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An efficient method for the design of nonrecursive digital filters using the ultraspherical window function is proposed. Economies
in computation are achieved in two ways. First, through an efficient formulation of the window coefficients, the amount of compu-
tation required is reduced to a small fraction of that required by standard methods. Second, the filter length and the independent
window parameters that would be required to achieve prescribed specifications in lowpass, highpass, bandpass, and bandstop
filters as well as in digital differentiators and Hilbert transformers are efficiently determined through empirical formulas. Exper-
imental results demonstrate that in many cases the ultraspherical window yields a lower-order filter relative to designs obtained
using windows like the Kaiser, Dolph-Chebyshev, and Saramäki windows. Alternatively, for a fixed filter length, the ultraspherical
window yields reduced passband ripple and increased stopband attenuation relative to those produced when using the alternative
windows.

Keywords and phrases: nonrecursive digital filters, FIR filters, window functions, ultraspherical window, digital differentiators,
Hilbert transformers.

1. INTRODUCTION

Window functions (or windows for short) are time-domain
weighting functions that have found widespread usage in
signal processing applications such as power spectral esti-
mation, beamforming, and digital filter design. Windows
can be categorized as fixed or adjustable [1]. Fixed windows
have only one independent parameter, namely, the window
length which controls the window’s mainlobe width. Ad-
justable windows have two or more independent parameters,
namely, the window length, as in fixed windows, and one
or more additional parameters that can control other win-
dow characteristics. Each of the adjustable windows has been
derived by exploiting certain characteristics of well-known
polynomials to satisfy a particular criterion. For instance, the
Kaiser and Saramäki windows [2, 3] have two parameters
and yield close approximations to discrete prolate functions,
which havemaximum energy concentration in the mainlobe.
The Dolph-Chebyshev window [4] has two parameters and
produces the minimummainlobe width for a specifiedmaxi-
mum sidelobe amplitude. The Kaiser, Saramäki, and Dolph-
Chebyshev windows can control the amplitude of the side-
lobes relative to that of the mainlobe. The ultraspherical

window [5, 6, 7, 8] has three parameters and through the
proper choice of these parameters, the amplitude of the side-
lobes relative to that of the mainlobe can be controlled as
in the Kaiser, Saramäki, and Dolph-Chebyshev windows,
and, in addition, different sidelobe patterns can be achieved.
With the judicious selection of the ultraspherical window’s
additional parameter, a unique family of sidelobe patterns,
which includes both the Dolph-Chebyshev and Saramäki
patterns as special cases, can be readily obtained by gener-
ating the window’s coefficients through a closed-form so-
lution [5, 7]. Furthermore, a comparison with other win-
dows has shown that a difference exists in performance be-
tween the ultraspherical and Kaiser windows, which depends
critically on the set of prescribed spectral characteristics [8].
In [6] Deczky used the ultraspherical window to provide a
proof-of-concept example for nonrecursive filter design. In
[9] Johnson and Johnson used ultraspherical polynomials for
the approximation problem in analog filter design.

The windowmethod for nonrecursive digital filter design
is based largely on closed-form solutions [10]. As a result, it
is straightforward to apply and entails a relatively insignif-
icant amount of computation. Unfortunately, the window
method usually yields suboptimal designs whereby the filter
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order required to satisfy a given set of specifications is not the
lowest that can be achieved. On the other hand, multivariable
optimization algorithms for nonrecursive digital-filter de-
sign, for example, the weighted-Chebyshev method of Parks
and McClellan [11, 12] and the more recent generalized Re-
mez method of Shpak and Antoniou [13] can yield opti-
mal designs with respect to some error criterion; however,
these algorithms generally require a large amount of compu-
tation and are, therefore, unsuitable for real- or quasi-real-
time applications like portable multimedia devices where on-
the-fly designs that adapt to changing environmental con-
ditions such as battery power and quality-of-service issues
are required. Simple signal processing algorithms and struc-
tures [14] can address these problems by trading between
the accuracy of results and the utilization of implementa-
tion resources. In [15, 16] a window-based algorithmic ap-
proach to the design of low-power frequency-selective digital
filters is presented whereby reduction of the average power
consumption of the filter is achieved in speech processing
and high-fidelity hardware by dynamically varying the filter
length based on signal statistics. In applications such as these,
flexible windows that would satisfy prescribed filter specifi-
cations and whose coefficients can be generated quickly are
highly desirable.

In this paper, an efficient formulation for generating the
coefficients of the ultraspherical window is proposed and
its application for the design of nonrecursive digital filters,
digital differentiators, and Hilbert transformers that would
satisfy prescribed specifications is demonstrated. The paper
is structured as follows. Section 2 introduces relevant in-
formation concerning the ultraspherical window. Section 3
describes an efficient formulation for generating the coeffi-
cients of the ultraspherical window. Section 4 deals with the
design of nonrecursive digital filters using the ultraspheri-
cal window and provides comparisons with designs based on
other windows as well as designs based on the Remez algo-
rithm. Section 5 deals with the design of digital differentia-
tors and Hilbert transformers that would satisfy prescribed
specifications. Section 6 provides design examples. Section 7
provides concluding remarks.

