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1 Introduction

The design study of the Future Circular Colliders (FCC) in a 100-km ring in the Geneva

area has started at CERN at the beginning of 2014, as an option for post-LHC particle ac-

celerators. The study has an emphasis on proton-proton and electron-positron high-energy

frontier machines [1]. In the current plans, the first step of the FCC physics programme

would exploit a high-luminosity e+e− collider called FCC-ee, with centre-of-mass energies

ranging from the Z pole to the tt̄ threshold and beyond. A first look at the physics case of

the FCC-ee can be found in ref. [2].

In this first look, an estimate of the achievable precision on a number of Z-pole observ-

ables was inferred and used in a global electroweak fit to set constraints on weakly-coupled
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new physics up to a scale of 100 TeV [3]. These constraints were obtained under two

assumptions: (i) the precision of the pertaining theoretical calculations will match the

expected experimental accuracy by the time of the FCC-ee startup; and (ii) the determi-

nation of standard-model input parameters — four masses: mZ, mW, mtop, mHiggs; and

three coupling constants: αs(m
2
Z), GF, αQED(m2

Z) — will improve in order not to be the

limiting factors to the constraining power of the fit. The determinations of the Higgs boson

mass from the LHC data [4] and of the Fermi constant from the muon lifetime measure-

ment [5] are already sufficient for this purpose. It is argued in refs. [2, 6] that the FCC-ee

can adequately improve the determination of the other three masses and of the strong

coupling constant by one order of magnitude or more: the experimental precision targets

for the FCC-ee are 100 keV for the Z-boson mass, 500 keV for the W-boson mass, 10 MeV

for the top-quark mass, and 0.0001 for the strong coupling constant. (The FCC-ee also

aims at reducing the Higgs boson mass uncertainty down to 8 MeV.)

No mention was made, however, of a way to improve the determination of the elec-

tromagnetic coupling constant evaluated at the Z mass, and it was simply assumed that a

factor 5 improvement with respect to today’s uncertainty — down to 2× 10−5 — could be

achieved by the time of the FCC-ee startup. Today, αQED(m2
Z) is determined from αQED(0)

(itself known with an accuracy of 10−10) with the running coupling constant formula:

αQED(m2
Z) =

αQED(0)

1−∆α`(m
2
Z)−∆α

(5)
had(m2

Z)
. (1.1)

Its uncertainty is dominated by the experimental determination of the hadronic vacuum

polarization, ∆α
(5)
had(m2

Z), obtained from the dispersion integral:

∆α
(5)
had(m2

Z) =
αm2

Z

3π

∫ ∞
4m2

π

Rγ(s)

s(m2
Z − s)

ds, (1.2)

where Rγ(s) is the hadronic cross section σ0(e+e− → γ∗ → hadrons) at a given centre-

of-mass energy
√
s, normalized to the muon pair cross section at the same centre-of-mass

energy. At small values of
√
s, typically up to 5 GeV, and in the Υ resonance region from 9.6

to 13 GeV, the evaluation of the dispersion integral relies on the measurements made with

low-energy e+e− data accumulated by the KLOE, CMD-2/SND, BaBar, Belle, CLEO and

BES experiments. The most recent re-evaluation [7] gives ∆α
(5)
had(m2

Z) = (275.7±1.0)×10−4,

which leads to

α−1
QED(m2

Z) = 128.952± 0.014, (1.3)

corresponding to a relative uncertainty on the electromagnetic coupling constant, ∆α/α,

of 1.1 × 10−4. It is hoped that future low-energy e+e− data collected by the BES III and

VEPP-2000 colliders will improve this figure to 5 × 10−5 or better [8].

In this study, it is shown that the FCC-ee can provide another way of determining

the electromagnetic coupling constant with a similar or better accuracy, from the precise

measurement of muon forward-backward asymmetry, AµµFB, just above and just below the

Z peak, as part of the resonance scan. This method does not rely on the experimental

determination of the vacuum polarization ∆α
(5)
had. Here, the point is not to extrapolate
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Figure 1. Tree-level Feynmann graph for µ+µ− production at the FCC-ee.

αQED(m2
Z) from αQED(0), but to provide a direct evaluation of αQED at

√
s ' mZ, hence

with totally different theoretical and experimental uncertainties. This measurement would

in turn be combined with other determinations for an even smaller uncertainty.

This letter is organized as follows. In section 2, the reasons for the choice of AµµFB as an

observable sensitive to αQED are given, and the sensitivity is determined as a function of

the centre-of-mass energy. The optimal centre-of-mass energies, as well as the integrated

luminosities and running time needed to achieve a statistical uncertainty of a few 10−5 are

determined in section 3. Possible systematic uncertainties are discussed and evaluated in

section 4.

2 The muon forward-backward asymmetry and the electromagnetic cou-

pling constant

At the FCC-ee, the muon pair production proceeds via the graph depicted in figure 1

through either a Z or a γ exchange.

At tree level, the cross section σµµ therefore contains three terms: (i) the γ-exchange

term squared, proportional to α2
QED(s); (ii) the Z-exchange term squared, proportional to

G2
F (where GF is the Fermi constant); and (iii) the γ-Z interference term, proportional

to αQED(s) × GF. These three terms are denoted G, Z, and I in the following. Their

expressions as a function of the centre-of-mass energy
√
s can be found in ref. [9] and

reported below.

