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1 Introduction
The purpose of this paper is to give an outline of fixed point theory for nonexpansive
mappings (i.e., mappings with the modular Lipschitz constant ) on subsets of modular
metric spaces which are natural generalization of classical modulars over linear spaces like
Lebesgue, Orlicz,Musielak-Orlicz, Lorentz, Orlicz-Lorentz, Calderon-Lozanovskii spaces
and many others. Modular metric spaces were introduced in [, ]. The main idea be-
hind this new concept is the physical interpretation of the modular. Informally speaking,
whereas a metric on a set represents nonnegative finite distances between any two points
of the set, a modular on a set attributes a nonnegative (possibly, infinite valued) ‘field of
(generalized) velocities’: to each ‘time’ λ >  (the absolute value of ), an average velocity
ωλ(x, y) is associated in such a way that in order to cover the ‘distance’ between points
x, y ∈ X, it takes time λ to move from x to y with velocity ωλ(x, y). But the way we ap-
proach the concept of modular metric spaces is different. Indeed, we look at these spaces
as a nonlinear version of the classicalmodular spaces, introduced byNakano [], on vector
spaces and modular function spaces, introduced by Musielak [] and Orlicz [].
In recent years, there was an increasing interest in the study of electrorheological fluids,

sometimes referred to as ‘smart fluids’ (for instance, lithium polymetachrylate). For these
fluids, modeling with sufficient accuracy using classical Lebesgue and Sobolev spaces, Lp

and W ,p, where p is a fixed constant, is not adequate, but rather the exponent p should
be able to vary [, ]. One of the most interesting problems in this setting is the famous
Dirichlet energy problem [, ]. The classical technique used so far in studying this prob-
lem is converting the energy functional, naturally defined by a modular, to a convoluted
and complicated problem which involves a norm (the Luxemburg norm). The modular
metric approach is more natural and has not been used extensively.
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Inmany cases, particularly in applications to integral operators, approximation andfixed
point results, modular-type conditions are much more natural as modular-type assump-
tions can be more easily verified than their metric or norm counterparts. In recent years,
there has been a great interest in the study of the fixed point property in modular func-
tion spaces after the first paper [] was published in . More recently, the authors
presented a fixed point result for pointwise nonexpansive and asymptotic pointwise non-
expansive acting in modular functions spaces []. The theory of nonexpansive mappings
defined on convex subsets of Banach spaces has been well developed since the s (see,
e.g., Belluce and Kirk [], Browder [], Bruck [], and Lim []) and generalized to other
metric spaces (see, e.g., [–]) and modular function spaces (see, e.g., []). The corre-
sponding fixed point results were then extended to larger classes of mappings like point-
wise contractions and asymptotic pointwise contractions [–], and asymptotic point-
wise nonexpansive mappings []. In [], Penot presented an abstract version of Kirk’s
fixed point theorem [] for nonexpansivemappings.Many results of a fixed point inmet-
ric spaces have been developed after Penot’s formulation. Using Penot’s work, the author
in [] proved some results in metric spaces with uniform normal structure similar to the
ones known in Banach spaces.
In this paper we investigate the existence of fixed points of modular nonexpansive map-

pings defined in modular metric spaces. We also discuss some compactness properties of
the family of admissible sets in modular metric spaces with uniform normal structure and
prove similar results to the ones obtained in [].
For more on metric fixed point theory and on modular function spaces, the reader may

consult the books [] and [], respectively.

2 Basic definitions and properties
Let X be a nonempty set. Throughout this paper, for a function ω : (,∞) × X × X →
[,∞], we write

ωλ(x, y) = ω(λ,x, y)

for all λ >  and x, y ∈ X.

Definition . [, ] A functionω : (,∞)×X×X → [,∞] is said to be amodularmetric
on X if it satisfies the following axioms:

(i) x = y if and only if ωλ(x, y) =  for all λ > ;
(ii) ωλ(x, y) = ωλ(y,x) for all λ >  and x, y ∈ X ;
(iii) ωλ+μ(x, y) ≤ ωλ(x, z) +ωμ(z, y) for all λ,μ >  and x, y, z ∈ X .

