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Abstract In the spacetime induced by a rotating cosmic
string we compute the energy levels of a massive spinless
particle coupled covariantly to a homogeneous magnetic field
parallel to the string. Afterwards, we consider the addition of
a scalar potential with a Coulomb-type and a linear confining
term and completely solve the Klein–Gordon equations for
each configuration. Finally, assuming rigid-wall boundary
conditions, we find the Landau levels when the linear defect
is itself magnetized. Remarkably, our analysis reveals that
the Landau quantization occurs even in the absence of gauge
fields provided the string is endowed with spin.

1 Introduction

In the last decade, a renewed interest in cosmic strings has
been witnessed after a period of ostracism [1–7]. Cosmic
strings are hypothetical massive objects that may have con-
tributed, albeit marginally, to the anisotropy of the cosmic
microwave background radiation and, consequently, to the
large scale structure of the universe [8]. Actually, their exis-
tence is also supported in superstring theories with either
compactified or extended extra dimensions. Both static and
rotating cosmic strings can be equally responsible for some
remarkable effects such as particle self-force [9,10] and grav-
itational lensing [11], as well as for production of highly
energetic particles [12–14].

Rotating cosmic strings, as well as their static counter-
parts, are one-dimensional stable topological defects prob-
ably formed during initial stages of the universe. They are
characterized by a wedge parameter α that depends on its
linear mass density, μ, and by the linear density of angular
momentum J . Initially, they were described as general rela-
tivistic solutions of a Kerr spacetime in (1 + 2) dimensions
[15], and then naturally extended to the four-dimensional
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spacetime [16]. Notably, out of the singularity, cosmic
strings (static or rotational) present a flat spacetime geom-
etry with some remarkable global properties. These prop-
erties include theoretically predicted effects such as grav-
itomagnetism and (non-quantum) gravitational Aharanov–
Bohm effect [17,18].

Cosmic string may eventually present an internal structure
[20] generating a Gödel spacetime featuring an exotic region
which allows closed time-like curves (CTC’s) around the
singularity. The frontier of this region is at a distance propor-
tional to J/α from the string, thus offering a natural bound-
ary condition. Rotating cosmic strings were also studied in
the Einstein–Cartan theory [21,22] and in teleparallel gravity
[23], in which the region of CTC’s was examined. There are
also studies of these objects in the extra-dimensional context
including their causal structure, which raised criticisms on
the real existence of the CTC’s region [24].

Regarding Landau levels, in the spacetime of a station-
ary spinning cosmic string one does not find much literature
[25,26] in contrast to what happens with static strings (see
[27–30], and references therein). This is probably due to the
analogies and possible technological applications [31] found
in condensed matter physics (e.g. disclination in crystals). It
is precisely this gap what motivates our paper. Thus, to make
some progress in this direction, we will present a fully rela-
tivistic study of a massive charged particle coupled to a gauge
field in the spacetime spanned by a rotating string, with the
eventual addition of scalar potentials.

Besides the mathematical challenge on its own, it is
phenomenologically meaningful to assess such a calcula-
tion for a static magnetic field parallel to the cosmic string
and then compare the outcome with the static string results
found in the literature [27]. It is also opportune to check
the non-relativistic limit in order to improve a previous non-
relativistic calculation made with a much simpler approach
[26].
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After such an outset, we will examine the problem when
cylindric scalar potentials of coulombian and linear types are
also considered. Phenomenologically, the coulombian poten-
tial is associated with a self-force acting on a charged particle
in the spacetime of a cosmic string [32,33], and the linear
term represents a cylindric harmonic oscillator of confining
nature. Finally, we will consider the rotating string endowed
with an internal magnetic flux and will discuss the raising of
the Landau quantization from a pure spacetime rotation.

From the astrophysical point of view, the motivation to the
present analysis lies on the possibility of existing scenarios
in which charged relativistic particles interact with cosmic
strings in the presence of intergalactic magnetic fields, with
transitions between the energy levels yielding a spectrum that
allows one not only to identify a cosmic string, but also to
differentiate a static string from a rotating one. Such scenarios
would also allow for getting a reasonable estimate of the
angular momentum of the string and, as a consequence, of
the size of its CTCs frontier. Indeed, we will do so at the end
of the paper.