G =
c2
γ

s
, (2.1)

Z =
c2

Z(v2 + a2)2 × s
(s−m2

Z)2 +m2
ZΓ2

Z

, (2.2)

I =
2cγcZv2 × (s−m2

Z)

(s−m2
Z)2 +m2

ZΓ2
Z

, (2.3)

with the following definitions:

cγ =

√
4π

3
αQED(s), cZ =

√
4π

3

m2
Z

2π

GF√
2
, a = −1

2
, v = a × (1− 4 sin2 θW), (2.4)

and where θW is the effective Weinberg angle (sin2 θW ' 0.2315).
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Figure 2. Cross section for the e+e− → µ+µ− process (red curve) and the three contributions,

calculated from the analytical expressions of ref. [9]: pure γ-exchange term (blue curve); pure Z-

exchange term (green curve); and the absolute value of the γ-Z interference term (black curve).

The initial-state radiation is included, and s′/s is required to exceed 0.99.

An absolute measurement of the µ+µ− production cross section σµµ = Z + I + G
is therefore a priori sensitive to αQED through the interference term and the γ-exchange

term. The cross section and the three contributing terms are displayed in figure 2 as a

function of the centre-of-mass energy
√
s, with the inclusion of initial state radiation (ISR).

In this figure, the effective collision energy after ISR, denoted
√
s′, is required to satisfy

s′ > 0.99s. The importance of such a requirement on s′, together with the way to control

it experimentally, is discussed in section 4.3.2.

At a given
√
s, a small variation ∆α of the electromagnetic coupling constant translates

to a variation ∆σµµ of the cross section:

∆σµµ =
∆α

α
(I + 2G). (2.5)

As is well visible in figure 2, the interference term can be neglected in the above equation.

As a consequence, if the cross section can be measured with a precision ∆σµµ, the relative

precision on the electromagnetic coupling constant amounts to

∆α

α
' ∆σµµ

2G
' 1

2

∆σµµ
σµµ

(
1 +
Z
G

)
. (2.6)

The target statistical precision of 2 × 10−5 on αQED can therefore be achieved with

more than 109 µ+µ− events and at centre-of-mass energy where the Z contribution to the

cross section is much smaller than the photon contribution. These two conditions call for
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a centre-of-mass energy smaller than 70 GeV, where the cross section is both large and

dominated by the photon contribution. Beside the fact that this centre-of-mass energy is

not in the current core programme of the FCC-ee and that the needed integrated luminosity

of 50 ab−1 would require at least a year of running at this energy in the most favourable

conditions, the measurement itself poses a number of intrinsic difficulties. Indeed, the

absolute measurement of a cross section with a precision of a few 10−5 requires the selection

efficiency, the detector acceptance, and the integrated luminosity to be known with this

precision or better. Even if not impossible to meet, these requirements are exceedingly

challenging in the extraction of αQED from this method with the needed precision.

The muon forward-backward asymmetry, AµµFB, defined as

AµµFB =
σF
µµ − σB

µµ

σF
µµ + σB

µµ

, (2.7)

where σ
F(B)
µµ is the µ+µ− cross section for events with the µ− direction in the forward

(backward) hemisphere with respect to the e−-beam direction, hence with σF
µµ+σB

µµ = σµµ,

solves most of these obstacles. Indeed, it is a self-normalized quantity, which thus does not

need the measurement of the integrated luminosity. Moreover, most uncertainties on the

selection efficiency and the detector acceptance simply cancel in the ratio. This observable

is therefore a good candidate for a measurement with an exquisite precision.

At lowest order, and if the terms proportional to m2
µ/m

2
Z ∼ 10−6 are neglected, the

angular distribution of the µ− from the e+e− → µ+µ− production can be written in the

following way [10]:

dσµµ
d cos θ

(s) ∝ G1(s)× (1 + cos2 θ) +G3(s)× 2 cos θ, (2.8)

where G1(s) and G3(s) can be expressed as a function of G, Z and I as follows:

G1(s) = G + I + Z and G3(s) =
a2

v2

{
I +

4v4/a4

(1 + v2/a2)2Z
}
. (2.9)

After integration over the muon polar angle θ, the forward-backward asymmetry therefore

amounts to:

AµµFB(s) =
3

4

G3(s)

G1(s)
. (2.10)

The variation of AµµFB as a function of the centre-of-mass energy, as obtained from

eq. (2.10), is shown in figure 3. In the above expressions, the photon-exchange term is

totally symmetric, hence is absent from the numerator. Because v4/a4 ' 3 × 10−5, the

Z-exchange term contribution to the asymmetry is minute, except at the Z pole where the

interference term vanishes and the asymmetry is small: AµµFB,0 = (3/4)×4v2a2/(a2 + v2)2 '
0.016. The interference term, on the other hand, is almost 100% anti-symmetric and

contributes mostly to the numerator. (The contribution of the interference term to the

denominator, i.e., to the total cross section, can be neglected as shown in figure 2.)

The off-peak muon forward-backward asymmetry can therefore be expressed as follows:

AµµFB = AµµFB,0 +
3

4

a2

v2

I
G + Z

. (2.11)
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Figure 3. The muon forward-backward asymmetry in e+e− → µ+µ− as a function of the centre-

of-mass energy.

At a given
√
s, a small variation ∆α of the electromagnetic coupling constant translates to

a variation ∆AµµFB of the muon forward-backward asymmetry:

∆AµµFB =
∆α

α
× 3

4

a2

v2

I(Z − G)

(G + Z)2
=
(
AµµFB −A

µµ
FB,0

)
× Z − G
Z + G

× ∆α

α
. (2.12)

In first approximation, the asymmetry is therefore not sensitive to αQED when the Z-

and photon-exchange terms are equal, i.e., at
√
s = 78 and 112 GeV (figure 2), where the

asymmetry is maximal (figure 3). Similarly, the sensitivity to the electromagnetic coupling

constant vanishes in the immediate vicinity of the Z pole. The red curve of figure 4

shows the variation of AµµFB for a relative change of αQED by +1.1 × 10−4, as a function

of
√
s. In other words, the red curves displays the absolute precision with which AµµFB

must be measured to start improving the accuracy on αQED(m2
Z) with respect to today’s

determination.

