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Abstract
Background: One of the most challenging aspects of protein-protein docking is the inclusion of
flexibility into the docking procedure. We developed a postfilter where the grid-representation of
proteins for docking is extended by an optimised weighting factor for each amino acid.

Results: For up to 86% of the evaluated complexes a near-native structure was within the top 5%
of the ranked prediction output. The weighting factors obtained by the optimisation procedure
correlate to a certain extent with the flexibility of the amino acids, their hydrophobicity and with
their propensity to be in the interface.

Conclusion: Use of the optimised amino acid specific parameters yields a strong increase of near-
native structures on the first ranks of the prediction.

Background
Protein-protein interactions and complex formation play
a central role in a broad range of biological processes,
including hormone-receptor binding, protease inhibition,
antibody-antigen interaction and signal transduction [1].
As structural genomics projects proceed, we are con-
fronted with an increasing number of structurally known
proteins that are functionally uncharacterised. To identify
how two proteins are interacting will be particularly
important for elucidating functions and designing inhibi-
tors[2]. Although predicting around 50 percent false pos-
itive interactions [3], high throughput interaction
discovery methods, such as the yeast two hybrid system,
suggest thousands of protein-protein interactions and
therefore also imply that a large fraction of all proteins
interact with other proteins [4].

Since many biological interactions occur in transient com-
plexes whose structures often cannot be determined

experimentally, it is important to develop computational
docking methods which can predict the structure of com-
plexes with a proper accuracy [5].

Docking algorithms are developed to predict in which ori-
entation two proteins are likely to bind under natural con-
ditions. They can be split in a sampling step followed by a
scoring step. A collection of putative structural complexes
is generated by scanning the full conformational space in
the first step. Afterwards the putative complexes are
ranked according to scoring functions based on geometri-
cal and chemical complementarity.

For the scanning of the conformational space for geomet-
rical complementarity different methods are used (for a
general introduction and an overview over the different
docking methods see Halperin 2002 [6]). One of the most
widely spread docking methods is based on Fast Fourier
Transformations (FFT). The usage of FFT was introduced
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into docking by Katchalsky-Katzir in 1992 [7]. One
important aspect of the docking procedure is the represen-
tation of the proteins. Most FFT based methods use a grid
representation for the proteins [7-11]. Therefore each pro-
tein is mapped on a 3D grid, and the cells of the grid get
different values assigned, representing the surface or the
interior of the proteins (Figure 1A–C). Further grids or
complex numbers can be used to represent specific prop-
erties which are thought to play a crucial role in protein
interactions like hydrophobicity or electrostatics [8,10-
12].

During the docking procedure the two grids representing
the proteins are moved with respect to each other in a
specified number of rotations and the geometric correla-
tion for all translations is calculated in Fourier space
within one step. The geometric complementarity of the
proteins is evaluated by summing up the products of the
values of the overlapping cells. In most approaches the
surface cells of the proteins are assigned a value of one.
Therefore the more surface cells are in contact with surface
cells from the other protein the higher is the geometric
score. The interior of the larger protein is assigned a nega-
tive value (in our docking program: -6). This results in a
'punishing' negative value as soon as overlaps with inte-
rior cells of the first protein are observed. The interior cells
of the second protein are assigned a value of one leading
to an asymmetrical treatment of both proteins, which 'sof-
tens' the surfaces slightly [13].

In the beginning the FFT-based docking methods were
developed for bound docking. In bound docking the complex
structure is split in its subunits and the docking algorithm
predicts the complex structure from these subunits. For
most cases bound docking gives good results, i.e. for most
cases a near-native complex structure is on the first rank of
the prediction output. However, if the complex structure
is to be predicted from the 3D-structures determined in an
unbound state, most docking procedures do find a near-
native solution but not within the first ranks. This can be
explained by the conformational differences between the
complex and the unbound structures. Therefore the devel-
opment of unbound docking methods, which are able to
predict the near-native complex even if conformational
changes take place, is the most challenging current task in
the field of protein-protein docking.

