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Abstract Vibratory driving is the most common

installation technique for steel sheet pile walls. In

practice, the assessment of the feasibility of this

installation process is mainly based on rules of thumb,

on numerical and empirical models or on experts

opinions. In order to improve these prediction methods

and formulas, 252 observations from the Dutch

engineering practice have been compared with six

different types of models. This comparison has been

carried out applying the receiver operating character-

istic (ROC) curve technique, which is new in

geotechnical engineering. This paper introduces the

ROC-curve technique to estimate mainly the quality of

a model and to be able to optimize parameters and

variables in the model. 252 field observations were

used to re-examine prediction methods for the mini-

mum required vibration force and to prove the ROC

method works. The paper shows this technique is

suitable for three purposes: (1) determining the quality

of a model, (2) objectively comparing several models

to each other, given certain assumptions and (3) for

optimizing thresholds within a model. The model with

added professionals’ experience proves to perform

equally well as the numerical model Hypervib-I.

Keywords Design model � Sheet pile � Field

observation � Vibratory driving � ROC-curve

1 Introduction

Steel sheet pile walls often support deep excavations

in urban areas. The most common installation tech-

nique for steel sheet pile walls is vibratory driving.

Most projects are carried out in areas where the subsoil

consist of several soft clay and peat layers on top of a

medium or loosely compacted sand layer. Vibratory

driving is attractive in such sub-soils, because of the

relative straightforward technique and the high pro-

duction rates. In practice, the feasibility of the

installation process of these sheet piles is mainly

based on rules of thumb, on empirical models or

experts opinions. It is to be expected that the more

experience is added to the rules and models, the more

reliable prediction models become.

In 2004 Van Baars used the results of 18 observa-

tions to show the inferior quality of several models that

predict the minimum required vibration force in order

to determine the best vibrator for pile installations

(Van Baars 2004). This current paper will show a
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single error is not sufficient to determine the quality of

a model. The method of ‘Receiver Operating Charac-

teristic’ (ROC) Curves (Metz 1978) is introduced to

overcome this problem. Instead of 18 observations,

252 observations were used to re-examine the methods

described by Van Baars. A positive side effect of the

ROC method comprises the possibility of threshold

and parameter optimization, which will be shown as

well.

This paper first describes the origin of the (Dutch)

field observations that were used for the comparison of

the design codes (Sect. 2). Subsequently, Sect. 3

shortly describes the prediction models and the

parameter choices. Section 4 introduces the essentials

of the ROC-curve technique and finally the results-

section will compare the models, based on the field

observations, using the ROC-curve technique.

2 Data–Observations

In order to validate the prediction models for vibratory

driving, 252 field cases from the Dutch experience

database ‘GeoBrain’ have been used (www.geobrain.

nl). The GeoBrain experience database (Barends

2005; Hemmen 2005) contains case histories of

foundation techniques. As most cases are unique, the

experience gathered focuses on the generic techniques

applied in these cases, such as piling. Since 2005,

different contractors have been filling this database

with their up to date experiences in the Netherlands.

The total number of entries counted 2900 projects by

the end of 2011. At the time of this evaluation in

February 2009, 364 entries concerned the vibratory

installation of steel sheet piles. An ‘experience’ or

‘observation’ is uniquely defined by the type of ele-

ment (for example sheet-pile or prefabricated concrete

pile), the type of equipment used and the soil condi-

tions present. Additionally to this digitalized data, also

details concerning the building pit, the crew and the

surroundings have been included.

Although the database comprised 364 observations

for vibratory driving at the time, only 252 of them have

been used for this evaluation. An observation was

discarded when

• essential data was lacking (like a Cone Penetration

Test);

• a combination of installation techniques was used

(both hammering and driving);

• unexpected obstacles were expected or detected in

the subsoil;

• erroneous data was recorded, e.g. large differences

([1.5 m) between the entered length of the sheet

pile and the difference between the head and the

toe of the pile

• the head of the pile was deeper than 1.5 m below

the surface.

A detailed example of one observation has been

described in Mens and van Tol (2010).