The paper is organized as follows: in Sect. 2, we obtain
the exact energy eigenvalues of the Klein–Gordon equation
in the metric of a stationary rotating cosmic string coupled
to a static magnetic field. In Sect. 3, we solve the problem
along with some additional external potentials. In Sect. 4,
we consider a rotating string with an internal magnetic flux.
Finally, in Sect. 5 we conclude with some remarks.

2 Spinless charged particle in a rotating cosmic string
spacetime surrounded by an external magnetic field

To start, we shall consider a massive, charged, relativistic
spinless quantum particle in the spacetime of an idealized
stationary rotating cosmic string. It means that the string has
no structure and its metric is given by [19]

ds2 = c2dt2 + 2acdtdφ − (α2ρ2 − a2)dφ2 − dρ2 − dz2,

(1)

where the string is placed along the z axis and the cylindrical
coordinates are labeled by (t, ρ, φ, z) with the usual ranges.
Here, the rotation parameter a = 4GJ/c3 has units of dis-
tance and α = 1 − 4μG/c2 is the wedge parameter which
determines the angular deficit, �φ = 2π(1 − α), produced
by the cosmic string. The letters c,G, and μ stand for the
light speed, the gravitational Newton constant, and the linear
density of the mass of the string.

In order to investigate the relativistic quantum motion in
the presence of a gauge potential and in a curved spacetime,
let us consider the Klein–Gordon equation whose covariant
form is written as[

1√−g
Dμ

(√−ggμνDν

) + m2c2

h̄2

]
� = 0, (2)

where Dμ = ∂μ − ie
h̄c Aμ, e is the electric charge and m is

the mass of the particle; h̄ is as usual the Planck constant,
gμν is the metric tensor, and g = det gμν . Assuming the
existence of a homogeneous magnetic field B parallel to the
string, the vector potential can be taken as A = (0, Aφ, 0),
with Aφ = 1/2αBρ2.

The cylindrical symmetry of the background space, given
by Eq. (1), suggests the factorization of the solution of Eq.
(2) as

�(ρ, φ, z; t) = e−i Eh̄ t ei(
φ+kz z)R(ρ), (3)

where R(ρ) is the solution of the radial equation given by

d2R

dρ2 + 1

ρ

dR

dρ
− �

R

ρ2 − e2B2

4h̄2c2
ρ2R + � R = 0, (4)

with

� =
(




α
+ aE

αh̄c

)2

, (5)

� = E2

h̄2c2
− m2c2

h̄2 − k2
z + eB

h̄c

(



α
+ aE

h̄cα

)
; (6)

kz and E are z-momentum and energy of the particle, and 


the azimuthal angular quantum number. The solutions of Eq.
(4) can be found by means of the following transformation:

R(ρ) = exp

(
− Beρ2

4h̄c

)
ρ

√
�F(ρ). (7)

Substituting the above expression in Eq. (4) we obtain

ρF ′′(ρ) +
(

1 + 2
√

� − Be

h̄ c
ρ2

)

F ′(ρ) +
[
� − Be

h̄ c

(
1 + √

�
)]

ρ F(ρ) = 0. (8)

Now, let us consider the change of variables z=(Be/2h̄c)ρ2.
Thus, Eq. (8) assumes the familiar form

zF ′′(z) +
(√

� + 1 − z
)
F ′(z)

−
[

1

2

(√
� + 1

)
− h̄c

2eB
�

]
F(z) = 0, (9)

which is the well-known confluent hypergeometric equation,
whose linearly independent solutions are

F (1)(z) = 1F1

(
1

2
+

√
�

2
− h̄c

2eB
�;√

� + 1; z
)

, (10)

F (2)(z) = z−
√

�
1F1

(
1

2
−

√
�

2
− h̄c

2eB
�; 1 − √

�; z
)

.