For a positive variation of ∆α, the sign of ∆AµµFB, i.e., the sign of
(
AµµFB −A

µµ
FB,0

)
×

(Z−G), changes at each of these centre-of mass energies: it is positive below 78 GeV, where

the asymmetry is negative and the Z contribution is smaller than the photon contribution,

becomes negative between 78 GeV and the Z pole, where the Z contribution dominates, then

positive again from the Z pole all the way to 112 GeV because the asymmetry becomes

positive, and negative for larger centre-of-mass energies where the photon contribution

takes over. This interesting property, in particular the sign change around the Z pole, is

fully exploited in section 4. Written the other way around and in a perhaps more useful

manner for the following, the relative precision on the electromagnetic coupling constant

– 6 –
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Figure 4. The red curve shows the variation of the muon forward-backward asymmetry as a

function of
√
s for a relative change of αQED(s) by +1.1× 10−4. The asymmetry has no sensitivity

to αQED when the red curve crosses the black horizontal line. The blue area represents the absolute

statisitical uncertainty with which the muon forward-backward asymmetry can be measured at the

FCC-ee in one year of data taking at any given centre-of-mass energy.

amounts to
∆α

α
=

∆AµµFB

AµµFB −A
µµ
FB,0

× Z + G
Z − G

'
∆AµµFB

AµµFB

× Z + G
Z − G

, (2.13)

where the approximation in the last term of the equality is valid off the Z peak.

3 Statistical power of the method

The optimal centre-of-mass energies are those which minimize the statistical uncertainty on

αQED(s). For a given integrated luminosity L, the statistical uncertainty on the forward-

backward asymmetry amounts to

σ
(
AµµFB

)
=

√
1−AµµFB

2

Lσµµ
. (3.1)

The target luminosities for the FCC-ee in a configuration with four interaction points

are 215 × 1034cm−2s−1 per interaction point at the Z pole and 38 × 1034cm−2s−1 per

interaction point at the WW pair production threshold [11]. With 107 effective seconds

per year, the total integrated luminosity is therefore expected to be 86 ab−1/ year at the

Z pole and 15.2 ab−1/ year at the WW threshold. Between these two points, the variation

of the luminosity with the centre-of-mass energy is assumed to follow a simple power

law: L(
√
s) = L(mZ) × sa. The very large Z pole luminosity is achieved by colliding
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Figure 5. Target integrated luminosities for the FCC-ee, in a scheme with four interaction points,

for centre-of-mass energies between 50 and 150 GeV.

about 60,000 bunches of electrons and positrons, which fill the entirety of the 400 MHz RF

buckets available over 100 km. It also corresponds to a time between two bunch crossings

of 5 ns, which is close to the minimum value acceptable today for the experiments. With

a constant number of bunches, the luminosity was therefore conservatively assumed to

linearly decrease with the centre-of-mass energy (and reach 0. for
√
s = 0.), leading to the

profile of figure 5.

With the cross section of figure 2, the asymmetry of figure 3, and the integrated

luminosity of figure 5, eq. (3.1) leads to the statistical uncertainty on AµµFB displayed as

the blue area in figure 4, for a one-year running at any given centre-of-mass energy. An

improvement on the determination of αQED(s) is possible wherever the red curve lies outside

the blue area, and is largest when the absolute value of the ratio between the red and blue

curves is maximum.

The corresponding relative accuracy for the αQED(s) determination is shown in figure 6.

The best accuracy of ∼ 3 × 10−5 is obtained for one year of running either just below or

just above the Z pole, specifically at
√
s− ∼ 87.9 GeV and

√
s+ ∼ 94.3 GeV.

The value of the electromagnetic coupling constant extracted from the muon forward-

backward asymmetry measured at either energy, α− ≡ αQED(s−) and α+ ≡ αQED(s+), are

then extrapolated towards a determination of α0 ≡ αQED(m2
Z) with the running coupling

constant expression around the Z pole, valid at all orders in the leading-log approximation:

1

α0
=

1

α±
+ β log

s±
m2

Z

, (3.2)

where β is proportional to the well-known QED β-function. In the standard model and at

the lowest QED/QCD order, it reads β0 =
∑

f Q
2
f /3π, where the sum runs over all active

– 8 –
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of the muon forward-backward asymmetry at the FCC-ee, with a one-year running at any given

centre-of-mass energy. The best accuracy is obtained for one year of running either just below or

just above the Z pole.

fermions at the Z pole (f = e, µ, τ , d, u, s, c b) and Qf is the fermion electric charge in unit

of e. The standard model extrapolation correction from α± to α0 therefore amounts to

−0.033 from the measurement below the Z pole, and +0.030 from the measurement above

the Z pole, corresponding to a relative correction of ±2.5×10−4 in both cases, i.e., an order

of magnitude larger than the targeted uncertainty on α0. While this correction is known

with an excellent precision in the standard model — the QED β-function is now known

with QED corrections up to five loops and QCD corrections up to four loops [12, 13] —, it is

certainly preferable to remove this model dependence (and the residual theory uncertainty)

from the determination of α0.