2. THE ULTRASPHERICALWINDOW

The coefficients of a right-sided ultraspherical window can
be calculated explicitly as [5, 7]

w(nT) = A

p − n

(
µ + p − n− 1
p − n− 1

)

·
n∑

m=0

(
µ+n−1
n−m

)(
p−n
m

)
Bm for n = 0, 1, . . . ,N−1,
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B = 1− x−2µ , (4)

p = N − 1, (5)

where N may be odd or even. In (1), µ, xµ, and N are in-
dependent parameters and w[(N − n − 1)T] = w(nT), that
is, the window is symmetrical. A normalized window is ob-
tained as ŵ(nT) = w(nT)/w(LT) where

L =


N − 1
2

for odd N ,

N − 2
2

for even N.

(6)

The independent parameter xµ can be expressed as

xµ = x
(µ)
N−1

cos(βπ/N)
, (7)

where β ≥ 1 and x
(µ)
N−1 is the largest zero of the ultraspher-

ical polynomial C
µ
N−1(x) [17], which can be found using

Algorithm 1 in [8]. The new independent parameter β in (7)
is the so-called shape parameter and can be used to set the
null-to-null width of a window to 4βπ/N ,that is, β times that
of the rectangular window [3].

The Dolph-Chebyshev and Saramäki windows are spe-
cial cases of the ultraspherical window and can be obtained
by letting µ = 0 and 1, respectively, in (1). Another special
case of interest is when µ = 1/2, which produces windows
based on the Legendre polynomial. Figure 1 shows the nor-
malized amplitude spectrum for the ultraspherical window
of length N = 51 designed with β = 2 and µ = −0.5, 0,
and 1. A detailed description of the ultraspherical window’s
properties and its relation to other windows can be found in
[8].

3. EFFICIENT FORMULATION FOR
WINDOWCOEFFICIENTS

A reduction in the computational complexity associated with
the windowmethod can be achieved by reducing the amount
of computation required to generate the window coefficients.
For the ultraspherical window, the primary computational
bottleneck in (1) is due to the recursive evaluation of the bi-
nomial coefficients using (2). In its current form, (1) requires
the evaluation of (L+1)+

∑L
n=0
∑n

m=0 2 = L2+4L+3 binomial
coefficients where L is given by (6). By exploiting certain re-
dundancies in (1), the number of binomial-coefficient eval-
uations can be reduced quite significantly and the computa-
tional complexity associated with the ultraspherical window
can be reduced. To begin with, the first binomial-coefficient
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Figure 1: Normalized amplitude spectrum for the ultraspherical
window of length N = 51 designed with β = 2 and µ = −0.5
(dashed line), 0 (solid line), and 1 (dashed-dotted line).

expression in (1) can be expressed as

v0(n) =
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µ + p − n− 1
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)
=
(
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p0 − n

)
, (8)

where α0 = µ+ p− 1 and p0 = p− 1. Using the identity [17](
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which leads to the recurrence relationships

v0(0) =
(
α0
p0

)
, v0(n) = p0 − n + 1

α0 − n + 1
v0(n− 1) for n ≥ 1.

(11)

In this formulation, the evaluation of one binomial coeffi-
cient replaces the evaluation of L + 1 binomial coefficients
thereby providing a savings of L binomial-coefficient evalua-
tions.

Next, we express the second binomial-coefficient expres-
sion in (1) as
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)
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This analysis leads to the recurrence relationships

v1(n,n) = 1, v1(n,m) = µ+m
n−mv1(n,m+1) for 0 ≤ m<n.

(15)

This formulation is equivalent to the evaluation of L bino-
mial coefficients replacing the evaluation requirements of∑L

n=0
∑n

m=0 1 = (1/2)L2 + (3/2)L + 1 binomial coefficients,
which would result in a savings of (1/2)L2 + (1/2)L + 1
binomial-coefficient evaluations.

Finally, we express the third binomial-coefficient expres-
sion in (1) as
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)
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where α2 = p−n. Observing that v2(n, 0) =
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This leads to the recurrence relationships

v2(n, 0) = 1,

v2(n,m) = α2 −m + 1
m

v2(n,m− 1) for 1 ≤ m ≤ n.
(18)

This formulation is equivalent to the evaluation of L bino-
mial coefficients replacing the evaluation of

∑L
n=0
∑n

m=0 1 =
(1/2)L2 + (3/2)L + 1 binomial coefficients, which pro-
vides a savings of (1/2)L2 + (1/2)L + 1 binomial-coefficient
evaluations.
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Figure 2: Computation time associated with (1) (squares), (19)
(triangles), and for the Kaiser window (circles) versus the window
length N .