In general, the projects from the GeoBrain database

comprise, amongst others, the following features: the

type of the vibration equipment, the type of pile that

has been used, the results of one cone penetration test

that reflects the mean circumstances and the number of

piles that was used. ‘‘Appendix 1’’ shows eight

boxplots with the frequency, displacement amplitude,

eccentric moment, mass of the sheet pile, dynamical

mass of sheet pile and vibrator, the pile length, the pile

cross sectional area and the number of piles that were

used for this investigation. More information about the

projects and the geological area is available at

geobrain.nl.

An observation is defined to be ‘positive’ whenever

within the project 100 % of the piles reach the pre-

determined depth. This 100 % avoids major subjec-

tivity, but is of course quite conservative. A short

description of each design tool follows, together with a

transformation to one single criterion that makes

comparison between the methods possible.

3 Prediction Models

Current (European) practice uses four categories of

models to predict the vibratory driving equipment for

successful installation of a steel sheet pile, depending

on the scope and the complexity of the project.

Category one comprises (numerical) computer models,

such as Hypervib-I (Holeyman and Legrand 1994;

Holeyman et al. 1996; Holeyman et al. 2002; Gonin

et al. 2006), the Karlsruhe model (Dierssens 1994) and

Vipere (Vanden Berghe 2001). Viking (2002) presents

an extensive explanation and comparison of these

methods. This study regards Hypervib-I, since this

computer model is in use in this region and it has been

the basis for a simplified prediction equation used in the

Netherlands. The second category comprises design
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equations and empirical rules. Some of these are in fact

simplifications of more complex computer models,

adapted to specific circumstances. This study discusses

a rule of thumb from the CUR [the Dutch centre for

research, rules and regulations in the civil engineering

practice (CUR166 2005)], the EAU (the German

equivalent) (EAU 1990) and two design rules based

on Hypervib-I (Azzouzi 2003; Van Baars 2004). (The

term Vibrive is an equivalent to Hypervib-I, Viking

(2002) mistakenly added a ‘d’ to Vibrive, making it

Vibdrive, which has been quoted as such by Van Baars

(2004)). The third category comprises design charts,

developed by the NVAF (the Dutch federation of

foundation contractors (Van Baars 2004; CUR166

2005). The fourth and last category contains a Bayesian

Belief Model, based on expert knowledge (Bles et al.

2003; Hemmen 2005) Since this is neither a numerical

model, nor a simple design equation or chart, it does not

belong in one of the previous categories.

3.1 Objective Criteria

Engineers need an objective criterion to compare

predictions to real results for each observation. In this

research the percentage of refusals, piles in a project

that did not reach the predetermined depth, is taken as

criterion. A project has been defined as a (part of a)

construction work that uses the same equipment and

the same pile-type, in an area that can be described by

one ‘representative’ Cone Penetration Test (CPT). All

prediction tools can be ‘re-arranged’ to predict

whether the combination of soil, equipment and piles

is sufficient to reach the pre-determined depth. In this

paper, a ‘positive’ prediction is equivalent to ‘techni-

cally being able to reach the pre-determined depth

with the chosen equipment’.

3.2 Methods

3.2.1 Method 1 (Hypervib-I)

The computer model Hypervib-I (Holeyman et al.

1999) regards the sheet pile as a rigid body and models

the vibratory installation of the pile, making use of

four forces. (1) the vertical vibration force from the

vibrator on top of the pile, (2) the resisting force on the

shaft from the soil friction (3) the resisting force on the

tip of the pile caused by the soil in the downward

motion and (4) the gravitation forces on the total mass

of the system. The model includes a strength reduction

by degradation or liquefaction, both at the shaft and

the tip of the pile. Using Newton’s second law of

motion, the model provides a velocity profile, based on

a cone penetration test (CPT) and the specifications of

both the sheet pile and the driving equipment. The

occurrence of zero velocity equals refusal and is the

criterion for not reaching the pre-determined depth.