Each protein-protein interaction depends on the amino
acids involved in the interaction. Several attempts to eval-
uate the importance of the 20 amino acids for protein-
protein docking were published [14-18]. Different proper-
ties of the amino acids like hydrophobicity, interface pro-
pensity, electrostatic properties, flexibility and others were
tested for their relevance in docking. Two different
approaches were done. On the one hand it was attempted
to use these properties to detect the interface region of
proteins before the docking procedure [16,19-26] and on
the other hand the differences of the amino acids were
used to identify the near-native structure of a complex
from all those structures showing a high geometrical cor-
relation [27].

However, some of the properties lead to controversial rat-
ings of the amino acids. For example for methionine there
is a high propensity to be in the interface of a complex
[18], which would lead to an assignment of an important
role for that amino acid, but at the same time methionine
has a large side chain which might cause clashes in rigid
body docking even for the near-native complex which
should not be 'punished'.

The flexibility of the amino acid side chains is the main
reason for the unsatisfactory results of unbound docking.
In the past it was tried to truncate or collapse very flexible
side chains like arginine, lysine, asparagine, glutamine
and methionine by assigning low numerical values to the
cells representing their side chains [10,28,29]. Other
approaches to treat the flexibility of side-chains include
docking with different copies of the unbound subunits
[30], or the usage of rotamer libraries in the refinement
step.

Since it is nearly impossible to decide which property and
which scale is the best one in each single case, we opti-
mised amino acid specific weighting factors for rigid body

The proteins are mapped on a grid (A); In the common rep-resentation there is a differentiation between cells represent-ing the surface (S) and the interior (I) (B), which results in the distribution of values as shown in CFigure 1
The proteins are mapped on a grid (A); In the common rep-
resentation there is a differentiation between cells represent-
ing the surface (S) and the interior (I) (B), which results in 
the distribution of values as shown in C. Since each cell also 
represents the underlying amino acid (D), in the new repre-
sentation (E) as it is used here each value is composed of an 
numerical value for surface and interior (S/I) and a weighting 
factor for each amino acid (WAA).
Page 2 of 11
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:344 http://www.biomedcentral.com/1471-2105/7/344
unbound-unbound protein-protein docking. Therefore
the grid representation of the proteins was extended. The
new representation takes the amino acids into account
which are represented by the cells. The values assigned to
each cell, are composed of a value for surface or interior of
the protein and a weighting factor in dependence of the
amino acid (Figure 1D–E). These weighting factors were
specifically optimised for three different classes of com-
plexes following the classification of the dataset[31]:
enzyme-inhibitor/substrate, antibody-antigen and others.

There are two different possible methods to make use of
this kind of representation of the proteins. On the one
hand these values can be assigned to the cells before the
calculation of the geometric correlation. Thereby an
improvement of prediction accuracy might be achieved
without an extension of the required computation time,
but the chosen parameters must be capable of differenti-
ating between clashing complex structures and such
which have primarily surface-surface contacts. On the
other hand this protein representation can be used to
rerank the structures suggested by the calculation of the
geometric correlation. This publication is focussed on the
second approach.

The aim of our current work is to find new and independ-
ent criteria for the reranking of proposed complex struc-
tures, which describe other properties of near-native
complex structures as our previously published [27] post-
filter. An integration of the different approaches described
in the literature requires a larger programming exercise
but is expecting to give further improvement.

Results
Obtained parameter
The weighting factor for each amino acid and the esti-
mated value for all cells of the interior of the receptor
obtained by the optimisation are shown for the three dif-
ferent complex classes in Table 1.

There are two groups of amino acids where the obtained
parameters are comparable between all three complex
classes. On the one hand there is a group consisting of aro-
matic and hydrophobic amino acids (TRP, TYR, PHE, ILE,
VAL) which got high weighting factors for all three com-
plex classes. On the other hand very low parameter were
obtained for the amino acids with long and flexible side
chains (ARG, GLN, GLU, LYS) and to such amino acids
having a very low propensity to be in the interface (ASP,
SER, PRO) [18].