The dual measurements of α− and of α+ solve this issue and yields the straightforward

combination:

1

α0
=

1

2

(
1− ξ
α−

+
1 + ξ

α+

)
, where ξ =

log s−s+/m
4
Z

log s−/s+
' 0.045, (3.3)

without any model dependence related to the running of the electromagnetic constant. This

combination of a measurement below the Z peak and a measurement above the Z peak has

other advantages, the most important of which is the cancellation to a large extent of many

systematic uncertainties, as explained in the next section. With this weighted average, the

targeted precision of 2 × 10−5 can be obtained from one year at 87.9 GeV and one year

at 94.3 GeV with the sole measurement of the muon forward-backward asymmetry. The

running time at each energy can be reduced to six months — as is assumed in the following

– 9 –
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— if additional measurements are considered, e.g., the tau forward-backward asymmetry

and, possibly, the electron forward-backward asymmetry.

4 Systematic uncertainties

For the forward-backward asymmetry measurement to be relevant in the determination of

the electromagnetic coupling constant, all possible systematic uncertainties must be kept

well below the statistical uncertainty aimed at in section 3. Systematic uncertainties may

be of experimental, parametric, and theoretical origin, and are studied in turn below.

4.1 Experimental uncertainties

4.1.1 Beam energy calibration

Circular e+e− colliders have the unique feature of providing the possibility to measure the

beam energy with the resonant depolarization method [14] with an outstanding accuracy.

At the FCC-ee [15], this accuracy has been estimated [2, 16] to be of the order of 50 keV

around the Z pole, of which 45 (23) keV are (un)correlated between all energy points,

corresponding to a total relative uncertainty of 10−6. The derivative of the muon forward-

backward asymmetry with respect to the centre-of-mass energy, however, is largest around

the Z pole, as can be seen from figure 3. It is therefore important to check that this

expected precision is indeed sufficient.

At
√
s− and

√
s+, the photon contribution is only 5% of the total cross section and

varies slowly with the centre-of-mass energy around the Z pole (figure 2): this contribution

can be considered as a second order effect in the uncertainty evaluation. Equations 2.11

and 2.13 therefore simplify to

AµµFB(s±) ' 3

4

a2

v2

I
Z

and
∆α±
α±

'
∆AµµFB

AµµFB

. (4.1)

The dependence of I and Z on s and mZ is given at the beginning of section 2. The forward-

backward asymmetry dependence on s and mZ in the vicinity of the Z pole is simply

AµµFB(s,mZ) ∝ (s−m2
Z)/(sm2

Z). (4.2)

The uncertainties on
√
s and mZ both amount to 95 keV, are dominated by the un-

certainty of the beam energy measurement, and are largely correlated as indicated above.

The uncorrelated variables are therefore the difference D =
√
s − mZ and the average

Σ = (
√
s + mZ)/2., with uncertainties of σD = 46 keV and σΣ = 94 keV, respectively. A

straightforward error propagation yields

σ(AµµFB)

AµµFB

' 1√
smZ

√(
s+m2

Z −
√
smZ

)2 σ2
D

D2
+
(
s+m2

Z +
√
smZ

)2 σ2
Σ

Σ2
, (4.3)

which in turn simplifies to, at
√
s±,

σ(α±)

α±
'
σD±

D±
, with D± =

√
s± −mZ, (4.4)
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after neglecting the much smaller term proportional to (σΣ/Σ)2. Numerically, the relative

uncertainties on α±, or equivalently on 1/α±, arising from the beam energy measurement

both amount to 1.4 × 10−5 and are uncorrelated. The uncertainty on the coefficient ξ

(±0.00001) was found to have a totally negligible contribution (±2× 10−9) to the relative

uncertainty on α0 . Only the (uncorrelated) errors on α− and α+ contribute. As a conse-

quence, the relative uncertainty on αQED(m2
Z) arising from the beam energy measurement

amounts to

σ(α0)

α0
' 1

2

√
(1− ξ)2

σ2(α−)

α2
−

+ (1 + ξ)2
σ2(α+)

α2
+

' 1× 10−5. (4.5)

4.1.2 Beam energy spread

At the FCC-ee, the relative beam energy spread δ for centre-of-mass energies around the

Z pole is expected [11] to be of the order of 0.12%, i.e., two orders of magnitude larger

than the accuracy of the (average) beam energy measurement. The relative centre-of-mass

energy spread δ is
√

2 times smaller, i.e., of the order of 0.08%. The shift ∆AµµFB between the

predicted asymmetry and its measured value at a centre-of-mass energy
√
s± is therefore

∆AµµFB(s±) =
1√

2πs±δ

∫
AµµFB(s) exp−

(√
s−√s±

)2
2s±δ2

d
√
s−AµµFB(s±), (4.6)

which yields, with the functional form of AµµFB(s) given in eq. (4.2) expanded around s±:

∆AµµFB

AµµFB

(s±) '
3m2

Z

s± −m2
Z

δ2, (4.7)

i.e., numerically

∆AFB

AFB
(s−) = −3.0× 10−5 and

∆AFB

AFB
(s+) = +3.1× 10−5, (4.8)

under the reasonable assumption that the beam energy spread values are similar at
√
s±

and mZ.