The original computer program bases its prediction on

the time to penetrate 1 m of soil (1/velocity). Exceed-

ing 999 s ([16 min.) means refusal and leads to a

‘negative’ prediction. Therefore, this study uses a

threshold value of Vt = 1e-3 m/s (6 cm/min.) for the

velocity profile. The parameters in the Hypervib-I

code have been determined, based on Belgium engi-

neering practice.

3.2.2 Method 2 (CUR)

The ‘CUR-rule’ calculates the free displacement

amplitude (d), that is used to determine the appropriate

vibration equipment (CUR166 2005):

d ¼ Me

mv þ mp
ð1Þ

where d = the displacement amplitude (m); Me = the

eccentric moment (kg m); mv = the vibrating mass of

the vibrator (kg) and mp = the mass of the sheet pile

(kg).

The vibrator to be chosen must have Me large

enough to fulfill the required displacement amplitude

(larger than 0.005 m). If so the sheet piles will reach

the pre-determined depth. To obtain the least required

cyclic force, the eccentric moment (Me) is multiplied

with (2pf)2, where f denotes the frequency of the

equipment in Herz.

Remarkably, there is no soil involved in this

equation. The idea behind this simple rule of thumb

is that with an amplitude of 5 mm the sheet pile is able

to degenerate the strength of the soil to relatively low

values and as consequence the original strength of the

soil is not involved any more.

3.2.3 Method 3 (Azzouzi)

Based on the Hypervib-I model (Holeyman et al.

2002), Azzouzi (2003) developed a formula that

calculates the required vertical cyclic force (Fc) to
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be able to determine the most suitable vibrator.

Azzouzi used 180 calculations with the Hypervib1

model for the development of the formula that uses the

mean cone resistance over the considered sand layers,

taken from a cone penetration test (CPT):

Fc;Azzouzi ¼ aA � L � v � fAðqcÞ þ bA � At � gAðqcÞ ð2Þ

where Fc,Azzouzi = the required vertical cyclic force

from the vibrator that should be used (N); L = pile

penetration length (m); v = the perimeter of the sheet

pile (m); fA(qc) = qc,mean = the mean cone resistance

over the sand layers (N/m2); gA(qc) = qc,tip = the

cone resistance at the tip of the pile (N/m2); At = the

cross-sectional area of the toe of the sheet pile in m2;

aA = 1.92 9 103(–) and bA = 1.2 9 10-2(–).

(Formula and unities adapted to the standard SI

system).

When the used force is larger than the required

force, the prediction counts for ‘positive’; and

otherwise it is a ‘negative’ prediction.

3.2.4 Method 4 (Van Baars)

Van Baars (2004) developed a slightly different

formula, based on the same 180 calculations:

Fc;van Baars ¼ aB � L � v � fBðqcÞ þ bB � L � At � gBðqcÞ
ð3Þ

where Fc,van Baars = the required vertical cyclic force

from the vibrator that should be used in N; fB(qc) =

gA(qc) = qc,tip; gB(qc) = exp(c�qc,tip); aB = 1.2(–);

bB = 26.4 9 10-3(–), and c = qc,ref = 8.7 N/m2.

Again, formula and unities adapted to the SI-system

and when the used force is larger than the required

force, the prediction counts for ‘positive’; and

otherwise it is a ‘negative’ prediction.

3.2.5 Method 5 (EAU)

The German design rule (EAU 1990) calculates the

minimum required vertical force using only the length

of the pile and the dynamical mass md

Fc;EAU ¼ aE � Lþ bE � md ð4Þ

where Fc,EAU = the required vertical cyclic force

from the vibrator that should be used (N); md = the

dynamical part of the vibrator and the pile (kg);

aE = 15 9 10-3(N/m) and bE = 3 9 10-4(N/kg).

This rule quantifies the German criteria for their

choice of vibratory equipment. For each meter of the

pile one requires at least 15 kN vertical cyclic force

and additionally for each 100 kg dynamical mass one

needs 30 kN vertical cyclic force.

When the used force is larger than the required

force, the prediction counts for ‘positive’; and

otherwise it is a ‘negative’ prediction.