Using the above expressions, the coefficients of the right-
sided ultraspherical window of length N can be calculated
using the formulation

w(nT) = A

p − n
v0(n)

·
n∑

m=0
v1(n,m)v2(n,m)Bm for n = 0, 1, . . . ,N − 1,

(19)

where v0(n), v1(n,m), and v2(n,m) are calculated using the
recurrence relationships provided by (11), (15), and (18), re-
spectively, and A, B, and p are given by (3), (4), and (5),
respectively.1 This method requires the recursive evaluation
of 2L + 1 binomial coefficients, which constitutes a compu-
tational complexity of O(N) as compared with the evalua-
tion of L2 + 4L + 3 binomial coefficients required by (1),
which constitutes a computational complexity of O(N2). In
this way, an overall savings of L2 +2L+2 binomial-coefficient
evaluations can be achieved. Figure 2 shows the computation
time required to evaluate the coefficients of the ultraspheri-
cal window using (1) and (19) versus the window length.2

The time to compute the coefficients of the Kaiser window is
included for comparison. The zeroth-order modified Bessel
function of the first kind I0(x) was evaluated to an accuracy
of ε = 10−10. As can be seen, the new formulation given by
(19) provides a substantial computational savings over both
the original formulation given by (1) and the formulation for
generating the coefficients of the Kaiser window.

1An efficient MATLAB program for the computation of the window co-
efficients can be obtained from the authors.

2The computation time was measured using the MATLAB stopwatch
commands tic and toc which return the total CPU time used to execute the
code between the two commands.

4. NONRECURSIVE DIGITAL FILTER DESIGN

The window method produces filters with a symmetrical
impulse response, thereby achieving constant group delay
and filter realizations with a reduced number of multipli-
cations [10]. Good comparisons that contrast various filters
and their attributes can be found in [10, 18]. In the win-
dow method, an idealized frequency response is assumed
and upon the application of the Fourier series, an infinite-
duration impulse response is obtained. For a lowpass filter,
we have

Hid
(
e jωT

) =
1 for |ω| ≤ ωc,

0 for ωc < |ω| ≤ ωs

2
,

(20)

where ωc and ωs are the cutoff and sampling frequencies,
respectively. The infinite-duration impulse response is ob-
tained as

hid(nT) =


ωc

π
for n = 0,

1
nπ

sinωcnT for n �= 0,
(21)

where −∞ ≤ n ≤ ∞. The design of highpass, bandpass, and
bandstop filters is discussed later.

A realizable filter is obtained by multiplying the infinite-
duration impulse response by the window function, that is,
by letting

h0(nT) = w(nT)hid(nT), (22)

where w(nT) is a window function of length N = 2M + 1.
If N is odd, M is an integer and |n| = {0, 1, 2, . . . ,M} is
used for both the window and impulse response. If N is
even, M is a fraction and |n| = {0.5, 1.5, 2.5, . . . ,M} is used
[10]. Odd-length nonrecursive filters are assumed through-
out this paper because the frequency response of an even-
length symmetric nonrecursive filter is 0 at the Nyquist fre-
quency, which is inappropriate for highpass and bandstop
filters. However, this property of even-length nonrecursive
filters can be used for the design of Hilbert transformers as
discussed in Section 5.2. A causal filter can be obtained by
delaying the impulse response by a periodMT , that is,

h(nT) = h0
[
(n−M)T

]
for 0 ≤ n ≤ N − 1. (23)

The frequency response of the filter is given by the con-
volution of the idealized frequency response and the spectral
representation of the window, that is,

H
(
e jωT

) = 1
ωs

∫ ωs/2

−ωs/2
Hid
(
e jθT

)
W
(
e j(ω−θ)T

)
dθ, (24)

where

W
(
e jωT

) = M∑
n=−M

w(nT)e− jωT . (25)
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4.1. Choice of window parameters
A nonrecursive (noncausal) lowpass filter is typically re-
quired to satisfy the equations

1− δp ≤ H
(
e jωT

) ≤ 1 + δp for |ω| ∈ [0,ωp
]
,

−δa ≤ H
(
e jωT

) ≤ δa for |ω| ∈
[
ωa,

ωs

2

]
,

(26)

where δp and δa are the passband and stopband ripples and
ωp and ωa are the passband and stopband edge frequencies,
respectively. In nonrecursive filters designed using the win-
dow method, the passband ripple turns out to be approxi-
mately equal to the stopband ripple, that is, δp ≈ δa. There-
fore, one can design a filter that has a prescribed passband
ripple or a prescribed stopband ripple. If the specifications
call for a maximum passband ripple Ap and a minimum
stopband attenuation Aa, both specified in dB, then it can
easily be shown that [10]

δp = 100.05Ap − 1
100.05Ap + 1

, δa = 10−0.05Aa . (27)

By designing a filter on the basis of

δ = min
(
δp, δa

)
, (28)

then if δ = δp, a filter will be obtained that has a passband
ripple which is equal to Ap dB and a minimum stopband at-
tenuation which is greater than Aa dB; and if δ = δa, a filter
will be obtained that has a minimum stopband attenuation
which is equal to Aa dB and a passband ripple which is less
than Ap dB.