(11)
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Therefore, the radial solutions, R(ρ), can be written as

R(1)(ρ) = A1 exp

(
− Beρ2

4h̄c

)
ρ

√
�

1F1

×
(

1

2
+

√
�

2
− h̄c

2eB
�; 1 + √

�; Beρ2

2h̄c

)
(12)

R(2)(ρ) = A2 exp

(
− Beρ2

4h̄c

)
ρ−√

�
1F1

×
(

1

2
−

√
�

2
− h̄c

2eB
�; 1 − √

�; Beρ2

2h̄c

)
(13)

where A1 e A2 are normalization constants. The second solu-
tion is not physically acceptable at the origin and we dis-
card it. Because confluent hypergeometric functions diverge
exponentially when ρ → ∞, in order to have asymptoti-
cally acceptable physical solutions we have to impose the
condition

1 + √
�

2
− h̄c

2eB
� = −n, (14)

where n is a positive integer. Substituting � and � given by
Eqs. (5) and (6), respectively, into Eq. (14), we obtain the
following result:

E2

Beh̄c
+

(
aE

h̄cα
+ 


α

)
−

∣∣∣∣ aEh̄cα
+ 


α

∣∣∣∣
− c

Beh̄
(h̄2k2 + m2c2) − 1

4

Bea2

h̄c3 = 2n + 1, (15)

from which we can read the energy eigenvalues as

En,
 = Bea

2α

|
| − 





±
√
m2c4 + k2h̄2c2 +

(
Bea

2α

|
| − 





)2
+ Bh̄ce

(
2n + 1 + |
|

α
− 


α

)
.

(16)

This expression shows that the energy eigenvalues are not
invariant under the interchange of positive and negative
eigenvalues of the azimuthal quantum number 
. This is a
consequence of the spacetime topological twist around the
spinning string, which now depends not only on α but also
on a (see Eq. (1)). It is worth noticing that by turning off
the string rotation, i.e. making a = 0, we obtain an already
known expression [30] valid for the static string. Notice also
that for positive 
, the energy spectra of both static and rotat-
ing strings are identical.

Non-relativistic limit

The non-relativistic expression can be attained by consider-
ing E2/c2 − m2c2 ≈ 2mE in the previous equation. In this
case, Eq. (16) turns into

En,
 ≈ 1

1 + eBa
2mc2α

(1 − |
|/
)

×
[
h̄2k2

2m
+ Beh̄

2mc

(
2n + 1 + |
|

α
− 


α

)]
. (17)

As a result, we can see that for 
 > 0 (i.e. particle orbit-
ing parallel to the string rotation) the energy levels are the
same for both static [27] and spinning strings. Otherwise, for
antiparallel orbits (
 < 0), the allowed spectrum depends
on the angular momentum density of the string (recall that
a = 4GJ/c3).

In this case, if we consider the slow rotation approxima-
tion, where the terms O(a2) are neglected, we have

�En,
/E
(0)
n,
 ≈ −eBa/αmc2 (18)

where �En,
 is the relative difference of our result compared
to E (0)

n,
, for the static string levels [27]. This result improves
the one found in [26] where further approximations were
made.

3 Cylindrically symmetric scalar potential in a rotating
cosmic string spacetime surrounded by an external
magnetic field

In this section we shall perform a generalization of the anal-
ysis above done, through the addition of the following cylin-
drically symmetric scalar potential [30,35]:

S(ρ) = κ

ρ
+ ν ρ, (19)

where κ and ν are constants.
In order to consider the influence of this potential on the

quantum dynamics of the particle, we have to modify Eq. (2)
by adding Eq. (19) to the mass term in such a way that mc

h̄ is
replaced by mc

h̄ + S(ρ). Thus, introducing this modification
into Eq. (2) and considering the ansatz given by Eq. (3), we
obtain the following radial equation:

d2R

dρ2 + 1

ρ

dR

dρ
− L

R

ρ2 − 2Mκ
R

ρ
− 2Mνρ R

−2ρ2R + D R = 0, (20)

where

M = mc

h̄
(21)

2 = M2ω2 + ν2 (22)

L =
(




α
+ a

α
E
)2

+ κ2 (23)

D = E2 + 2Mω

(



α
+ a

α
E
)

− M2 − 2κν − k2
z , (24)
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2Mω = eB/h̄cα and E = E/h̄c. For convenience, let us
define a new funtion H(ρ) such that

R(ρ) = exp

(
−1

2
ρ2 − Mν


ρ

)
ρ

√
L H(ρ). (25)

Thus, using the redefinition
√

ρ → ρ, Eq. (20) reads

d2H

dρ2 +
(

1 + 2
√
L

ρ
− 2Mν

3/2 − 2ρ

)
dH

dρ

+
[
M2ν2

3 + D


− 2

√
L − 2

− 1

2

(
4Mκ√


+ (1 + 2

√
L)