If instead of (i) we have only the condition (i′)

ωλ(x,x) =  for all λ > ,x ∈ X,

then ω is said to be a pseudomodular (metric) on X. A modular metric ω on X is said to
be regular if the following weaker version of (i) is satisfied:

x = y if and only if ωλ(x, y) =  for some λ > .

http://www.fixedpointtheoryandapplications.com/content/2013/1/229
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Finally, ω is said to be convex if for λ,μ >  and x, y, z ∈ X, it satisfies the inequality

ωλ+μ(x, y) ≤ λ

λ +μ
ωλ(x, z) +

μ

λ +μ
ωμ(z, y).

Note that for a metric pseudomodular ω on a set X, and any x, y ∈ X, the function λ →
ωλ(x, y) is nonincreasing on (,∞). Indeed, if  < μ < λ, then

ωλ(x, y)≤ ωλ–μ(x,x) +ωμ(x, y) = ωμ(x, y).

Definition . [, ] Let ω be a pseudomodular on X. Fix x ∈ X. The two sets

Xω = Xω(x) =
{
x ∈ X : ωλ(x,x) →  as λ → ∞}

and

X∗
ω = X∗

ω(x) =
{
x ∈ X : ∃λ = λ(x) >  such that ωλ(x,x) < ∞}

are said to be modular spaces (around x).

It is clear that Xω ⊂ X∗
ω , but this inclusionmay be proper in general. It follows from [, ]

that if ω is a modular on X, then themodular space Xω can be equipped with a (nontrivial)
metric generated by ω and given by

dω(x, y) = inf
{
λ >  : ωλ(x, y) ≤ λ

}

for any x, y ∈ Xω . If ω is a convexmodular on X, according to [, ] the twomodular spaces
coincide, i.e., X∗

ω = Xω , and this common set can be endowed with the metric d∗
ω given by

d∗
ω(x, y) = inf

{
λ >  : ωλ(x, y) ≤ 

}

for any x, y ∈ Xω . These distances are called Luxemburg distances (see example below for
the justification).
Next we give the main example that motivated this paper.

Example . Let X be a nonempty set and � be a nontrivial σ -algebra of subsets of X.
Let P be a δ-ring of subsets of X such that E ∩ A ∈ P for any E ∈ P and A ∈ �. Let us
assume that there exists an increasing sequence of sets Kn ∈ P such that X =

⋃
Kn. By

E we denote the linear space of all simple functions with supports from P . By M∞ we
denote the space of all extended measurable functions, i.e., all functions f : X → [–∞,∞]
such that there exists a sequence {gn} ⊂ E , |gn| ≤ |f | and gn(x) → f (x) for all x ∈ X. By A
we denote the characteristic function of the set A. Let ρ :M∞ → [,∞] be a nontrivial,
convex and even function. We say that ρ is a regular convex function pseudomodular if:

(i) ρ() = ;
(ii) ρ is monotone, i.e., |f (x)| ≤ |g(x)| for all x ∈ X implies ρ(f )≤ ρ(g), where

f , g ∈M∞;
(iii) ρ is orthogonally subadditive, i.e., ρ(f A∪B) ≤ ρ(f A) + ρ(f B) for any A,B ∈ � such

that A∩ B �= ∅, f ∈M;

http://www.fixedpointtheoryandapplications.com/content/2013/1/229
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(iv) ρ has the Fatou property, i.e., |fn(x)| ↑ |f (x)| for all x ∈ X implies ρ(fn) ↑ ρ(f ), where
f ∈M∞;

(v) ρ is order continuous in E , i.e., gn ∈ E and |gn(x)| ↓  implies ρ(gn) ↓ .
Similarly, as in the case of measure spaces, we say that a set A ∈ � is ρ-null if ρ(gA) = 
for every g ∈ E . We say that a property holds ρ-almost everywhere if the exceptional set
is ρ-null. As usual we identify any pair of measurable sets whose symmetric difference is
ρ-null as well as any pair of measurable functions differing only on a ρ-null set. With this
in mind, we define