The ultraspherical window parameters µ, xµ, andN must
be chosen such that the filter specifications are satisfied
with the lowest possible filter length N . For a given set of
prescribed specifications, the optimum values of µ and xµ
could be determined through a trial-and-error approach but
such an approach would be laborious and time-consuming.
Fortunately, a fairly general method that parallels Kaiser’s
method [2] can be used to design filters that satisfy arbi-
trary prescribed filter specifications. Through extensive ex-
perimentation, we found out that parameters µ and xµ con-
trol the passband and stopband ripples and, consequently,
the actual stopband attenuation, namely,

Aa = −20 log10(δ). (29)

Strictly speaking, parameter xµ alters the window’s ripple ra-
tio at the expense of the null-to-null width, in effect, pro-
viding a tradeoff between the two just like parameter α
in the Kaiser window [2] and parameter x0 in the Dolph-
Chebyshev window [4]. Thus xµ has a strong influence on the
stopband attenuation. On the other hand, parameter µ con-
trols the window’s sidelobe pattern which affects the stop-
band attenuation but not to the extent that xµ does. This
property is observed in Figure 1 where windows with µ = 0
and 1 yield ripple ratios of −45.84 and −39.85 dB, respec-
tively. On the other hand, the filter length N controls the
transition bandwidth of the filter, namely,

Bt = ωa − ωp (30)
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Figure 3: Stopband attenuation versus D for filters designed using
ultraspherical windows with µ = 0 (dash-dotted line), 0.4 (dashed
line), 0.6 (dotted line), and 1 (solid line) for the filter design param-
eters N = 127, ωc = 0.4π rad/s, and ωs = 2π rad/s.

but has little effect on the stopband attenuation. Conse-
quently, the required value of N is dependent on parameter
µ while being relatively independent of parameter xµ.

The value of parameter µ that minimizes the filter length
for a set of prescribed specifications can be determined by
comparing the performance of filters designed using the ul-
traspherical windowwith varying values of the adjustable pa-
rameters for a fixed filter length and cutoff frequency as in
[3]. The transition bandwidth is measured from the result-
ing filter and used to calculate the performance measure

D = Bt(N − 1)
ωs

(31)

which is a normalized transition bandwidth that is approx-
imately independent of the filter length [2, 3, 19]. Figure 3
shows plots of the stopband attenuation versus D for filters
designed using the ultraspherical window with µ = 0, 0.4,
0.6, and 1. As can be seen, the filter performance depends
critically on the choice of parameter µ. In addition, we note
that there is no unique fixed value of µ that yields minimum
stopband attenuation, that is, the optimal value of µ changes
with D. As such, it is possible to select an optimal value of µ
that minimizes the filter length for a set of prescribed speci-
fications. The value of µ that minimizes the filter length was
found by calculating the value of µ that maximizes the stop-
band attenuation for a given normalized transition band-
width D. Through curve fitting, an empirical formula for the
optimal µ was derived as

µ = −1.721×10−5A2
a+6.721×10−3Aa+1.897×10−1. (32)

This estimate provides relatively accurate predictions for µ
for most practical purposes, that is, it holds true for low as
well as high values of N .
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Figure 4: Parameter β versus stopband attenuation for filters de-
signed using ultraspherical windows with µ = 0 (dash-dotted line),
0.4 (dashed line), 0.6 (dotted line), and 1 (solid line) for the filter
design parameters N = 127, ωc = 0.4π rad/s, and ωs = 2π rad/s.

The minimum filter length required to achieve a desired
stopband attenuation and transition bandwidth can be deter-
mined as the smallest odd integer satisfying the inequality [2]

N ≥ Dωs

Bt
+ 1. (33)

From (33) it becomes clear that N can be predicted by ob-
taining an accurate approximation for D. As can be observed
in Figure 3, D is influenced by both the stopband attenua-
tion and the parameter µ. Through curve fitting, an empiri-
cal formula was deduced for D corresponding to the value of
µ given by (32) as

D =



4.645× 10−5A2
a + 6.216× 10−2Aa

− 4.818× 10−1 for Aa ≤ 80,

1.710× 10−5A2
a + 7.089× 10−2Aa

− 8.937× 10−1 for Aa > 80.

(34)

The final window parameter xµ provides a trade-off be-
tween the stopband attenuation and the transition band-
width of the filter and can be determined using (7). It is clear
that parameter xµ can be predicted by obtaining an approx-
imation for parameter β. Figure 4 shows plots of parameter
β versus stopband attenuation for filters designed using the
ultraspherical window with µ = 0, 0.4, 0.6, and 1. As can
be seen, β varies significantly depending on the choice of
the stopband attenuation and parameter µ. Through curve
fitting, an empirical formula was derived for parameter β,

Table 1: Model coefficients for parameter D.