3.2.6 Method 6 (Bayesian Belief Network)

Bles et al. (2003) developed a Bayesian Belief Network

(BBN), based on professionals’ experience (also abbre-

viated as ‘experts’), to model the risks during installa-

tion of foundations. In general, BBNs use probabilistic

theory for reasoning under uncertainty and risk in expert

systems. Bayes’ theorem is the cornerstone in this way

of reasoning, because it provides a way to calculate the

posterior probability. Bayes calculates the probability

on some hypothesis h, given condition D: P(h|D). This

conditional probability of h, given D, is calculated using

the prior probability P(h), together with the probability

on the (data-based) evidence P(D) and the probability on

the data, given the stated hypothesis P(D|h) (Mitchell

1997):

PðhjDÞ ¼ PðDjhÞPðhÞ
PðDÞ ð5Þ

The method transforms joint probability functions to a

set of stochastic variables, ordered in a network. The

network itself consists of two parts. The qualitative

part shows the relations between the variables in a

graphical representation (the network). The quantita-

tive part assigns conditional probabilities to all

variables, using likelihood-tables, which describe the

effect of preceding variables on the underlying ones.

The input variables include information about the

subsurface (cone penetration test, presence of stiff clay

or gravel, ground water level, etc.), the sheet pile

(length, type, profile, mass, shape, etc.) and the

method of installation (equipment, force, etc.).

Experts from the Dutch Association for Contractors

in Foundation Engineering (NVAF) supplied the

necessary information for the likelihood tables,

describing the qualitative part of the BBN. Finally,

the BBN provides the user with a number between 0

and 100, describing the expected amount of risk. The

lower the number, the smaller the expected problems,
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involving not reaching the pre-determined depth.

Another study (Mens et al. 2008) suggests a threshold

value of 38 %, above which to start getting worried

about the risks. Above this number the prediction is

considered to be ‘negative’ and below or equal to, it is

considered to be ‘positive’.

4 ROC-Theory

How to measure the quality of a prediction? The

diagnostic ‘accuracy’—the fraction of cases for which

the prediction appeared to be correct- can be very

misleading. In case of binary predictions there are four

possibilities: a positive prediction, that in reality fails

(1) is a false positive (FP). A positive prediction that in

reality is a success (2) is a true positive (TP). On the

other hand, a negative prediction, carried out anyway

and leading to a positive observation is false negative

(FN), where as it fails as predicted it is called a true

negative (TN). Now suppose only 5 % of the cases

will not reach the predetermined depth and a model

predicts the drivability to be always possible, its

accuracy will be 95 %. But, this is based on 0 true

negatives ánd 0 false negatives.

This paper introduces the ‘receiver operating

characteristic’ (ROC)-curve technique within founda-

tion engineering to provide a better criterion. The

technique itself is not new and has been used

extensively in other scientific areas, such as medical

science (Metz 1978) and ecological engineering

(Fawcett 2006).

Basically, this technique labels a method, based on

both the sensitivity (the number of true positive

predictions/the total number of positive predictions,

see Eq. 6) and the specificity (the true negative

predictions/the total number of negative predictions).

Both of these performance indicators make up a

‘sensitivity-pair’, which can be plotted in a so called

‘ROC-space’, with the sensitivity on the vertical axis

and (1 - specificity) on the horizontal axis (Figs. 1, 2,

3, 4, 5). By visualizing the sensitivity-pairs for all the

mentioned design methods in one graph, an objective

comparison between the tools is possible. Metz (1978)

and Fawcett (2006) explain this theory in more detail.

The sensitivity-pair (0,1) (Figs. 1, 2, 3, 4, 5) describes

the ‘perfect’ model. The closer a random sensitivity

pair is to this perfect point, the better the model or

design rule is.