For the other amino acids the optimised values differ for
the three complex classes. While ALA, ASN and HIS play a
major role in finding near-native structures for antibody-
antigen complexes, especially MET got a high value for

enzyme-inhibitor complexes. For LEU and THR, the opti-
misation yielded medium values for enzyme-inhibitor
complexes and for other complexes but a weighting factor
of about null was obtained for the antibody-antigen com-
plexes.

The optimised parameters are specific for the complex
class they have been optimised for. The percentage of
near-native structures within the top 10% of the reranked
output is about 10–15% higher when the parameters
obtained from the same complex class are applied as com-
pared to the application of the other parameters.

The values optimised for the interior of the receptor (I1)
seriously differ for the three classes. For enzyme inhibitor
complexes the value is 8.34, for antibody-antigen com-
plexes -3.45 and for the other complexes 0.15.

Validation
For each complex the geometric correlation score was
recalculated using the optimised parameter. For most of
the complexes a massive enrichment of low RMS-solu-
tions on the lower ranks was achieved. In figure 2 this
enrichment is shown for [PDB:1CGI], [PDB:1BVN] and
for [PDB:1TMQ]. It is shown how many percent of the
dataset must be evaluated until which percent value of all
near-native (RMSiCα<5Å) solutions are found. The red
line shows the result obtained by the recalculation using
the optimised parameter and the black line shows the
results before the optimisation.

In figure 3 the distribution of the calculated scores is
shown. In 3A the calculated geometric correlation com-
pared to the RMS as it is calculated without the optimised
amino acid dependent weighting factors is shown, whilst
part B shows the same distribution after the optimisation.

The overall improvement of prediction quality is shown
in figure 4. It is shown for how many percent of all tested
complexes from the ZDOCK2.0 benchmark a good solu-
tion (RMSiCα<5Å) was found within the top ranks.

With non-optimised parameters only 32% of the evalu-
ated enzyme-inhibitor complexes had a solution with an
RMS below 5Å within the first 100 ranks. After the optimi-
sation 68% of the complexes do have a good solution
within the top 100. For the antibody-antigen complexes
the percentage of complexes for which one near- native
structure can be found within the top 5% of the ranked
predictions increased from 40% to 68% and for the other
complexes from 31% to 50%. For the enzyme-inhibitor
complexes the percentage of all near-native complexes
within the top 5% increased from 13% to 34%, for the
antibody-antigen complexes from 8% to 59% and for the
other complexes from 6% to 26%.
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The application of the optimised weighting factors is espe-
cially well suited to recognize those solutions with a very
low RMS. Figure 5 shows the enrichment of near-native
structures on the lower ranks for structures with
RMSiCα<5Å and RMSiCα<2.5Å. For the enzyme-inhibi-
tor complexes more than 90% of all solutions with
RMSiCα<2.5Å can be found within the top 10%.

For validation of the optimisation the obtained weighting
factors were applied to 17 enzyme-inhibitor, to 4 anti-
body-antigen and to 4 other complexes from the litera-
ture, which are not part of the ZDOCK2 benchmark.
Figure 6 shows the improvement achieved for these test-
cases and table 2 gives a detailed overview over the effect
of the reranking on the position of the first and the best
near-native structure for each complex.

Enrichment curves for [PDB:1BVN], [PDB:1CGI] and [PDB:1TMQ]Figure 2
Enrichment curves for [PDB:1BVN], [PDB:1CGI] and [PDB:1TMQ]. It is shown how many percent of the dataset 
must be evaluated until which percent value of all near-native (RMSiCα<5Å) are found. (X-axis: Percentage of dataset, Y-axis: 
Percentage of near-native solutions found). The black line shows the results for the ranking due to the 'classical' geometric cor-
relation and the red line is obtained by the recalculation using the optimised values. (100% equal for 1BVN 23 near-native 
structures, for 1CGI 58 and for 1TMQ 15).
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Table 1: Amino acid specific weighting factors. Average optimised parameter for all amino acids obtained from the 5 cross validation 
runs for three different classes of protein complexes.