µ a b c

0.0 −4.198E−5 7.784E−2 −7.778E−1
0.1 −2.961E−5 7.574E−2 −7.659E−1
0.2 −1.747E−5 7.348E−2 −7.369E−1
0.3 −5.808E−6 7.109E−2 −6.924E−1
0.4 6.462E−6 6.844E−2 −6.266E−1
0.5 3.221E−5 6.408E−2 −5.048E−1
0.6 6.111E−5 5.957E−2 −3.733E−1
0.7 7.789E−5 5.736E−2 −3.061E−1
0.8 6.328E−5 5.975E−2 −3.531E−1
0.9 3.620E−5 6.391E−2 −4.377E−1
1.0 1.532E−5 6.717E−2 −4.974E−1

which corresponds to the value of µ given by (32), as

β =



4.024× 10−5A2
a + 2.423× 10−2Aa

+ 3.574× 10−1 for Aa ≤ 60

7.303× 10−5A2
a + 2.079× 10−2Aa

+ 4.447× 10−1 for 60 < Aa ≤ 120

6.733× 10−6A2
a + 3.337× 10−2Aa

− 1.192× 10−1 for 120 < Aa ≤ 180.

(35)

Equations (32), (33), (34), and (35) provide a closed-
form Kaiser-like method for achieving prescribed specifi-
cations while minimizing the filter length N through the
appropriate selection of the window parameters. However,
for some applications one may be willing to increase N to
achieve different frequency-selectivity characteristics. For in-
stance, increased stopband rolloff, that is, increased suppres-
sion of stopband energy furthest from the transition band-
width (see [20]), can be achieved by increasing parameter µ
but this has the effect of decreasing the stopband attenuation.
Thus to achieve the same stopband attenuation, N must be
increased. To accommodate these scenarios, estimates for D
and β were obtained as

D = aA2
a + bAa + c,

β =
a1A2

a + b1Aa + c1 for Aa ≤ 60,

a2A2
a + b2Aa + c2 for Aa > 60

(36)

for the values µ = {0, 0.1, 0.2, . . . , 1.0}, where the model coef-
ficients are given in Tables 1 and 2, respectively. The estimate
for D should be used in conjunction with (33) to predict the
required value of N for the particular selection of µ and a set
of prescribed filter specifications. Estimates for D and β that
correspond to values of µ in the range [0, 1] that are not in-
cluded in Tables 1 and 2 can be obtained using cubic spline
interpolation, where (µi)n1 = {0, 0.1, 0.2, . . . , 1.0} are the ab-
scissa values and (Di)n1 and (βi)n1 are their corresponding or-
dinate values (see [21, Chapter 7]). This window-parameter
alteration technique can provide designers with a simple ap-
proach for tailoring a filter’s frequency selectivity for a par-
ticular application while still achieving prescribed specifica-
tions.
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Table 2: Model coefficients for parameter β.

µ a1 b1 c1 a2 b2 c2

0.0 7.337E−5 2.533E−2 3.404E−1 1.534E−5 3.183E−2 1.585E−1
0.1 7.895E−5 2.430E−2 3.401E−1 1.680E−5 3.142E−2 1.357E−1
0.2 8.930E−5 2.265E−2 3.645E−1 1.811E−5 3.094E−2 1.233E−1
0.3 1.126E−4 1.971E−2 4.261E−1 1.847E−5 3.055E−2 1.126E−1
0.4 1.240E−4 1.774E−2 4.779E−1 2.434E−5 2.912E−2 1.535E−1
0.5 1.265E−4 1.656E−2 5.203E−1 5.085E−5 2.439E−2 3.260E−1
0.6 1.134E−4 1.690E−2 5.359E−1 7.947E−5 1.956E−2 5.033E−1
0.7 8.981E−5 1.845E−2 5.281E−1 7.299E−5 2.120E−2 4.171E−1
0.8 6.355E−5 2.070E−2 5.033E−1 3.755E−5 2.748E−2 1.763E−1
0.9 8.045E−5 1.987E−2 5.308E−1 2.149E−5 2.983E−2 1.373E−1
1.0 9.410E−5 1.925E−2 5.550E−1 9.433E−6 3.158E−2 1.144E−1

4.2. Design algorithm

Based on the findings of the previous section, a lowpass non-
recursive filter that would satisfy the specifications

(i) passband edge: ωp,
(ii) stopband edge: ωa,
(iii) passband ripple: Ap,
(iv) stopband ripple: Aa,
(v) sampling frequency: ωs

can be designed using Algorithm 1.

4.3. Comparisonwith other windows

The performance of different windows was compared by de-
signing filters for fixed values of N and ωc [3]. The transition
bandwidth was measured for the resulting filters and used
to calculate D using (31). Figure 5 shows plots of the stop-
band attenuation versusD for N = 127, ωc = 0.4π rad/s, and
ωs = 2π rad/s for a variety of fixed and adjustable windows.
Expressions for these windows can be found either in [10] or
[22], while the Nuttall window is described in [23]. For the
adjustable windows (Kaiser, Dolph-Chebyshev, Saramäki, ul-
traspherical, and Gaussian windows), a number of filters
were designed by altering the independent window param-
eter. As can be seen, the ultraspherical window offers better
performance than the Kaiser, Dolph-Chebyshev, Saramäki,
and Gaussian windows achieving an average increase in
the stopband attenuation of 2.48 dB relative to the Kaiser
window, 4.29 dB relative to the Dolph-Chebyshev window,
and 2.21 dB relative to the Saramäki window. The Gaussian
window provides much poorer results than the other ad-
justable windows. For the sake of comparison, equiripple de-
signs based on the weighted-Chebyshev method of Parks-
McClellan [11] were also carried out assuming that δp = δa.
The weighted-Chebyshev method increases the stopband at-
tenuation by about 2.93 dB on the average but this is to be
expected since the Remez algorithm yields designs that are
L∞ optimal.