4.1 ROC Graph and Contingency Table

The input for the ROC graph is a given prediction

model and a set with N observations (or field

experiences). For these N observations, the binary

result (positive or negative) is known. Using the

information from these observations, it is possible to

calculate the binary prediction results. These can be

summarized in a two-by-two contingency table (or

‘confusion’-matrix), which serves as the base for a

point in the ROC-space. Table 1 provides an example

of this matrix. O(-) represents the total number of

Fig. 1 Drivability prediction as a sensitivity-pair for 6 design

codes, using 252 field observations. TPR true positive ratio, FPR
false positive ratio

Fig. 2 Optimized driveability prediction for BBN, CUR and

Hypervib-I code, changing the threshold values as indicated in

Sect. 5.2
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negative observations and O(?) the positive ones.

P(-) and P(?) represent the total number of negative

and positive predictions respectively.

The numbers from Table 1 enable calculating the

following characteristics (amongst others):

Sensitivity ¼ TPR ¼ TP

OðþÞ ð6Þ

1� Specificity ¼ FPR ¼ FP

Oð�Þ ð7Þ

These characteristics are depend on the threshold value

used in the model. Take the Bayesian Belief Network

(BBN) prediction model as an example. The BBN

predicts a project to contain more unwanted events, if the

resulting number (on a scale from 0 to 100 %) exceeds

the threshold value, 38 % in this case. This 38 %

determines more or less the result of the contingency

table. Obviously, if we take 38 % as a threshold value,

our contingency table will be different than if we take

50 % for a threshold. Table 2 shows the contingency

table for the CUR-model, using the previously mentioned

252 observations from the GeoBrain experiences

database.

4.2 Sensitivity Pair

Fortunately, a point in the ROC-space incorporates

this threshold in its graph and therefore it is in fact an

Fig. 3 ROC-curve for CUR rule, where displacement ampli-

tude d varies between 0 and 0.01 m. The red star shows the

‘best’ sensitivity pair, for d = 0.0029, assuming both the TPR

and the FPR are equally important

Fig. 4 ROC-curve for the BBN model, where displacement

amplitude d varies between 0 and 100 %. The red star shows the

‘best’ sensitivity pair, for threshold value = 36 %, assuming

both the TPR and the FPR are equally important

Fig. 5 ROC-curve for the Hypervib-I model, where velocity

threshold Vt varies between 1 and 100 cm/min (see Sect. 3.2.1).

The red star shows the ‘best’ sensitivity pair, for threshold

value = 8 cm/min, assuming both the TPR and the FPR are

equally important

Table 1 Example of a contingency table, or confusion matrix

Predictions

- ? Total

Obs.

- TN FP O(-)

? FN TP O(?)

Total P(-) P(?) N

1090 Geotech Geol Eng (2012) 30:1085–1095
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elaboration on the contingency table. The ROC point

uses the fact that the true negative ratio (TNR(=TN/

O(-))) plus the FPR equals 1, just like the TPR plus

the false negative ratio (FNR(=FN/O(?))) equals 1.

See also Eqs. 6 and 7. For different threshold values it

is now possible to calculate the so-called sensitivity-

pair (TPR,FPR). Fawcett (2006) explains this in more

detail. The smaller the metric distance to the ‘perfect

model’ (coordinates (0,1) in the ROC-space), the

better the model is, assuming the TPR and the FPR are

equally important. In practice, this is not correct

because the costs of FP’s are higher than for FN’s. The

effect of assigning different weights to FP’s and FN’s

is studied in Sect. 5.2.1.

Using Table 2, the TPR equals 107/218 = 0.49 and

the FPR equals 25/34 = 0.74 for the CUR rule.

Therefore the sensitivity-pair (FPR, TPR) reads

(0.74,0.49). Figure 1 shows this as a cross in the

lower right corner. Under the assumptions that (1) the

probability of a positive observation is approximately

95 % (P(O?) = 0.95) and that (2) the model pre-

dicted a positive result (P(P?) = 1), Bayes’ rule (see

Sect. 3.2.6) translates the true positive ratio

(TPR = P(P(?)|O(?))) into a probability of failure1

P(O(-)|P(?)) = 0.53.

