely on 
the invasive collection of CSF by lumber puncture makes 
the direct field application of CSF cytokines and other 
novel markers problematic. To date no plasma cytokine 
has shown potential as a stage biomarker. To better assess 
the value of plasma cytokines, studies utilizing larger 
sample size representative of the population at risk and 
tools such as Luminex Chips that enable the quantifica-
tion in a single sample of large numbers of cytokines or 
proteomic approaches such as the one performed on the 
CSF are required. Lastly, sleeping sickness is endemic in 
areas were other tropical diseases are common [7]. This is 
complicated by the fact that cytokine dysregulations and 
biomarker potential apply to other CNS disorders [108], 
thus clouding direct interpretation of cytokine data. 
Therefore, clinical validation of cytokine data in light of 
other co-infections would be helpful in identifying spe-
cific cytokines that might be unique to HAT.

Conclusions
Although literature on cytokine dysregulation in T. b. 
rhodesiense HAT is scarce, it is quite clear that high lev-
els of pro-inflammatory cytokines are associated with 
immunopathology. However, in late stage disease, an ele-
vation in counter-inflammatory cytokines is associated 
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with a reduction in the degree of immunopathology. 
In some cases, inconsistences about the role of specific 
cytokines in HAT pathogenesis have been documented. 
This points to the fact that pathogenesis might be influ-
enced by a complex interaction of cytokines with many 
having multiple roles. Moreover, due to ethical considera-
tions in human studies, serial measurements of cytokines 
with disease progress have not been done making a clear 
distinction between cause and effect roles for the specific 
cytokines problematic. Nevertheless, cytokines have been 
proposed as potential diagnostic or stage biomarkers. 
Indeed, due to their up-regulation in late stage diseases, 
counter-inflammatory cytokines including IL-10, IL-6 
and TGF-β were proposed as stage biomarkers. However, 
before cytokines can be considered as biomarkers, more 
clinical studies are required for validation. On the other 
hand, though murine models have provided invaluable 
information, inconsistences from human studies have 
been reported. Therefore, extrapolating data from these 
models might give erroneous conclusions about cytokine 
roles in HAT. Recently, the vervet monkey model has 
been shown to develop disease clinically and immunolog-
ically similar to T. b. rhodesiense HAT in humans [91] and 
would be helpful in refining cytokine roles with disease 
progression.
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