The performance of different windows was also com-
pared by finding the required filter length to achieve a set
of prescribed specifications. Figure 6 shows plots of the ac-
tual stopband attenuations achieved for a fixed transition

Step 1: Input ωp, ωa, Ap, Aa, and ωs. Find the “design” δ
using (28) and then update Aa using (29).

Step 2: Calculate the window parameter µ using (32).
Step 3: Calculate the filter length N using (33) in

conjunction with (30) and (34). Round N up to
the nearest odd integer.

Step 4: Calculate the window parameter xµ using (7) in
conjunction with (35) and the method

described in [8] for calculating x
(µ)
N−1.

Step 5: With µ, xµ, and N known, the coefficients of the
ultraspherical window can be generated from
(19).

Step 6: Calculate the relevant terms of the
infinite-duration impulse response using (21)
with ωc = (ωp + ωa)/2.

Step 7: Obtain the noncausal finite-duration impulse
response using (22).

Step 8: Obtain the causal design using (23).
Step 9: Check the design obtained to ensure that the

filter satisfies the prescribed specifications. If it
does not, increase N by 2 and go to Step 4.

Algorithm 1: Lowpass filter design using the ultraspherical win-
dow.

bandwidth of Bt = 0.2 rad/s and filter length N for low-
pass filters designed using the Kaiser, Dolph-Chebyshev, and
ultraspherical windows. Results for the Saramäki window
have been omitted as they are very similar to those of the
Kaiser window. The filters were designed to achieve the tran-
sition bandwidth Bt = 0.2 rad/s to a high degree of preci-
sion by fine-tuning the independent window parameter us-
ing optimization techniques. As can be seen, for a given filter
length, the ultraspherical window increases the stopband at-
tenuation relative to the Kaiser and Dolph-Chebyshev win-
dows achieving on the average an increase of 2.61 dB rela-
tive to the Kaiser window and 4.49 dB relative to the Dolph-
Chebyshev window. Alternatively, for prescribed specifica-
tions, the ultraspherical window yields lower-order filters
than the Kaiser or Dolph-Chebyshev windows. On the other
hand, the weighted-Chebyshev method increases the stop-
band attenuation relative to the ultraspherical window by
about 2.76 dB on the average.
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Figure 5: Stopband attenuation versus D for filters designed using
various windows with N = 127 and ωc = 0.4π rads/s. Results for
equiripple filters of the same length with δp = δa are included for
comparison.

4.4. Highpass, bandpass, and bandstop filters

The above design method can be readily extended to the de-
sign of highpass, bandpass, and bandstop filters by follow-
ing the procedure of [10]. For instance, the specifications for
bandstop filters assume the form

1− δp ≤ H
(
e jωT

) ≤ 1 + δp for |ω| ∈ [0,ωp1
]
,

−δa ≤ H
(
e jωT

) ≤ δa for |ω| ∈ [ωa1,ωa2
]
,

1− δp ≤ H
(
e jωT

) ≤ 1 + δp for |ω| ∈
[
ωp2,

ωs

2

]
.

(37)

The ideal frequency response is taken as

Hid
(
e jωT

) =

1 for 0 ≤ |ω| < ωc1,

0 for ωc1 ≤ |ω| ≤ ωc2,

1 for ωc2 < |ω| ≤ ωs

2

(38)

with

ωc1 = ωp1 +
Bt

2
, ωc2 = ωp2 − Bt

2
, (39)

where the design is based on the narrower of the two transi-
tion bandwidths, that is,

Bt = min
[(
ωa1 − ωp1

)
,
(
ωp2 − ωa2

)]
. (40)
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Figure 6: Actual stopband attenuation Aa achieved by filters de-
signed with length N and transition bandwidth Bt = 0.2 rad/s.

Straightforward analysis gives the infinite-duration impulse
response as

hid(nT) =


1−

(
ωc2 − ωc1

)
π

for n = 0,

sin
(
ωc1nT

)− sin
(
ωc2nT

)
nπ

for n �= 0.
(41)

Using similar modifications [10], Algorithm 1 can be readily
extended to the design of highpass and bandpass filters as
well as multiband filters [24].

5. DIGITAL DIFFERENTIATORS AND
HILBERT TRANSFORMERS

One advantage of the window method is the ease with which
it can be applied to a wide range of filter design problems. In
this section, we employ the windowmethod for the design of
digital differentiators and Hilbert transformers.