M(X,�,P ,ρ) =
{
f ∈M∞;

∣∣f (x)∣∣ < ∞ ρ-a.e.
}
,

where each f ∈ M(X,�,P ,ρ) is actually an equivalence class of functions equal ρ-a.e.
rather than an individual function. Where no confusion exists, we write M instead of
M(X,�,P ,ρ). Let ρ be a regular function pseudomodular.
(a) We say that ρ is a regular function semimodular if ρ(αf ) =  for every α >  implies

f =  ρ-a.e.;
(b) We say that ρ is a regular function modular if ρ(f ) =  implies f =  ρ-a.e.

The class of all nonzero regular convex function modulars defined on X is denoted by �.
Let us denote ρ(f ,E) = ρ(f E) for f ∈M, E ∈ �. It is easy to prove that ρ(f ,E) is a function
pseudomodular in the sense of Def. .. in [] (more precisely, it is a function pseudo-
modular with the Fatou property). Therefore, we can use all results of the standard theory
of modular function spaces as per the framework defined by Kozlowski in [–]; see
also Musielak [] for the basics of the general modular theory. Let ρ be a convex function
modular.
(a) The associated modular function space is the vector space Lρ(X,�), or briefly Lρ

defined by

Lρ =
{
f ∈M;ρ(λf ) →  as λ → 

}
.

(b) The following formula defines a norm in Lρ (frequently called the Luxemburg
norm):

‖f ‖ρ = inf
{
α > ;ρ(f /α)≤ 

}
.

A modular function space furnishes a wonderful example of a modular metric space. In-
deed, let Lρ be a modular function space. Define the function modular ω by

ωλ(f , g) = ρ

(
f – g

λ

)

for all λ >  and f , g ∈ Lρ . Then ω is a modular metric on Lρ . Note that ω is convex if and
only if ρ is convex. Moreover, we have

‖f – g‖ρ = d∗
ω(f , g)

for any f , g ∈ Lρ .

Other easy examples may be found in [, ].

http://www.fixedpointtheoryandapplications.com/content/2013/1/229
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Definition . Let Xω be a modular metric space.
() The sequence (xn)n∈N in Xω is said to be ω-convergent to x ∈ Xω if and only if

ω(xn,x) →  as n→ ∞. x is called the ω-limit of (xn).
() The sequence (xn)n∈N in Xω is said to be ω-Cauchy if ω(xm,xn) →  asm,n→ ∞.
() A subsetM of Xω is said to be ω-closed if the ω-limit of an ω-convergent sequence

ofM always belongs toM.
() A subsetM of Xω is said to be ω-complete if any ω-Cauchy sequence inM is an

ω-convergent sequence and its ω-limit is inM.
() A subsetM of Xω is said to be ω-bounded if we have

δω(M) = sup
{
ω(x, y);x, y ∈M

}
<∞.

In general, if limn→∞ ωλ(xn,x) =  for some λ > , then we may not have limn→∞ ωλ(xn,
x) =  for all λ > . Therefore, as it is done in modular function spaces, we say that ω

satisfies �-condition if this is the case, i.e., limn→∞ ωλ(xn,x) =  for some λ >  implies
limn→∞ ωλ(xn,x) =  for all λ > . In [] and [], one can find a discussion about the con-
nection between ω-convergence and metric convergence with respect to the Luxemburg
distances. In particular, we have

lim
n→∞dω(xn,x) =  if and only if lim

n→∞ωλ(xn,x) =  for all λ > 

for any {xn} ∈ Xω and x ∈ Xω . And in particular we have that ω-convergence and dω con-
vergence are equivalent if and only if the modular ω satisfies the �-condition. Moreover,
if the modular ω is convex, then we know that d∗

ω and dω are equivalent, which implies

lim
n→∞d∗

ω(xn,x) =  if and only if lim
n→∞ωλ(xn,x) =  for all λ > 

for any {xn} ∈ Xω and x ∈ Xω [, ]. Another question that arises in this setting is the
uniqueness of the ω-limit. Assume that ω is regular, and let {xn} ∈ Xω be a sequence such
that {xn} ω-converges to a ∈ Xω and b ∈ Xω . Then we have