The relative changes of AFB(s±) are of the order of the statistical uncertainty, and

larger than the uncertainty originating from the beam energy measurement. These changes

are, however, of opposite sign, and lead to a remarkable cancellation by more than one order

of magnitude in the determination of α0. Indeed, the combination of eqs. (2.13) and (3.3)

leads to the following estimate of the bias on α0:

∆α0

α0
' 0.528

∆AFB

AFB
(s−) + 0.563

∆AFB

AFB
(s+) ' +1.6× 10−6. (4.9)

The uncertainty on this small bias (which is to be corrected for) depends on the accuracy

with which the beam energy spread in known. For example, the measurement of bunch

length from the distribution of the µ+µ− event primary vertices determined directly by

the FCC-ee experiments would allow a precise determination of the beam energy spread.

A precision of 2.5% could be reached with this method at LEP [17], yielding a negligible

uncertainty on the αQED(m2
Z) determination.
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4.1.3 Muon identification efficiency and detector acceptance

In eq. (2.10), the asymmetry is determined under the assumption of a 100% muon identi-

fication efficiency and a 4π detector acceptance. This equation is still valid for a smaller

efficiency, with the condition that it is independent of the muon polar angle. If instead the

identification efficiency times the detector acceptance is a non-trivial function of the polar

angle, ε(cos θ), the measured muon angular distribution gets modified accordingly, and so

does the measured forward-backward asymmetry.

This issue can be solved experimentally with the observation [18] that a e+e− → µ+µ−

event contains not only a negative muon but also a positive muon, the measured angular

distributions of which are given by eqs. (2.8) and (2.10) modified with ε(cos θ):

dN±

d cos θ
∝
{

1 + cos2 θ ± 8

3
AµµFB cos θ

}
× ε(cos θ), (4.10)

where ε(cos θ) is assumed to be independent on the muon electric charge. This very rea-

sonable assumption can be verified with an adequate accuracy from the 3×1011 Z→ µ+µ−

events collected at
√
s = 91.2 GeV, by tagging one of the two muons in each event, and

probing the other to determine ε(cos θ) separately for positive and negative muons. The

ratio of the difference to the sum of the numbers of negative and positive muons detected

a given cos θ bin, N−(cos θ) and N+(cos θ), therefore amounts to

N−(cos θ)−N+(cos θ)

N−(cos θ) +N+(cos θ)
=

4

3

2 cos θ

1 + cos2 θ
AµµFB, (4.11)

which allows the muon forward-backward asymmetry to be determined in each bin

as follows:

AµµFB =
3

4
× N−(cos θ)−N+(cos θ)

N−(cos θ) +N+(cos θ)
× 1 + cos2 θ

2 cos θ
, (4.12)

an expression from which ε(cos θ) has simplified away in the ratio, hence without any

impact on the measurement uncertainty. The muon forward-backward asymmetry for the

complete event sample is then obtained by the statistically-weighted average of the bin-by-

bin determination over the detector acceptance. Any systematic effect related to the choice

of the bin size — related for example to the muon angular resolution — can be eliminated

by the use of an unbinned likelihood instead.

4.1.4 Charge inversion

The asymmetry of the sample of events where both muon charges are wrongly measured

equals −AµµFB. The relative change of the asymmetry arising from double charge inversion

therefore amounts to
∆AµµFB

AµµFB

= −f2
±, (4.13)

where f± is the probability for a muon to be measured with the wrong charge sign. For

this effect to be relevant (i.e., larger than 2 × 10−5), f± would need to exceed 0.5% — a

typical value for LEP detectors. If FCC-ee detectors were similar to LEP detectors, f±
would be measured with an outstanding precision from the several 107 million µ±µ± events
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collected at
√
s±, thus allowing the effect to be corrected with no additional uncertainty on

the asymmetry. On the other hand, the next generation of detectors for FCC-ee is likely

to provide a track momentum resolution better than that of the LEP detectors by up to

one order of magnitude, reducing f± to ridiculously small values, with no sizable effect on

the asymmetry.

4.1.5 Background from tau-pair production

The background from e+e− → τ+τ−, where the two taus decay into µνeνµ has a cross

section of the order of 3% of the e+e− → µ+µ− cross section. It can be greatly reduced

by cuts on the muon impact parameters, on the angle between the two muons, and on

the muon momenta. The very small residual contribution from this process is however

not an issue, as the tau forward-backward asymmetry is expected to be identical to the

muon forward-backward asymmetry. No additional uncertainty is therefore expected from

this source.

4.2 Parametric uncertainties

The cross section given in section 2 depends solely on four parameters — beside αQED(s)

— namley the Fermi constant GF, the Z boson mass and width, mZ and ΓZ, and the

Weinberg angle, sin2 θW. The precision with which these parameters are known is the

source of additional uncertainties for the muon forward-backward asymmetry, and in turn,

on the electromagnetic coupling constant. These uncertainties are examined in turn below.

4.2.1 Z mass

The uncertainty on the Z mass is fully correlated to the uncertainty on the beam energy.

Its effect on the forward backward asymmetry is already taken into account in section 4.1.1.

4.2.2 Z width

The Z width simplifies away from the ratio given in eq. (4.1), which contains only the domi-

nant contributions from I and Z to the asymmetry. To exhibit the sub-leading dependence

on ΓZ, it is necessary to go back to the more complete expression given in eq. (2.11), which

contains also the G term. The uncertainty arising from the knowledge of ΓZ is therefore

not expected to be dominant. Straightforward error propagation yields

σ(AµµFB)

AµµFB

= 2
G
Z
×

m2
ZΓ2

Z

(s−m2
Z)2 +m2

ZΓ2
Z

× σΓZ

ΓZ
. (4.14)

The uncertainty on ΓZ is dominated by the energy calibration error and amounts to σD =

46 keV, i.e., to about 2 × 10−5ΓZ. At
√
s±, the photon contribution G is about 5% of

the Z contribution Z, itself about 50% of its pole value. As a consequence, the relative

uncertainties on α± are equal and amount to 10−6 with a 100% correlation. The relative

uncertainty on αQED(m2
Z) arising from the Z width is therefore at the same level of 10−6.