5.1. Digital differentiators
In signal processing, the need often arises for the derivative
of a signal at some time instant t = t1. For example, if y(nT)
is required to be the first derivative of x(t) at t = nT , we can
write

y(nT) = f
[
x(t)

] = dx(t)
dt

∣∣∣∣
t=nT

. (42)

Digital differentiators (DDs) have an ideal frequency response

H
(
e jωT

) = jω for |ω| ≤ ωs

2
. (43)

In radar and sonar, object tracking can be accomplished us-
ing velocity and accelerationmeasurements calculated by ap-
plying differentiators to position data [25]. Differentiators
are also used in plant control applications such as the PID
controller [26], biomedical and geophysics signal processing,
and image processing systems. Consequently, the design of
differentiators is of considerable importance.
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Table 3: Estimate coefficients for parameter Acor.

Window function a b c

Kaiser 2.422 −13.73 10.86

Dolph-Chebyshev 2.700 −14.23 12.25

Ultraspherical 1.506 −11.10 8.170

Since differentiators amplify high-frequency errors such
as instrumentation measurement errors, bandlimited differ-
entiators are quite useful. Practical bandlimited differentiator
design can be accomplished in terms of a nonrecursive filter
whose frequency response is required to satisfy the equations

j
(
ω− δp

) ≤ H
(
e jωT

) ≤ j
(
ω + δp

)
for |ω| ∈ [0,ωp

]
,

− j
(
δa
) ≤ H

(
e jωT

) ≤ j
(
δa
)

for |ω| ∈
[
ωa,

ωs

2

]
.

(44)

For a bandlimited differentiator, the ideal frequency response
is taken as

Hid
(
e jωT

) =
 jω for |ω| ≤ ωc,

0 for ωc < |ω| ≤ ωs

2

(45)

with ωc = (ωp + ωa)/2. Straightforward analysis gives the
infinite-duration impulse response as

hid(nT) =

ωc cos

(
nωc

)
nπ

− sin
(
nωc

)
n2π

for n �= 0,

0 for n = 0.
(46)

The transition bandwidth in (33) is

Bt = ωa − ωp. (47)

In DDs, the passband ripple and stopband attenuation are
dependant on the cutoff frequency of the differentiator. To
account for this, a correction for Aa of the form

A′a = Aa − Acor (48)

is required where A′a is the corrected design attenuation
whose value replaces Aa in Algorithm 1, Aa is the desired de-
sign attenuation, and Acor is a correction term given by

Acor = aω2
c + bωc + c. (49)

The values of the coefficients a, b, and c for the Kaiser,
Dolph-Chebyshev, and ultraspherical windows are given in
Table 3. Examples of differentiators designed using the win-
dow method and Remez algorithm can be found in [10].

5.2. Hilbert transformers

In some digital signal processing applications, it is neces-
sary to form a special version of the input signal x(nT), des-
ignated x̃(nT), with a frequency spectrum equal to that of
x(nT) for the positive Nyquist interval and zero for the neg-
ative Nyquist interval [10]. Signals of this type are referred to
as analytic signals and can be generated by a complex filter

with frequency response

HA
(
e jωT

) = 1 + jH
(
e jωT

)
, (50)

where H(e jωT) is a Hilbert transformer which has an ideal
frequency response given by

H
(
e jωT

) =

− j for 0 < ω <

ωs

2
,

j for − ωs

2
< ω < 0.

(51)

Filters that perform this operation find application in
frequency-division multiplexing systems using single-
sideband modulation. Hilbert transformers can be designed
in terms of a nonrecursive filter whose frequency response is
required to satisfy the equations

j
(
1−δp

) ≤ H
(
e jωT

) ≤ j
(
1+δp

)
for ω∈

[
ωp1,

ωs

2

]
,

j
(−1−δp) ≤ H

(
e jωT

) ≤ j
(−1+δp) for ω∈

[
−ωs

2
,−ωp1

]
.

(52)

Straightforward analysis gives the infinite-duration impulse
response as

hid(nT) =


2
nπ

sin2
nπ

2
for n �= 0,

0 for n = 0.
(53)

The transition bandwidth in (33) is

Bt = 2ωp1. (54)

Like differentiators, it was found that Hilbert transformers
require a correction for Aa of the form

A′a = Aa + Acor, (55)

where A′a is the corrected design attenuation whose value re-
places Aa in Algorithm 1, Aa is the desired design attenua-
tion in dB, and Acor is a correction term given by Acor =
6.414, 5.236, and 6.457 for the Kaiser, Dolph-Chebyshev, and
ultraspherical windows, respectively.

6. EXAMPLES

Example 1. Design a lowpass filter withωp=1,ωa=1.2 rad/s,
and Aa = 80 dB using the Kaiser, Dolph-Chebyshev, and ul-
traspherical windows.

The adjustable parameters for the Kaiser, Dolph-
Chebyshev, and ultraspherical windows were calculated as
α = 7.857, β = 2.803, and β = 2.574, respectively. The
additional parameter calculated for the ultraspherical win-
dow was µ = 0.6173. The stopband attenuations achieved
were 79.38, 82.27, and 79.36 dB with transition bandwidths
0.1987, 0.1994, and 0.1965 rad/s, respectively.