ω(a,b)≤ ω(a,xn) +ω(xn,b)

for any n≥ . Our assumptions imply ω(a,b) = . Since ω is regular, we get a = b, i.e., the
ω-limit of a sequence is unique.
Let (X,ω) be a modular metric space. Throughout the rest of this work, we assume that

ω satisfies the Fatou property, i.e., if {xn} ω-converges to x and {yn} ω-converges to y, then
we must have

ω(x, y) ≤ lim inf
n→∞ ω(xn, yn).

For any x ∈ Xω and r ≥ , we define the modular ball

Bω(x, r) =
{
y ∈ Xω;ω(x, y)≤ r

}
.

Note that if ω satisfies the Fatou property, then modular balls are ω-closed. An admissible
subset of Xω is defined as an intersection of modular balls. Denote by Aω(Xω) the family

http://www.fixedpointtheoryandapplications.com/content/2013/1/229
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of admissible subsets of Xω . Note that Aω(Xω) is stable by intersection. At this point we
need to define the concept of Chebyshev center and radius in modular metric spaces. Let
A⊂ X be a nonempty ω-bounded subset. For any x ∈ A, define

rx(A) = sup
{
ω(x, y); y ∈ A

}
.

The Chebyshev radius of A is defined by

Rω(A) = inf
{
rx(A);x ∈ A

}
.

Obviously, we have Rω(A) ≤ rx(A) ≤ δω(A) for any x ∈ A. The Chebyshev center of A is
defined as

Cω(A) =
{
x ∈ A; rx(A) = Rω(A)

}
.

Throughout the remainder of this work, for a subset A of a modular metric space Xω ,
set

covω(A) =
⋂

{B : B is a modular ball and A⊂ B}.

Recall that A is ω-bounded if δω(A) = sup{ω(x, y);x, y ∈ A} < ∞.

Definition . Let (X,ω) be a modular metric space. Let C be a nonempty subset of Xω .
(i) We say that Aω(C) is compact if any family (Aα)α∈
 of elements of Aω(C) has a

nonempty intersection provided
⋂

α∈F Aα �= ∅ for any finite subset F ⊂ 
.
(ii) We say that Aω(C) is countably compact or satisfies the property (R) if any

sequence (An)n≥ of elements of Aω(C), which are nonempty and decreasing, has a
nonempty intersection.

(iii) We say that Aω(C) is normal if for any A ∈Aω(C), not reduced to one point,
ω-bounded, we have Rω(A) < δω(A).

(iv) We say that Aω(C) is uniformly normal if there exists c ∈ (, ) such that for any
A ∈Aω(C), not reduced to one point, ω-bounded, we have Rω(A) ≤ cδω(A).

Remark . Note that ifAω(Xω) is compact, then Xω is ω-complete. Indeed, let {xn} ⊂ Xω

be an ω-Cauchy sequence. Set

rn = sup
m,s≥n

ω(xm,xs)

for any n ≥ . Since {xn} is an ω-Cauchy sequence, then limn→∞ rn = . By the definition
of rn, we get xm ∈ Bω(xn, rn) for any n ≥  and m ≥ n. Hence, for any n,n, . . . ,np ≥ , we
have

xm ∈
⋂
≤i≤p

Bω(xni , rni )

for anym ≥ max{n,n, . . . ,np}. SinceAω(Xω) is compact, then

C =
⋂
n≥

Bω(xn, rn) �= ∅.

http://www.fixedpointtheoryandapplications.com/content/2013/1/229
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If z ∈ C, then we have ω(xn, z) ≤ rn for any n ≥ . Hence {xn} ω-converges to z, which
completes the proof of our statement.

3 Main results
Let us first start this section with the definition of nonexpansive mappings in the modular
metric sense.

Definition . Let (X,ω) be a modular metric space. Let C be a nonempty subset of Xω .
A mapping T : C → C is said to be ω-nonexpansive if

ω
(
T(x),T(y)

) ≤ ω(x, y) for any x, y ∈ C.