Amino Acid Antibody/Antigen Enzyme/Inhibitor Others

ALA 2.32 0.68 0.74
ARG 0.00* 1.70 1.09
ASN 5.23 0.49 0.92
ASP 0.00* 0.00* 0.00*
CYS 0.14 1.11 0.18
GLN 0.00* 0.00* 1.06
GLU 0.15 0.00* 0.00*
GLY 2.49 1.47 7.24
HIS 8.74 3.17 0.00*
ILE 6.83 2.30 4.34
LEU 0.02 3.24 4.83
LYS 0.67 0.59 1.29
MET 1.46 9.63 3.90
PHE 4.46 3.14 7.89
PRO 1.98 0.00* 1.13
SER 0.00* 0.00* 0.00*
THR 0.25 2.67 3.08
TRP 4.99 5.19 2.56
TYR 11.64 4.94 8.83
VAL 3.10 2.78 3.02
I1 -3.45 8.34 0.15

* None of these values is exactly 0.0. The optimised weighting factors for these amino acids are between 0.0001 and 0.0008
Page 4 of 11
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:344 http://www.biomedcentral.com/1471-2105/7/344
Discussion
Although the method is not able to reach the ultimate
goal of protein-protein docking, i.e. unambiguously give
the near-native geometries the highest scores the increase
of near-native structures using the optimised amino acid
specific grid values is quite spectacular, especially when
the strict measure of 2.5Å RMS from the native geometry
is used to be classified as correct. More than 90% of all
near-native structures for the enzyme-inhibitor complexes
are found within the 10% of the ranked output after res-
coring with the optimised grid values. For all three com-
plex-classes the number of near-native complex structures
(RMSiCα<5Å) within the top 100 ranks increased by a fac-
tor of 3–5.

In comparison to our previously published results [27],
this filter performs better than the conservation based fil-
ter for those cases, where the conservation based filter was
not able to detect the near-native structures reliably (anti-
body-antigen, several of the enzyme-inhibitor com-
plexes). However, the method described here can not
reach the results, which we derived from the domain
based post-filter. On the other hand the method described
here does not depend on the availability of additional
information like homologous complexes.

The optimised parameters comply partially with known
properties of amino acids in protein complex interfaces.
Amino acids where the optimisation produced very low

weighting factors are likely to produce clashes in unbound
docking especially for the near-native structures. They
would be misleading for the docking of unbound pro-
teins. The lowest values (~0) are assigned to the flexible
polar amino acids as ARG, ASP, GLN, GLU or LYS, which
also have a very low interface propensity [18]. The high
values of the aromatic residues are explainable by their
ability to form π-stacks with their ring-systems and by
their high propensity to be in interface regions, together
with the rigidity of the aromatic ring system.

The weighting factors for the enzyme-inhibitor complexes
correspond to the known interface propensities [18], to
the number of freely rotatable bonds in the side chain and
to the hydrophobicity of the amino acids. The very high
value for methionine can be explained by the high pro-
pensity to be in the interface and the general rareness of
MET on protein surfaces, so that MET gives a strong hint
towards the near-native interface region.

The antibody-antigen factors still comply with the above
mentioned properties, but to a smaller extend as the fac-
tors for the enzyme-inhibitor complexes. Higher values
obtained for ASN and TYR correspond to the described
higher importance of hydrogen bonds in antibody-anti-
gen complexes.

The set of "other" complexes is rather heterogeneous, so
that it is hard to interpretate the optimised values. For

Comparison of the distribution of calculated geometric correlations for a protease/inhibitor example (2SIC) (A) without and (B) with optimised parameterFigure 3
Comparison of the distribution of calculated geometric correlations for a protease/inhibitor example (2SIC) (A) without and 
(B) with optimised parameter. The red line in B is the objective function used for the optimisation procedure. Each black circle 
represents one potential complex structure.
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these complexes the highest values were also obtained for
the apolar, hydrophobic and rigid residues, while for
those with long flexible side chains the optimisation
ended up with values near null.