– 13 –



J
H
E
P
0
2
(
2
0
1
6
)
0
5
3

4.2.3 Weinberg angle

Only the terms proportional to I and Z in the complete asymmetry expression (eqs. (2.9)

and (2.10)) vary with sin2 θW, through the vectorial coupling v . In the vicinity of the Z pole,

the small photon contribution can anyway be neglected, and the asymmetry expression

simplifies to

AµµFB(s) =
3v2a2

(v2 + a2)2
+
cγ
cZ

s−m2
Z

2s

3a2

(v2 + a2)2
. (4.15)

The derivative of AµµFB(s) with respect to sin2 θW can be obtained analytically, yielding in

a straightforward manner

∆AµµFB

AµµFB

(s) =
8av

v2 + a2
×

a2 − v2 − cγ
cZ

s−m2
Z

s

v2 +
cγ
cZ

s−m2
Z

2s

×∆ sin2 θW, (4.16)

i.e., numerically for s = s±:

∆AµµFB

AµµFB

(s−) ' −6.92∆ sin2 θW and
∆AµµFB

AµµFB

(s+) ' +4.87∆ sin2 θW. (4.17)

The propagation to α0 from eq. (4.9) leads to a partial cancellation by almost one order of

magnitude:

∆α0

α0
' 0.528

∆AFB

AFB
(s−) + 0.563

∆AFB

AFB
(s+) ' −0.91∆ sin2 θW. (4.18)

For the current precision of the effective Weinberg angle determination, of the order

1.6× 10−4, this uncertainty on αQED is large and amounts to 1.4× 10−4. At the FCC-ee,

however, the measurement of the asymmetry at the Z pole (insensitive to the electromag-

netic coupling constant) can be used to improve the precision of the effective Weinberg

angle [19] by a factor 30 to 6× 10−6 — an uncertainty dominated by the absolute calibra-

tion of the beam energy — thus reducing the uncertainty on αQED to 5× 10−6.

4.2.4 Fermi constant

The Fermi constant is known to a relative accuracy of 5× 10−7 [20], turning into a relative

uncertainty on αQED(m2
Z) of 5× 10−7.

4.3 Theoretical uncertainties

Theoretical uncertainties on the muon forward-backward asymmetry arise from the lack of

higher orders in the calculation of the muon angular distribution. The dominant higher-

order effects on the muon angles originate from QED corrections, namely (i) initial-state

radiation (ISR), i.e., the emission of one or several photons by the incoming beams; (ii)

final state radiation (FSR), i.e., the emission of photons from the outgoing muons; and (iii)

the interference between ISR and FSR (IFI), which becomes significant when the muons

are produced at small angles with respect to the beam axis. The effect of these three

QED corrections on the muon angular distributions and on the muon forward-backward
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asymmetry have been studied analytically in ref. [21] with a complete O(α) calculation

and soft-photon exponentiation, and in a more pragmatic way by the OPAL experiment in

ref. [22]. Their conclusions are summarized and the relevant effects of the O(α2) corrections

are examined in this section. Other electroweak corrections are discussed at the end of

the section.

4.3.1 Final-state radiation (FSR)

Final-state radiation is mostly collinear and is symmetric around the muon directions, at

all orders in α. The effect on the forward-backward asymmetry is therefore expected to be

unmeasurably small [22]. It was checked in ref. [21] that the effect is rigorously 0 at order α

(with soft-photon exponentiation) if no cut is applied on the final-state photon energy, and

vanishingly small if a tight upper cut is applied to the final-state photon energy, typically

of the order of α
π
Ecut√
s

, i.e., ∼ 2× 10−6 for Ecut ∼ 100 MeV. The theoretical uncertainty on

this effect due to the O(α2) corrections is typically one-to-two orders of magnitude smaller

than that. It is therefore ignored in the following.

4.3.2 Initial-state radiation (ISR)

Initial-state radiation corrections are known up to order O(α2) with soft-photon exponenti-

ation [23]. Unlike FSR, ISR has a macroscopic influence on the forward-backward asymme-

try. Photons from ISR are emitted mostly along the beam axis, with a twofold consequence:

(i) the centre-of-mass frame of the muon pair therefore acquires a longitudinal boost, which

modifies the angular distribution of both muons in a non trivial way; and (ii) the effective

centre-of-mass energy of the collision is reduced to
√
s′ where s′ = (1− x−)(1− x+)s and

x± = Eγ±/
√
s are the fractional radiated energies by the e± beams, which modifies the

asymmetric term of the cross section through AµµFB(s′). As AµµFB(s′) varies quite fast with√
s′, as displayed in figure 3 and expressed in eq. (4.15), a large, negative, variation of the

measured asymmetry is indeed to be expected.