For such a mapping, we denote by Fix(T) the set of its fixed points, i.e., Fix(T) = {x ∈
C;T(x) = x}.

In [, ] the author defined Lipschitzian mappings in modular metric spaces and proved
some fixed point theorems. Our definition is more general. Indeed, in the case of modular
function spaces, it is proved in [] that

ωλ

(
T(x),T(y)

) ≤ ωλ(x, y) for any λ > 

if and only if dω(T(x),T(y)) ≤ dω(x, y) for any x, y ∈ C. Next we give an example, which
first appeared in [], of a mapping which is ω-nonexpansive in our sense but fails to be
nonexpansive with respect to dω .

Example . Let X = (,∞). Define the Musielak-Orlicz function modular on the space
of all Lebesgue measurable functions by

ρ(f ) =

e

∫ ∞



∣∣f (x)∣∣x+ dm(x).

LetB be the set of allmeasurable functions f : (,∞) →R such that  ≤ f (x) ≤ 
 . Consider

the map

T(f )(x) =

⎧⎨
⎩
f (x – ) for x ≥ ,

 for x ∈ [, ].

Clearly, T(B) ⊂ B. In [], it was proved that for every λ ≤  and for all f , g ∈ B, we have

ρ
(
λ
(
T(f ) – T(g)

)) ≤ λρ
(
λ(f – g)

)
.

This inequality clearly implies that T is ω-nonexpansive. On the other hand, if we take
f = [,], then

∥∥T(f )∥∥
ρ
> e≥ ‖f ‖ρ ,

which clearly implies that T is not dω-nonexpansive.

Next we discuss the analog of Kirk’s fixed point theorem [] in modular metric spaces.

http://www.fixedpointtheoryandapplications.com/content/2013/1/229
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Theorem . Let (X,ω) be a modular metric space. Let C be a nonempty ω-closed
ω-bounded subset of Xω . Assume that the family Aω(C) is normal and compact. Let
T : C → C be ω-nonexpansive. Then T has a fixed point.

Proof Since Aω(C) is compact, there exists a minimal nonempty A ∈ Aω(C) such that
T(A) ⊂ A. It is easy to check that covω(T(A)) = A. Let us prove that δω(A) = , i.e., A is
reduced to one point. Suppose that δω(A) �= . For any x ∈ A, set

rx(A) = sup
{
ω(x, y); y ∈ A

} ≤ δω(A) ≤ δω(C) < ∞.

Since T is ω-nonexpansive, we have T(A) ⊂ Bω(T(x), rx(A)) for any x ∈ A. Hence

covω

(
T(A)

) ⊂ Bω

(
T(x), rx(A)

)
.

So, rT(x)(A)≤ rx(A) for any x ∈ A. Next we fix a ∈ A and define

Aa =
{
x ∈ A; rx(A) ≤ ra(A)

}
.

Clearly, Aa is not empty since a ∈ Aa. Moreover, we have

Aa =
⋂
x∈A

Bω

(
x, ra(A)

) ∩A ∈Aω(C).

And since rT(x)(A) ≤ rx(A), for any x ∈ A, we get T(Aa) ⊂ Aa. The minimality behavior
of A implies Aa = A. In particular we have rx(A) = ra(A) for any x ∈ A. Hence δω(A) =
supx∈A rx(A) = ra(A) for any a ∈ A. SinceAω(C) is normal, we get δω(A) < δω(A), which is a
contradiction. Thus we must have δω(A) = , i.e., A is reduced to one point which is fixed
by T . �

Nextwe give a constructive result discovered byKirk []which relaxes the compactness
assumption in the above theorem. The main ingredient in Kirk’s constructive proof is a
technical lemma due to Gillespie andWilliams []. The next lemma is a modular version
of the Gillespie and Williams result.