Since the number of freely rotatable bonds is correlated
with the obtained weighting factors for enzyme-inhibitor
complexes, the method presented here is a computational

rather cheap way to take the flexibility of amino acid side-
chains on the surface of proteins at least partially into
account, which is one of the major problems of unbound
protein docking methods. The method does not attempt
to reproduce the correct conformation of the side chains
in the bound state, but it partially ignores the misleading
aspect of 'wrong' side chain conformations, which are
likely to produce steric clashes even for the near-native

Improvement of prediction quality (ZDOCK 2 benchmark)Figure 4
Improvement of prediction quality (ZDOCK 2 benchmark). The light yellow bars show the percentage of complexes 
for which a near-native solution (RMSiCα<5Å) is found without the optimised weighting factors. The brown bars show the 
results after the application of the weighting factors. (A/B) for enzyme-inhibitor (C) for antibody-antigen and (D) for other 
complexes; (100%: 22 enzyme-inhibitor complexes, 25 antibody-antigen complexes and 22 other complexes); an enrichment of 
complexes with near-native structures on the lower ranks for all complex classes can be seen.
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conformations in rigid body docking. The correct confor-
mation must be obtained by other methods like energy
minimisation procedures.

The method works equally well for complexes classified as
"easy" and "medium difficult" [30,31] and also for some
bound-cases we evaluated the method is able to enrich the
number of near-native structures on the top ranks. This
underlines the ability of the filter to identify near-native
solutions independently from the flexibility by ignoring
clashes of near-native structures.

On the first view the positive value for interior cells of the
receptor from the enzyme-inhibitor complexes is surpris-
ing since in the common Fourier docking procedure these
cells get a negative value assigned. However, it has to be
kept in mind that the values were optimised for usage as a
postfilter, not for the docking process as such. The struc-
tures where the geometrical correlation was recalculated
are only those structures obtained by a standard Fourier
docking process and therefore have only minor clashes
with the interior. All potential complex structures where
both proteins are overlapping were excluded in the first

calculation of the geometric correlation where -6 was used
as a value for the interior cells.

The number of antibody-antigen and of other complexes
(4 each) used for validation is quite low due to the lack of
available literature values. But the enrichments achieved
for the complexes which were also used for the optimisa-
tion, gives reason to optimism that the obtained weight-
ing factors will work for the prediction of new antibody-
antigen and other complexes as they do for the enzyme-
inhibitor complexes.

One of the major advantages of the described method
compared to methods that treat side-chain flexibility
explicitly consists of the fact that it is computationally
much faster.

Conclusion
The method presented here should work with any rigid
body docking system which is based on a grid representa-
tion of the proteins. There are, of course, other criteria –
like electrostatic interactions, size or hydrophobicity of
the interface – that can be used for ranking docking candi-
dates but the work presented here is focused on a rather
simple optimisation of the geometric ranking which inte-
grates the different roles of the different amino acids in
the interface. The weighting obtained by the optimisation
process is partially correlated with different structural
properties of the amino acids and takes therefore several
aspects into account.

As a next step in this work we will try to find atom-specific
weighting factors and combine the method described here
with our previously published postfilters and with a com-
prehensive scoring function (publication in preparation).