4.3 Extension to ROC Curves

An additional advantage of this method is the possi-

bility of creating ROC-curves. By changing the

threshold value in a design rule, the sensitivity-pair

will change as well. So, for a range of threshold values,

a range of sensitivity-pairs can be constructed, result-

ing in a ROC –curve. One point of this curve will be

closest to the perfect model and this leads to the

optimal threshold value. Figures 3, 4, 5 show exam-

ples for such curves, demonstrating the behavior of the

CUR-rule, the BBN prediction model and the Hyper-

vib-I model respectively.

4.4 Conservative Predictions

Whenever a sensitivity pair is located at the lower left

corner of the ROC-space, one can call the correspond-

ing model ‘conservative’. An example contingency

table explains why (Table 3). This table provides a FPR

of 0.12 and a TPR of 0.40, creating a sensitivity pair in

the lower left corner of the ROC-space. The underlying

model is better than a random guess, because

TPR [ FPR. Furthermore, the table shows a large

amount of negative predictions (161), although in

reality there were 218 positive observations. The model

seems to perform very well, after all, given a positive

prediction 96 % of the cases provides a positive

observation. You might argue that a negative prediction

will lead to a new design and therefore the project will

not be carried out. Reality though proves otherwise: 161

negative predictions were carried out and 81 % of them

in fact proved to be possible in contrast to the

prediction. This is called conservativeness: the thresh-

old that distinguishes between a positive and a negative

prediction more often than necessary warns the profes-

sional the chosen equipment is due to fail. In 81 % of

these negative predictions though, practice shows this

was not necessary. If the contractor would have chosen

more powerful equipment, this probably would have

meant higher costs for no reason.

What is the tolerance on the difference between the

prediction and the observation to define a ‘positive’

observation? One sensitivity-pair shows little to zero

tolerance on the difference between the prediction and

the observation. In practice, the contractor will always

incorporate a certain tolerance to count for all

Table 2 Example of a completed contingency table, or con-

fusion matrix for the CUR rule, using threshold d = 0.005 m

Predictions

- ? Total

Obs.

- TN = 9 FP = 25 O(-) = 34

? FN = 111 TP = 107 O(?) = 218

Total P(-) = 120 P(?) = 132 N = 252

Table 3 Imaginary completed contingency table to illustrate a

‘conservative’ sensitivity-pair

Predictions

- ? Total

Obs.

- TN = 30 FP = 4 O(-) = 34

? FN = 131 TP = 87 O(?) = 218

Total P(-) = 161 P(?) = 91 N = 2521 ðO�jPþÞ ¼ 1� PðPþjOþÞPðOþÞ
PðPþÞ ¼ 1� 0:49 � 0:95 ¼ 0:53
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uncertainties in the building pit. This means that for a

positive model prediction the contractor will always

investigate the available equipment at that time and

use this information in I the decision. Therefore a

ROC-curve probably says more about a prediction

model than a single sensitivity-pair. This paper

however aims to introduce the concept of sensitivity-

pairs and ROC-curves. The reader is challenged to

elaborate on the matter described.

A contractor will not choose a solution that is likely

to fail. The probability of failure in this type of work is

large and usually it is hard to calculate the financial

consequences. Instead the contractor will choose

slightly over dimensioned equipment, rather than the

‘quick and dirty’ solution. The prize for over dimen-

sioned equipment is expected to be much lower than

the costs of delay due to malfunctioning equipment

and an unsafe working environment.

5 Results

All 252 projects in the GeoBrain experience database

have been ‘post’dicted, using the prediction tools

described above. This resulted in six sensitivity-pairs,

one for each tool with the standard threshold values,

which have been plotted in the ROC-space below

(Fig. 1). The diagonal straight line indicates the line of

no discrimination. A design method with a marker

below or at this line is practically worthless: one may as

well ‘throw a coin’. [‘‘When throwing a coin several

times, it can be expected to get half the positives and

half the negatives correct; this yields the point (0.5, 0.5)

in ROC space. If it guesses the positive class 90 % of

the time, it can be expected to get 90 % of the positives

correct, but its false positive rate will increase to 90 %

as well, yielding (0.9,0.90) in ROC space’’, according

to Fawcett (2006)].