2Mν

3/2

)
1

ρ

]
H = 0. (26)

which corresponds to the biconfluent Heun equation [36,37].
Written in the standard form

Hb
′′(z) +

(
1 + α

z
− β − 2z

)
Hb

′(z)

+
[
γ − α − 2 − 1

2
[δ + (1 + α)β]1

z

]
Hb(z) = 0, (27)

its solutions are the so-called biconfluent Heun functions

Hb(z) = C1Hb(α, β, γ, δ; z) + C2 z
−αHb(−α, β, γ, δ; z),

(28)

with C1 and C2 being normalization constants. If α is not
a negative integer, the biconfluent Heun functions can be
written as [38,39]

Hb(α, β, γ, δ; z) =
∞∑
j=0

A j

(1 + α) j

z j

j ! (29)

where the coefficients A j obey the three-term recurrence
relation ( j ≥ 0)

A j+2 =
[
( j + 1)β + 1

2
[δ + (1 + α)β]

]
A j+1

−( j + 1)( j + 1 + α)(γ − α − 2 − 2 j)A j (30)

Comparing directly Eqs. (26) and (27), we obtain the fol-
lowing analytical solutions for H(ρ):

H (1)(ρ) = c1Hb

(
2
√
L,

2Mν

3/2 ,
M2ν2

3 + D


,

4Mκ√


;√
ρ

)

(31)

H (2)(z) = c2 ρ−2
√
LHb

(
−2

√
L,

2Mν

3/2 ,
M2ν2

3 + D


,

4Mκ√


;√
ρ

)

(32)

where we have substituted back ρ → √
ρ in the above

expressions. In view of Eq. (25) and the fact that the solu-
tion given by Eq. (32) is divergent at the origin, we will cast
it off. Moreover, the biconfluent Heun functions are highly

divergent at infinity and so we need to focus on their polyno-
mial forms. Indeed, the biconfluent Heun function becomes
a polynomial of degree n if the following conditions are both
satisfied (see [39] and the references therein),

γ − α − 2 = 2n, n = 0, 1, 2, . . . (33)

An+1 = 0, (34)

where An+1 has n + 1 real roots when 1 + α > 0 and β ∈
R. It is represented as a three-diagonal (n + 1)-dimensional
determinant, namely,
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ′ 1 0 0 · · · · · · 0
2(1 + α)n δ′ − β 1 0 · · · . . . 0

0 4(2 + α)(n − 1) δ′ − 2β 1 0 · · · 0

0 0 γ2 δ′ − 3β 1 · · · .
.
.

.

.

.
.
.
. 0

. . .
. . .

. . . 0
.
.
.

.

.

.
.
.
.

.

.

. γ j−1 δ′
s−1 1

0 0 0 0 0 γs δ′
s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(35)

where

δ′ = −1

2
[δ + (1 + α)β] (36)

δ′
s = δ′ − (s + 1)β (37)

γs = 2(s + 1)(s + 1 + α)(n − s). (38)

As an important consequence of Eq. (33), we have

M2ν2

3 + D


− 2

√
L − 2 = 2n, (39)

which means that the energy eigenvalues obey a quantization
condition. Differently from Eqs. (14) and (15), now we have
a fourth order expression for the energy, which is given by

D4E4 + D3E3 + D2E2 + D1E + D0 = 0, (40)

where

D4 = 1

2

D3 = 4Mω

2

a

α

D2 = 2M2ν2

4 − 4(n + 1)


+ 2

2

(
L + 2M2ω2 a

2

α2

)

D1 =
[

2M2ν2

4 − 4(n+1)


+ 2L

2

]
2Mω

a

α
− 8a

h̄cα




α

D0 = M2ν2

3

[
M2ν2

3 − 4(n + 1)

]

+
[

2M2ν2

3 − 4(n + 1) + L



]
L



+ 4(n + 1)2 − 4
2

α2 − 4κ2,

(41)
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with L = 2Mω 

α
−M2−2κν−k2

z . Unfortunately, the analyt-
ical solutions for the energy eigenvalues are given by huge
(algebraic) expressions. However, we can manage them in
some particular cases which will be presented in the follow-
ing.