Methods
The docking tool
In a first step the geometric correlation for 83 unbound
protein-protein complexes from the Z-Dock 2 benchmark
set[31] was calculated using our docking tool ckordo
[8,12]. Ckordo is a FFT based docking program including
further docking arguments such as hydrophobicity and
electrostatics. For this work we used only the geometric
correlation calculated in Fourier space. The geometric cor-
relation was calculated with a rotation increment of 15°
and a maximum cell size of 1.5Å. For each rotation the
five structures with the highest geometrical correlation
were considered. Since the number of near-native struc-
tures is very low compared to the number of incorrect
ones additional solutions with low RMS-values were pro-
duced by running ckordo for 1000 randomly chosen
angles in the range from -10° to +10° around the correct
rotation. From this run all proposed complex structures
with RMSiCα<5Å were selected. This resulted in up to

Enrichment of near-native structures on the lower ranks for enzyme-inhibitor complexesFigure 5
Enrichment of near-native structures on the lower 
ranks for enzyme-inhibitor complexes. The yellow bars 
show the enrichment for near-native complexes with 
RMSiCα<5Å and the brown boxes with RMSiCα<2.5Å 
(100%: 1956 structures with RMSiCα<5Å and 69 structures 
with RMSiCα<2.5Å).
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Improvement of prediction quality (testcases from literature)Figure 6
Improvement of prediction quality (testcases from literature). The light yellow bars show the percentage of com-
plexes for which a near-native solution (RMSiCα<5Å) is found without the optimised weighting factors. The brown bars show 
the results after the application of the weighting factors. (A) for enzyme-inhibitor (100%: 17 complexes) (C) for antibody-anti-
gen (100%: 4 complexes) and (D) for other complexes (100%: 4 complexes), (B) shows the percentage of near-native struc-
tures found within the top ranks for enzyme-inhibitor complexes (100%: 1956 structures); Also for the complexes which were 
not part of the optimisation procedure a clear enrichment of near-native structures on the lower ranks can be seen.
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4700 additional near-native solutions for each complex,
which were added to the 22,000 structures calculated with
rotational steps of 15°. If the ratio between the number of
near-native solutions towards wrong ones is too low, the
optimisation procedure would not be able to find the
optimal parameters.

For the optimisation process ckordo was modified so that
for each proposed structure the number of contacts of
each amino acid with respect to being surface or interior
was calculated. This results in one 20 × 20 matrix for each
structure for each possible contact type (surface_protein1
× protein2, interior_protein1 × protein2). Furthermore
for each proposed structure the root mean square devia-
tion of the Cα atoms in the interface (RMSiCα) was calcu-
lated, in comparison to the unbound proteins fitted on
the complex. For the RMSD calculation the Cαs were
defined to be part of the interface if at least one atom of

the other protein was within a distance of 10Å. The fitting
of the unbound proteins on the complex was done with
CE [32].

Optimisation
The contact-matrices and the RMS-values for the com-
plexes from the Z-DOCK 2 Benchmark[31] were used for
the optimisation procedure. For each complex class the
optimisation was performed independently. It was evalu-
ated if the optimised parameters yield better results if only
those structures proposed by the docking tool or those
structures and additionally generated near-native complex
structures lead to a better result (where the latter was the
case). The optimisation was done using the nonlinear
minimisation method (nlm()) from the R-package for sta-
tistical computing [33]. The formula which is used for the
calculation of the geometric correlation until now equals

Table 2: Ranks of near-native structures using the optimised weighting factors

First structure with RMS<5Å in the ranking Best structure with RMS<5Å in the ranking