5.1 Model Comparison in Current Situation

The ROC plot in Figs. 1 and 2 with the corresponding

sensitivity pairs and metric distances in Table 4 show

that the BBN (D) and Hypervib-I (?) score better than

the EAU rule (*) and the other three design tools (o, x

and e). This means adding professionals’ experience

to empirical rules improves those predictions. This is

interesting, especially in those cases where there is no

time for time-consuming numerical calculations.

Remarkably, the EAU-rule is better than the CUR-

rule and both Hypervib-I derivatives (van Baars’

method and Azzouzis method, see also Sects. 3.2.3

and 3.2.4), although it does not contain any soil related

parameters. Both Hypervib-I derivatives end up at the

line of no discrimination. Perhaps the rules only are

applicable to a specific subset of projects, because they

were originally set up within a subset of the currently

used variable space.

Table 4 Summary of the current and optimized threshold values for all models described here

Model Current

threshold

Current

sensitivity pair

Current metric

distancea
Optimized

threshold

Optimized

sensitivity pair

Optimized

metric distancea

CUR 0.005 m (0.74;0.49) 0.90b 0.0029 m (0.91;0.97) 0.91c

AZZ Fused/Fc [1 (0.65;0.65) 0.74 d d d

Baars Fused/Fc [1 (0.74;0.73) 0.79 d d d

Hypervib-I 0.06 m/min (0.65;0.74) 0.70 0.08 m/min (0.44;0.62) 0.58

EAU Fused/Fc [1 (0.71;0.74) 0.76 d d d

BBN 38 % (0.59;0.74) 0.64 36 % (0.56;0.72) 0.63

If as stated in Sect. 4.2 the TPR and FPR are not equally important, the metric distance should be determined by factoring the vertical

and horizontal distance to the ‘perfect model’. Since the costs of FP’s are higher than for FN’s, the horizontal distance to FPR = 0 is

much more important than the vertical distance to the value of TPR = 1. In the ultimate case, the FPR is the dominating aspect and

the first coordinate of the sensitivity pair determines the quality of the model, with low values for the best models. As shown in

Table 4 this results in only minor changes in the ranking of the models.

a The metric distance to the ‘perfect model’ is calculated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðFPR2 þ ð1� TPRÞ2
q

b Below the line of no discrimination
c Above the line of no discrimination
d Not applied yet
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5.2 Improving Threshold Values

Every design rule has its own threshold value to

distinguish between positive and negative predictions.

Making a ROC-curve for each rule provides the best

threshold for each model. Figures 3, 4 and 5 show

three ROC curves for the CUR, the BBN and the

Hypervib-I model respectively.

5.2.1 CUR

The threshold value for the CUR prediction varied

between 0 and 0.01 m, using steps of 1e-4 m. In the

current situation the threshold is 0.005 m which leads

to a sensitivity pair of (0.74,0.49). This pair ends up

below the ‘line of no discrimination’, which indicates

that currently throwing a coin might provide better

results than using the CUR-rule for the prediction. One

might suggest to use a ‘reversed’ version of the rule:

choose your equipment such as to stay under the

required 0.005 m of displacement amplitude. Physi-

cally however, this would not make sense. In the

extreme 0 displacement amplitude could be obtained

and then the whole idea of vibratory driving is gone.

The optimized sensitivity pair reads (0.91,0.97), for

a threshold value of 0.0029 m. Now the pair end up at

the better side of the line. In the physical context a

threshold of 0.0029 m is less conservative than the

current threshold. This corresponds to the expert

opinion that 0.005 m is quite conservative.

5.2.2 BBN

The threshold value for the BBN prediction varied

between 0 and 100 %, using steps of 1 %. In the

current situation the threshold is 38 % which leads to a

sensitivity pair of (0.59,0.74). The optimized sensi-

tivity pair reads (0.56,0.72), for a threshold value of

36 %. This pair ends up marginally closer to the

‘perfect situation’ (0,1). Practically there is no reason

to change the threshold value. The metric distances

column in Table 4 shows this with distance 0.64 that

changes into 0.63.