3.1 The rotation vanishes (a = 0)

In this case, we obtain the following result for the energy
eigenvalues:

E/h̄c = ±
⎡
⎢⎣k2

z + M4ω2

ν2 + M2ω2 + 2κν − 2Mω



α
+ 2 

×
⎛
⎝n + 1 +

√

2

α2 + κ2

⎞
⎠

⎤
⎦

1
2

, (42)

which coincides with the one already obtained in the litera-
ture [30].

3.2 The rotation vanishes and there is no scalar potential
(a = 0, κ = 0, ν = 0)

In the present situation, we have  = Mω and then the
energy eigenvalues are given by

E/h̄c = ±
[
k2
z + M2 + 2Mω

(
n + 1 + |
|

α
− 


α

)] 1
2

.

(43)

However, in this case the biconfluent Heun solution does not
have the odd terms as we can see expanding Eq. (31) or from
Eqs. (35)–(38). Therefore, the above expression only make
sense when we consider the even terms, or equivalently when
n → 2n [27]. Another way to see this is verifying that

Hb

(
2
√

�, 0,
�

Mω
, 0,

√
Mωρ

)

= 2F1

(
1 + √

�

2
− �

4Mω
, 1 + √

�,
√
Mωρ2

)
(44)

and, thus, showing the correspondence between conditions
(14) and (39) in this particular case.

3.3 Linear confinement (κ = 0)

In this case, the Coulomb-type potential term is absent, and
as a consequence the scalar potential is reduced to the linear
term in ρ. Thus, the solutions are now given by

H (1)(ρ) = c1Hb

(
2
√

�,
2Mν

3/2 ,
M2ν2

3 + �


, 0;√

ρ

)

(45)

H (2)(z) = c2 ρ−2
√

�Hb

(
−2

√
�,

2Mν

3/2 ,
M2ν2

3 + �


, 0; √

ρ

)

(46)

Again we discard the second solution because it diverges at
ρ = 0. The condition to get polynomial solutions is now

M2ν2

3 + �


− 2

√
� − 2 = 2n (47)

As before, the above condition implies in the quantization of
the energy eigenvalues which is equivalent to Eq. (40), with
the coefficients given by (41), with κ = 0.

4 Spinless particle in the rotating cosmic string
spacetime with an internal magnetic flux

We will now examine the relativistic Landau levels of a
charged spinless particle in the spacetime of a magnetized
rotating string (namely, endowed with some intrinsic mag-
netic flux �) with no external electromagnetic field [40,41].
The corresponding gauge coupling is obtained by making
B → B = �/απρ2 in Eq. (4). In this case, the radial equa-
tion reads

ρ2 d2R

dρ2 + ρ
dR

dρ
+ (δρ2 − �)R = 0. (48)

where � and δ are given by

� =
(




α
+ a

α
E − ε�

α

)2

(49)

δ = E2 − M2 − k2
z (50)

with ε = e/2π h̄c.

The solutions of Eq. (48) are written in terms of Bessel’s
functions of the first kind, Jλ(z), and of the second kind,
Yλ(z), as

R(ρ) = C1 J√�

(√
δ ρ

)
+ C2Y√

�

(√
δρ

)
, (51)

with C1 and C2 being constants. The function Jλ(z) is dif-
ferent from zero at the origin when λ = 0. Otherwise, Y√

�

is always divergent at the origin. Thus, we will discard it and
consider λ 	= 0. It is worth pointing out that when � = 0, we
reobtain the wave function found in [42]. To find the energy
eigenvalues, we will impose the so called hard-wall condi-
tion. With this boundary condition, the wave function of the
particle vanishes at some ρ = rw which is an arbitrary radius
far away from the origin. Thus, we can use the asymptotic
expansion for large arguments of Jλ(z), given by

Jλ(z) ≈
√

2

π z
cos

(
z − λπ

2
− π

4

)
, (52)
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from which we obtain

√
δrw −

√
�π

2
− π

4
= π

2
+ nπ, (53)

for n ∈ Z. Substituting Eqs. (49) and (50) into (53), we get

rω
√
E2 − M2 − k2

z ∓ π

2

(



α
+ a

α
E − ε�

α

)