Lemma . Let (X,ω) be a modular metric space, and let C be a nonempty ω-bounded
subset of Xω . Let T : C → C be anω-nonexpansive mapping.Assume thatAω(C) is normal.
Let A ∈Aω(C) be nonempty and T-invariant, i.e., T(A) ⊂ A. Then there exists a nonempty
A ∈Aω(C), which is T-invariant, such that

δω(A) ≤ δω(A) + Rω(A)


.

Proof Set r = 
 (δω(A) + Rω(A)). We assume that δω(A) > , otherwise we can take the set

A = A. Since Aω(C) is normal, we have Rω(A) < δω(A). Hence Rω(A) < r, which implies
the existence of a ∈ A such that ra(A) < r. Therefore, the set

D =
{
a ∈ A : A⊂ Bω(a, r)

}
=

⋂
x∈A

Bω(x, r)∩A

http://www.fixedpointtheoryandapplications.com/content/2013/1/229
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is a nonempty admissible subset of C. Note that there is no reason forD to be T-invariant.
Consider the family

F =
{
M ∈Aω(C) :D⊂M and T(M) ⊂M

}
.

Note that F is nonempty since C ∈F . Set L =
⋂

M∈F M. The set L is an admissible subset
ofC which containsD. Using the definition ofF , we deduce that L isT-invariant. Consider
B =D∪T(L) and observe that covω(B) = L. Indeed, since B⊂ T(L) ⊂ L and L ∈Aω(C), we
have covω(B) ⊂ L. From this we obtain

T
(
covω(B)

) ⊂ T(L)⊂ B ⊂ covω(B).

Hence covω(B) ∈F and L ⊂ covω(B). This gives the desired equality. Define

A =
{
x ∈ L : L ⊂ Bω(x, r)

}
.

We claim thatA is the desired set. Observe thatA is nonempty since it containsD (by the
definition of D). Using the same argument, we can prove that A is an admissible subset
of C. On the other hand, it is clear that δω(A) ≤ r. To complete the proof, we have to show
that A is T-invariant. Let x ∈ A. By the definition of A, we have L⊂ Bω(x, r). Since T is
ω-nonexpansive, we have

T(L) ⊂ Bω

(
T(x), r

)
.

For any y ∈ D, there holds L ⊂ Bω(y, r). But T(x) ∈ L, so T(x) ∈ Bω(y, r), which implies
y ∈ Bω(T(x), r). Hence D ⊂ Bω(T(x), r) holds. Since B = D ∪ T(L), we get B ⊂ Bω(T(x), r).
Therefore, we must have

covω(B) = L ⊂ Bω

(
T(x), r

)
.

By the definition of A, it follows that T(x) ∈ A. In other words, A is T-invariant. Let
x, y ∈ A, then x, y ∈ L, which implies ω(x, y) ≤ rx(L)≤ r, i.e.,

δω(A) ≤ r =
δω(A) + Rω(D)


. �

Next we give the analogue of the main fixed point result in [].

Theorem . Let (X,ω) be an ω-complete modular metric space, and let C be a nonempty
ω-closed ω-bounded subset of Xω . Assume that the familyAω(C) is uniformly normal and
T : C → C is ω-nonexpansive. Then T has a fixed point.

Proof Since C is ω-bounded, we have C ∈Aω(C) since

C = Bω

(
x, δω(C)

) ∩C for any x ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/229
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Now, let us take C = A and T(C) ⊂ C. Since Aω(C) is uniformly normal, there exists
c ∈ (, ) such that

Rω(A)≤ cδω(A) for any A ∈Aω(C).

By Lemma ., there exists A ∈Aω(C) such that A ⊂ A, T(A)⊂ A and satisfies

δω(A) ≤ R(A) + δω(A)


.

Using the induction argument, we build a sequence {An} ⊂ Aω(C) such that An+ ⊂ An,
T(An+) ⊂ An+ and

δω(An+) ≤ R(An) + δω(An)


.

Since Rω(An) ≤ cδω(An), we get

δω(An+) ≤
(
 + c


)
δω(An),

which implies that

δω(An) ≤
(
 + c


)n

δω(C).

Now, since δω(C) <∞ , we get

lim
n→∞ δω(An) = .