To achieve the desired specifications more precisely a
simple technique described in [1] can be employed. First, the
actual stopband attenuation of the filter Aar is measured for
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the estimated value of β. Then β is reestimated using an ad-
justed design attenuationA′a = Aa−(Aar−Aa) whereAa is the
desired design stopband attenuation. With this modification,
the recalculated parameters assume the values α = 7.926,
β = 2.725, and β = 2.596, respectively. The stopband at-
tenuations were 80.03, 79.96, and 79.83 dB with transition
bandwidths 0.2005, 0.1923, and 0.1983 rad/s, respectively.
The filter lengths required to achieve the specifications were
N = 159 for the Kaiser window, N = 165 for the Dolph-
Chebyshev window, and N = 153 for the ultraspherical win-
dow. Figure 7 shows the amplitude responses of the designed
filters.

Example 2. Design a bandstop filter with ωp1 = 0.5, ωa1 =
0.7, ωa2 = 2.0, ωp2 = 2.2 rad/s, and Aa = 40 dB using the
Kaiser, Dolph-Chebyshev, and ultraspherical windows.

The adjustable parameters for the Kaiser, Dolph-
Chebyshev, and ultraspherical windows were calculated as
α = 3.395, β = 1.471, and β = 1.391, respectively. The
additional parameter calculated for the ultraspherical win-
dow was µ = 0.5960. The stopband attenuations achieved
were 41.34, 37.36, and 38.40 dB with transition bandwidths
0.1963, 0.2027, and 0.2033 rad/s, respectively. Using the
modification discussed in Example 1 to improve stopband
attenuation accuracy, the recalculated parameters assume the
values α = 3.235, β = 1.554, and β = 1.420, respectively. The
stopband attenuations were 39.92, 40.07, and 39.94 dB with
transition bandwidths 0.1905, 0.2188, and 0.2125 rad/s, re-
spectively. The filter lengths required to achieve the specifi-
cations were N = 73 for the Kaiser window, N = 73 for the
Dolph-Chebyshev window, and N = 67 for the ultraspher-
ical window. Figure 8 shows the amplitude responses of the
designed filters.

Example 3. Design a Hilbert transformer with ωp1 =
0.2 rad/s andAp = 80 dB using the Kaiser, Dolph-Chebyshev,
and ultraspherical windows.

The adjusted design attenuations from (55) for the
Kaiser, Dolph-Chebyshev, and ultraspherical windows were
calculated as A′a = 86.41, 85.24, and 86.46, respectively. The
adjustable parameters were calculated as α = 8.564, β =
2.983, and β = 2.789, respectively, while the additional pa-
rameter for the ultraspherical window was calculated as µ =
0.6445. The design attenuations achieved were 80.12, 79.59,
and 79.39 dB with transition bandwidths 0.3941, 0.3889,
and 0.3847 rad/s, respectively. Using the modification dis-
cussed in Example 1 to improve design attenuation accu-
racy, the recalculated parameters assume the values α =
8.550, β = 2.997, and β = 2.809, respectively. The attenu-
ations were 79.96, 80.01, and 79.93 dB with transition band-
widths 0.3935, 0.3912, and 0.3879 rad/s, respectively. The fil-
ter lengths required to achieve the specifications wereN = 88
for the Kaiser window, N = 90 for the Dolph-Chebyshev
window, and N = 86 for the ultraspherical window. Figure 9
shows the amplitude responses of the designed Hilbert trans-
formers.
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Figure 7: Example 1: amplitude responses of lowpass filters
designed using various window functions. (a) Kaiser window.
(b) Dolph-Chebyshev window. (c) Ultraspherical window.
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Figure 8: Example 2: amplitude responses of bandstop filters
designed using various window functions. (a) Kaiser window.
(b) Dolph-Chebyshev window. (c) Ultraspherical window.
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Figure 9: Example 3: amplitude responses of Hilbert transform-
ers designed using various window functions. (a) Kaiser window.
(b) Dolph-Chebyshev window. (c) Ultraspherical window.
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7. CONCLUSIONS

An efficient method for designing nonrecursive digital fil-
ters based on the ultraspherical window has been proposed.
Economies in computation are achieved in two ways. First,
through an efficient formulation of the window coefficients,
the amount of computation required is reduced to a small
fraction of that required by the standard methods. Second,
the filter length and the independent window parameters
that would be required to achieve prescribed specifications in
lowpass, highpass, bandpass, and bandstop filters as well as in
digital differentiators and Hilbert transformers are efficiently
determined through empirical formulas. Experimental re-
sults indicate that the ultraspherical window yields lower or-
der filters relative to designs obtained using a variety of other
knownwindows including the Kaiser, Dolph-Chebyshev, and
Saramäki windows. Alternatively, for a fixed filter length the
ultraspherical window can provide reduced passband ripple
and increased stopband attenuation relative to these win-
dows. The weighted-Chebyshev method yields designs that
are L∞ optimal but these designs require a large amount of
computation, whichmakes them impractical for applications
where the design has to be carried out online in real or quasi-
real time.
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