optimised unoptimised optimised unoptimised

Rank RMS Rank RMS Rank RMS Rank RMS

EI
1ACB 3 2.638 19 0.934 91 0.934 19 0.934
1AVW 200 4.864 1024 2.978 2684 1.591 31428 1.591
1BRC 15 4.564 10 4.373 3118 1.019 27685 1.019
1BRS 5 1.966 35 4.685 5 1.966 22544 1.966
1BVN 2332 4.416 116 3.978 4118 1.718 15554 1.718
1CGI 31 4.295 57 4.616 922 1.659 27836 1.659
1CHO 1 2.779 63 0.809 171 0.809 63 0.809
1CSE 4334 4.791 414 3.526 9756 0.614 5831 0.614
1DFJ 532 4.145 6441 4.145 5182 3.869 17621 3.869
1FSS 149 4.098 228 1.621 467 1.092 966 1.092
1MAH 94 2.442 380 4.878 508 1.183 840 1.183
1PPF 9 4.351 37 4.593 242 2.457 23526 2.457
1TGS 2 1.97 59 3.366 848 0.849 169 0.849
1UGH 13 2.672 45 3.031 33 2.023 17059 2.023
2KAI 18 3.959 1 4.873 1387 1.316 28310 1.316
2MTA 374 4.64 110 4.743 3704 1.111 32445 1.111
2PCB 881 4.419 1803 4.419 11627 3.184 26851 3.184
2PCC 2548 4.125 1122 2.885 24009 2.885 1122 2.885
2PTC 20 4.572 558 4.428 8695 1.439 11164 1.439
2SNI 59 3.733 538 4.63 2701 2.814 3803 2.814
OTH
1AVZ 19685 3.964 7706 3.964 20034 3.891 11460 3.891
1BDJ 2216 4.552 7 2.799 39913 1.986 9733 1.986
1L0Y 839 2.271 4103 4.747 19996 1.627 29097 1.627
1WQ1 305 2.756 6 4.75 608 1.711 23213 1.711
AA
1AHW 580 4.766 143 1.943 620 1.07 4722 1.07
1DQJ 1066 3.966 6580 3.966 1066 3.966 6580 3.966
1VFB 323 4.894 3706 4.683 2763 1.481 35146 1.481
1WEJ 304 4.025 11382 4.025 789 0.917 34658 0.917
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F1. For the optimisation procedure the formula was
extended by the weighting factors (F2).

The optimisation itself is a minimisation of the quadratic
error between an objective function and the scores
obtained. In a preliminary step several models such as log-
arithmic and linear scales were evaluated as objective
function using a small subset of the examples. Finally the
best results were obtained for the function shown in Fig-
ure 7. All near-native structures (RMSiCα: 0–5Å) were
assigned a 100 times

F1

geoscore = ∑(P1xP2)

Formula 1: Formula for the calculation of the geometric
score. The values in the overlapping grid cells of protein 1
(P1) and protein 2 (P2) multiplied and summed up.

F2

weighted_geo_score = ∑((WAAxP1)x(WAAxP2))

Formula 2: Formula for the calculation of the geometric
score after inclusion of the amino acid specific weighting
factors. (P1 = cells of protein1, P2 = cells of protein2, WAA
= weighting factor for amino acid)

higher numerical value (10,000) as those showing a RMS
value higher than 10Å. For those structures between near-

native and 'wrong' structures (RMSiCα: 5–10Å) the target
values were calculated by a linear function.

It was evaluated if there is an improvement in prediction
quality when the values for surface and for interior were
included in the optimisation procedure. It turned out that
the best results were achived, when only the value for the
interior of the larger protein – usually the receptor – is
included in the optimisation and the value for the other
protein was kept fixed at the value of 1.

The nonlinear minimisation function of the R-package
[33] uses a Newton-type algorithm [34,35]. This method
allows finding a minimum of a function by numerical
computation of the derivatives. As a convergence criteria
for the optimisation the default parameter were used.

Validation
Due to hardware limits it was impossible to use all avail-
able structures for the optimisation, so that subsets had to
be chosen. To prove that several different subsets lead to
similar results a 5-fold cross validation procedure was per-
formed. Therefore the different complexes from each class
were grouped randomly in 5 groups. The optimisation
was run 5 times each time leaving out one of the groups
and optimising with the remaining four. The final results
were calculated using the average value of the five optimi-
sations.

Furthermore the effect of the obtained parameters was
evaluated on 17 enzyme-inhibitor, 4 antibody-antigen
and 4 other complexes from literature[36], which were
not part of the training. The docking procedure for these
testcases was run with a rotation increment of 12° leading
to 43080 potential structures for each complex. The eval-
uation was done with respect to the number of complexes
which do have a near-native solution within the top ranks
and to the number of near-native structures on the first
ranks.
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