Let xn ∈ An for any n ≥ . Then {xn} is an ω-Cauchy sequence. Since Xω is ω-complete
and C is an ω-closed subset of Xω , then C is ω-complete. Thus {xn} ω-converges to x ∈ C.
Since An+ ⊂ An and An is ω-closed for any n≥ , then x ∈ An for any n≥ . Thus

⋂
n An is

not empty and clearly is reduced to the single point x. Indeed, let y ∈ ⋂
n An, then y ∈ An

for any n≥ . Hence

ω(x, y) ≤ δω(An).

Since limn→∞ δω(An) = , we get ω(x, y) = . Since ω is regular, we get y = x, i.e.,⋂
n An = {x}. Since T(An) ⊂ An for any n≥ , we get T(x) = x. �

The following technical proposition is needed to show an analogue to the main result
in [].

Proposition . Let (X,ω) be an ω-complete modular metric space, and let C be a
nonempty ω-closed ω-bounded subset of Xω . Assume that the family Aω(C) is uniformly
normal.Consider the Cartesian product C∞ =

∏
n≥C.Define� : (,∞)×C×C → [,∞]

by

�λ

(
(xn), (yn)

)
= sup

n≥
ωλ(xn, yn).
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Then:
(i) (C∞,�) is an �-complete modular metric space.
(ii) C∞ is �-bounded with δ�(C∞) = δω(C) < ∞.
(iii) For any (xn) ∈ C∞ and r ∈ [,∞], we have

B�

(
(xn), r

)
=

∏
n≥

Bω(xn, r),

where

B�

(
(xn), r

)
=

{
(yn) ∈ C∞;�

(
(xn), (yn)

) ≤ r
}
,

and Bω(xn, r) = {y ∈ C;ω(xn, y) ≤ r}. This implies that for any A ∈A�(C∞), we have
A =

∏
n≥An, where An ∈A�(C).

(iv) A�(C∞) is uniformly normal.

Proof The proofs of (i), (ii), (iii) are easy and left to the reader. Let us prove (iv). Indeed,
let A ∈ Aω(C∞) be nonempty and not reduced to one point. Then (iii) implies that A =∏

n≥An, where An ∈ Aω(C). Let ε > . Since Aω(C) is uniformly normal, there exists c ∈
[, ) such that for any n≥ , for which An is not reduced to one point, there exists xn ∈ An

such that

rxn (An) ≤ (c + ε)δω(An).

Hence

r(xn)(A) = sup
(yn)∈A

�
(
(xn), (yn)

)
= sup

(yn)∈A

(
sup
n≥

ω(xn, yn)
)
,

which implies

r(xn)(A)≤ (c + ε) sup
n≥

δω(An) = (c + ε)δ�(A).

So, R�(A) ≤ (c+ε)δ�(A). Since ε was arbitrary, we get R�(A)≤ cδ�(A). This completes the
proof of (iv). �

The following theorem shows that although we do not need compactness of the family
of admissible sets in Theorem ., its assumptions imply a weaker form of compactness,
mainly countable compactness.

Theorem . Let (X,ω) be an ω-complete modular metric space, and let C be a nonempty
ω-closedω-bounded subset of Xω .Assume that the familyAω(C) is uniformly normal.Then
Aω(C) has the property (R).

Proof Let {An} be a decreasing sequence of nonempty subsets of C, with An ∈ Aω(C).
Consider the modular metric space (C∞,�) defined in Proposition .. Set A =

∏
n An.

http://www.fixedpointtheoryandapplications.com/content/2013/1/229
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Then A ∈ A�(C∞). Since A�(C∞) is uniformly normal, then A�(A) is uniformly normal.
Consider the shift T : A→ A defined by

T
(
(xn)

)
= (xn+).

Obviously, T is ω-nonexpansive. Theorem . implies that T has a fixed point, i.e., there
exists (xn) ∈ A such that T((xn)) = (xn). The definition of T forces {xn} to be a constant
sequence, i.e., xn = x, for any n≥ . Obviously, we have x ∈ An for any n≥ , which implies⋂

n≥An �= ∅. �
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