When only one ISR photon is radiated by one of the two beams, the effects can be

largely mitigated. In the vast majority of the cases, the photon is radiated exactly along

the beam axis. The polar angles of the outgoing muons, denoted θ±, suffice in that case to

determine the effective centre-of-mass energy
√
s′:

s′

s
=

sin θ+ + sin θ− − |sin(θ+ + θ−)|
sin θ+ + sin θ− + |sin(θ+ + θ−)|

, (4.19)

as well as the µ+ direction in the centre-of-mass frame of the muon pair

cos θ∗ =
sin(θ+ − θ−)

sin θ+ + sin θ−
. (4.20)

In this simplest configuration, the use of cos θ∗ entirely corrects for the effect of the longitu-

dinal boost on the angular distribution, and the forward-backward asymmetry dependence

on s′/s can be studied explicitly. Furthermore, the events relevant for the determination

of α± can be selected by requiring s′/s to be close to unity. If the initial-state photon is

radiated with a finite angle with respect to the beam axis, however, eqs. (4.19) and (4.20)
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Figure 7. Relative bias and statistical uncertainty on the muon forward-backward asymmetry

with respect to the standard-model expectation as a function 1− s′/s (after the cut s′/s > 0.999 is

applied) for
√
s =
√
s− (left) and

√
s+ (right). The blue histogram is obtained with a perfect muon

angular resolution, while σθ and σφ are assumed to amount to 0.1 mrad in the red histogram. In

both cases, s′/s is obtained from the measured angles with eq. (4.19).

no longer hold, but the corresponding events can be rejected by requiring the two muons

to be back-to-back in the plane transverse to the beam axis.

In rare cases, both beams can radiate photons, which render these two equations

only approximate, and may still create a bias in the forward-backward asymmetry. To

determine the effect of this approximation, large samples of µ+µ− events were generated

at
√
s±. The simulation of ISR was performed with the REMT package [24] modified to

include O(α2) correcctions with soft-photon exponentiation, and the possibility to radiate

up to two photons. For the reasons just explained, only events with s′/s in excess of 0.999

and an acoplanarity angle between the two muons smaller than 0.35 mrad were considered.

These two cuts typically select about 80% of the cross section in figure 2, and tremendously

increase the purity towards events without ISR. The blue histograms in figures 7 show, for√
s =
√
s− and

√
s+, the relative biasses on AµµFB(s′±) with respect to the standard model

prediction, as a function of 1−s′/s and for a perfect muon angular resolution, σθ = σφ = 0.

Events with only one ISR photon would lead to a blue straight line at ∆AFB/AFB ≡ 0.0,

as s′/s can be exactly determined in that case from eq. (4.19). The possibility to radiate

photons from the two beams, however, induces a visible systematic effect on the measured

asymmetry, up to 0.1%, as soon as the energy of these photons is non-zero (i.e., in all but

the first bin of the blue histogram). The sign of this effect can be understood as follows:

the emission of two photons in opposite directions reduces the effective boost of the µ+µ−

pair, causing the value of s′, as determined from eq. (4.19), to be larger than the true

effective centre-of-mass energy. The corresponding event migration towards the left of the

blue histogram therefore tends to reduce the value of the forward-backward asymmetry

(hence a relative increase below the Z peak and a relative decrease above). The effect in

the first bin is much smaller than in the other bins because it contains the vast majority of

the events, hence is little affected by the migration from bins with a much smaller number

of events.

A non-perfect muon angular resolution also affects the determination of s′/s from

eq. (4.19) for all events (with or without ISR), hence has a non-trivial effect on the measured
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asymmetry, as shown in the red histograms of figures 7 for a uniform angular resolution

σθ = σφ = 0.1 mrad. Because a worse angular resolution would lead to a proportionally

larger systematic bias, the measurement of αQED can be used as a benchmark to define

the muon reconstruction performance of the FCC-ee detectors. (As an example, the track

angular resolution of the pixel detector of SiD [25], with a hit resolution of 5µm, a thickness

of 1.5% of a radiation length, a radius of 6 cm, and a length of 34 cm is better than 0.1 mrad

over the whole acceptance.) For most of the events, without significant ISR photons,

the measured angle between the two muons can only decrease from its maximal value

of π rad, yielding a smaller value of s′ from eq. (4.19). Part of these events therefore

migrate to the other bins of the distribution, and therefore increase significantly the value

of the measured forward-backward asymmetry in these bins, by up to 0.4% (with a relative

variation negative below the Z peak, and positive above). The residual migration from

events with initial state radiation, but with two wrongly measured back-to-back muons,

has the opposite effect in the first bin of the distribution, albeit with a much smaller

amplitude, because of the much larger number of events originally in this bin.

These two systematic biasses are much larger, by two orders of magnitude, than the

target precision with which the forward-backward asymmetry needs to be measured. These

biasses can be corrected for if (i) the energy and angular distributions of initial-state

radiation can be predicted with an accuracy better than 1%, which is probably the case

already today; and if (ii) the muon angular resolution can be mapped with a precision of

a few per mil over the whole detector acceptance, which is probably feasible with the large

samples of K0
s ’s, Λ’s and even J/ψ’s expected at the FCC-ee.

The predicted relative biasses, however, appear to be quasi-”universal”, in the sense

that they are similar in amplitude below and above the Z peak, albeit in opposite directions.

The combination of the two measurements towards a determination of αQED(m2
Z) with

eq. (4.9) exhibits an almost perfect cancellation in all bins, as displayed in figure 8 as a

function of 1 − s′/s, with the same vertical scale as in figures 7. When integrated over

all bins, the total relative bias on αQED(m2
Z) amounts to −8 × 10−6, i.e., well below the

target statistical precision of a few 3× 10−5. The aforementioned theoretical knowledge of

initial-state radiation and the in-situ determination of the angular resolution would allow

this residual bias to be predicted and corrected for, with a precision at least an order of

magnitude better.

4.3.3 Interference between initial- and final-state radiation (IFI)

While initial-state radiation does not change the functional form of the muon angular distri-

bution, the interference between initial-state and final-state occurs preferably when the final

state muons are close to the initial state electrons, hence does affect their distribution in the

forward and backward directions beyond the usual (1 + cos2 θ∗) + 8/3AFB cos θ∗ formula.