5.2.3 Hypervib-I

The threshold value for the Hypervib-I prediction

varied between 0.01 m and 1.00 m per 60 s, using

steps of 0.01 m per 60 s. In the current situation the

threshold is 0.06 m/min which leads to a sensitivity

pair of (0.65,0.74). The optimized sensitivity pair

reads (0.44,0.62), for a threshold value of 0.08 m/min.

This pair ends up closer to the ‘perfect situation’ as

well. The metric distances column in Table 4 shows

this with the distance 0.70 that changes into 0.58.

5.2.4 Van Baars, Azzouzi and EAU Model

The Van Baars-model, the Azzouzi-model and the

EAU-model have not been optimized. Both the Van

Baars-model and the Azzouzi-model are derivatives

from the Hypervib I-model and therefore it seems

more logical to extract new derivatives from the

updated original.

5.3 Model Comparison in the Improved Situation

Table 4 provides an overview of the current and the

optimized threshold values. In the current situation the

Hypervib-I -model and the BBN-model perform the

best, compared by the others. The prediction value of

the Hypervib-I model improved, using a slightly

different threshold. Using the improved threshold,

the Hypervib-I model performs better than the BBN-

model. The van Baars model, the Azzouzi model and

the EAU model have not been optimized. Remarkable

is the fact that the optimized CUR-rule, the Dutch rule

of thumb provides a threshold value (0.0029 m) that is

comparable with the German rule of thumb that each

30 kN vertical cyclic force is needed per 100 kg sheet

pile. Since in the EAU model is directly related to the

frequency, this might be a coincidence. Nevertheless it

is recommended to include in further investigations,

keeping in mind that both the EAU model and the

CUR model might have a shared origin.

6 Conclusions

This paper introduces the method of ‘Receiver Oper-

ating Characteristic’ to determine the quality of a

model and to be able to optimize parameters and

variables in the model. 252 field observations were

used to re-examine prediction methods for the mini-

mum required vibration force, based on a selection of

Dutch cases and to prove the ROC method works. The

Operating Characteristic (ROC)-space is suitable for

three purposes: 1) determining the quality of a model,
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2) objectively comparing several models to each other,

given certain assumptions and 3) for threshold opti-

mization within a model.

A sensitivity-pair, created from a confusion matrix

that was filled by 252 comparisons between observa-

tions and predictions provides a position in the ROC-

space that indicates the quality of the model used to

make the predictions. Figure 1 shows six sensitivity-

pairs, providing a quality label for the six models

described in this paper, relative to the ‘perfect model’.

The ROC-space from Fig. 1 also enables a comparison

between the six models, using the metric distance to the

perfect model as a ranking order. In this ranking the

numerical Hypervib-I model performs the best, closely

followed by the model with added expert knowledge. A

positive side effect of the ROC method comprises the

possibility of threshold and parameter optimization.

Figures 3,4 and 5 show the performance of three

models in a ROC-curve, providing sensitivity pairs that

indicate the best threshold value for each model.

Conclusively, the Receiver Operating Characteris-

tic (ROC)-space is suitable for the objective compar-

ison of several design models. Using project

information from the GeoBrain observations database

it is possible to validate the codes and to attach a

performance label to them, making it much easier for

an engineer or designer to choose the right code.

Depending on the position in the ROC-space a design

code can be labeled ‘conservative’ or not. Further-

more, the ROC-curve technique enables engineers to

optimize threshold values in their codes, that in turn

leads to better predictions and thus safer and cheaper

projects. It was to be expected that the more experi-

ence is added to the rules and models, the more reliable

prediction models become. Figures 1 and 2 prove this

is true. The model with added professionals’ experi-

ence currently performs better than all other models

and after improving the numerical model it performs

nearly equally well.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use,

distribution, and reproduction in any medium, provided the

original author(s) and the source are credited.

Appendix 1

See Fig. 6.

Fig. 6 Boxplot of the main features from the Dutch projects used for the calculations
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