=
(
n + 3

4

)
π,

(54)

where the upper and lower signals correspond to 
/α +
aE/α−ε�/α ≤ 0 or 
/α+aE/α−ε�/α > 0, respectively.
Equation (54), can be rewritten as the following second order
equation:

A1 E2 + A2 E + A3 = 0,

with

A1 = r2
ω − a2π2

4α2

A2 = −aπ2

2α

[(



α
− ε�

α

)
±

(
2n + 3

2

)]

A3 = −r2
ω

(
M2 + k2

z

)
−

(



α
− ε�

α

)
π2

4
−

(
n + 3

4

)2

π2

∓
(
n + 3

4

) (



α
− ε�

α

)
π2. (55)

Since rw is very large E reduces to

E+ ≈ +
√
M2 + k2

z + aπ2

4αr2
ω

[



α
− ε�

α
±

(
2n + 3

2

)]

E− ≈ −
√
M2 + k2

z + aπ2

4αr2
ω

[



α
− ε�

α
±

(
2n + 3

2

)]
.

(56)

Let us now address E+(= E+/h̄c) and assume that kz <<

M . Then, provided that 
/α ≥ ε �/α (see Eq. (54)), we have

E+ ≈ mc2 + aπ2h̄c

4αr2
ω

[



α
− ε �

α
+ 2n + 3

2

]
, (57)

which shows that in the absence of rotation, the energy eigen-
values reduce to the rest energy of the particle irrespective
of α. In other words, the eigenenergies are the same with or
without the presence of a (static) magnetized cosmic string
in space but split if the string rotates.

5 Conclusions and remarks

We have analyzed the Landau levels of a spinless massive par-
ticle in the spacetime of a rotating cosmic string by means
of a fully relativistic approach. Specifically, in Sect. 2 the

Landau quantization has been derived in a static and homo-
geneous magnetic field parallel to the string by solving the
covariant Klein–Gordon equation in the spacetime of a coni-
cal singularity endowed with spin. The physically significant
role played by the string rotation, as introduced into the met-
ric, becomes apparent in the particle’s energy spectrum. As
shown in Eqs. (13) and (16) eigenvalues and eigenfunctions
depend nontrivially on both the string spinning parameter a,
the topological deficit α, and the particle’s angular momen-
tum l. Turning off the string rotation, makes the Landau lev-
els to collapse to those of a static string [27,30], as expected.
The non-relativistic limit of the energies was also found and
equally well compared with the static case; the present result
improves and corrects a previous one obtained by means of
a simpler approach [26].

In Sect. 3 we obtained the spectrum of the particle when a
gauge potential together with a scalar one are present in the
space around the rotating string. We shown that the eigensates
are given by biconfluent Heun functions, which in their poly-
nomial representation allowed finding a quantization con-
dition on the energy levels. The general expression can be
analytically obtained but looks rather huge, so we decided to
exhibit just some special relevant cases which indeed confirm
the results already obtained in [27,30].

We have also tackled the problem of a rotating cosmic
string endowed with an internal magnetic flux with a hard-
wall boundary far away from the source (see Eqs. (52)–(56)
in Sect. 4). The resulting eigenfunctions converge to those
found in the literature when the magnetic flux vanishes [42],
as expected. It is noteworthy that the Landau levels of the
spinning string remain the same even when such internal
magnetic flux fades away; namely, when there is no gauge
field inside nor around. This can be interpreted as an induc-
tion of the Landau quantization from the sole rotational con-
dition of the defect. It is interesting to compare this result
with that of a rotating spherical source in Kerr spacetime
obtained in [43].

Finally, as a phenomenological byproduct of our results,
it is possible to provide a reasonable estimate of the angu-
lar momentum of the rotating cosmic string, J . Consider a
proton orbiting with angular velocity  around the string
very close to the CTC’s frontier. Now, for a ≈ c/ and
 = ωc = eB/2αmc with B ∼ 10−6 G (which is the value
of currently observable intergalactic magnetic fields [34]),
we conclude that the CTC’s frontier is at about 1011 m from
the string, which corresponds to J ∼ 1047 kg m/s. This value
is compatible with the one presented in [19] when the upper
limit of the photon mass, 10−16 eV, is taken into account
[44,45].

As a future perspective, we intend to study the problem
by considering a spinorial particle.
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