It is shown in ref. [22] that the muon angular distribution is be modified by a multi-

plicative factor with a characteristic logarithmic dependence on cos θ∗, and can be param-

eterized as

dσµµ
d cos θ∗

(s′) ∝
{

1 + cos2 θ∗ +
8

3
AFB(s′) cos θ∗

}
×
{

1 + f

(
s′

s

)
log

1 + cos θ∗

1− cos θ∗

}
, (4.21)
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Figure 8. Relative bias and statistical uncertainty on the electromagnetic coupling constant es-

timated at the Z mass scale, as a function 1 − s′/s , from measurements of the muon forward-

backward asymmetry at
√
s±, with a perfect muon angular resolution (blue histogram) and with

σθ = σφ = 0.1 mrad (red histogram).

in presence of a tight muon acoplanarity cut as suggested in the previous section. The mul-

tiplicative factor contains an additional asymmetric term, which enhances the integrated

muon forward-backward asymmetry. The tight cut on s′/s aimed at rejecting ISR also

reduces IFI in similar proportions. To mitigate the very small residual effect of IFI on the

angular distribution, the specific shape of the additional contribution can be fitted away,

as was done at LEP and with the benefit of the much larger data samples expected at the

FCC-ee. On the other hand, this additional contribution appears to be “universal”, (i.e.,

with an amplitude that depends only on s′/s, similarly to what is observed for ISR), hence

cancels out in the determination of αQED(m2
Z) from a combination of the measurements at

the two centre-of-mass energies, with no loss of statistical power.

4.3.4 Other electroweak higher-order corrections

Other electroweak corrections have so far “only” been computed off-peak with complete

one-loop calculation [26]. One-loop box corrections lead to relative changes of −9×10−4 at
√
s− and −8× 10−4 at

√
s+ from the improved Born approximation of AµµFB−A

µµ
FB,0, hence

to a shift of αQED(mZ) at the per-mil level. A shift of similar size arises from one-loop

vertex corrections. The theoretical uncertainty arising from the missing higher orders in

the asymmetry calculation, estimated to be at the level of a few 10−4 [27], was adequate

at the time of LEP but is insufficient today to match the precision offered by the FCC-ee.
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An order of magnitude improvement would be achievable today, with proven tech-

niques, by including the dominant two-loop and leading three-loop corrections, and would

represent a major breakthrough towards the FCC-ee targets. Meeting these targets might

require a complete three-loop calculation, including three-loop box corrections, perhaps a

serious challenge with the current techniques, and definitely beyond the scope of the present

work. It is not unlikely, however, that a large part of these missing corrections affect in

the same way the asymmetry at 87.9 GeV and the asymmetry at 94.3 GeV. If it were the

case, the αQED(m2
Z) determination would enjoy a cancellation similar to the that observed

for QED corrections, which could suffice even without a complete three-loop calculation.

5 Conclusions and outlook

In this paper, it has been shown that the measurement of the muon forward-backward

asymmetry at the FCC-ee, with six months of data taking just below (
√
s = 87.9 GeV)

and just above (
√
s = 94.3 GeV) the Z peak, as part of the Z resonance scan, would open

the opportunity of a direct measurement of the electromagnetic constant αQED(m2
Z), with

a relative statistical uncertainty of the order of 3 × 10−5.

A comprehensive list of sources for experimental, parametric, theoretical systematic

uncertainties has been examined. Most of these uncertainties have been shown to be under

control at the level of 10−5 or below, as summarized in table 1. A significant fraction

of those benefits from a delicate cancellation between the two asymmetry measurements.

The knowledge of the beam energy, both on- and off-peak, turns out to be the dominant

contribution, albeit still well below the targeted statistical power of the method.

The fantastic integrated luminosity and the unique beam-energy determination are the

key breakthrough advantages of the FCC-ee in the perspective of a precise determination of

the electromagnetic coupling constant. Today, the only obstacle towards this measurement

— beside the construction of the collider and the delivery of the target luminosities —

stems from the lack of higher orders in the determination of the electroweak corrections to

the forward-backward asymmetry prediction in the standard model. With the full one-loop

calculation presently available for these corrections, a relative uncertainty on AµµFB of the

order of a few 10−4 is estimated. An improvement deemed adequate to match the FCC-

ee experimental precision might require a calculation beyond two loops, which may be

beyond the current state of the art, but is possibly within reach on the time scale required

by the FCC-ee.

A consistent international programme for present and future young theorists must

therefore be set up towards significant precision improvements in the prediction of all

electroweak precision observables, in order to reap the rewards potentially offered by

the FCC-ee.

Acknowledgments

I thank Alain Blondel for enlightening discussions throughout the development of this

analysis. I am indebted to Roberto Tenchini for his expert suggestions and to Gigi Rolandi

– 19 –



J
H
E
P
0
2
(
2
0
1
6
)
0
5
3

Type Source Uncertainty
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QED (ISR, FSR, IFI) < 10−6

Theoretical Missing EW higher orders few 10−4

New physics in the running 0.0

Total Systematics 1.2× 10−5

(except missing EW higher orders) Statistics 3× 10−5

Table 1. Summary of relative statistical, experimental, parametric and theoretical uncertainties to

the direct determination of the electromagnetic coupling constant at the FCC-ee, with a one-year

running period equally shared between centre-of-mass energies of 87.9 and 94.3 GeV, corresponding

to an integrated luminosity of 85 ab−1.
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