
Tian and Jiao Journal of Inequalities and Applications  (2015) 2015:311 
DOI 10.1186/s13660-015-0836-8

R E S E A R C H Open Access

A regularization algorithm for a common
solution of generalized equilibrium problem,
fixed point problem and the zero points of
the sum of two operators
Ming Tian1,2* and Si-Wen Jiao1

*Correspondence:
tianming1963@126.com
1College of Science, Civil Aviation
University of China, Tianjin, 300300,
China
2Tianjin Key Laboratory for
Advanced Signal Processing, Civil
Aviation University of China, Tianjin,
300300, China

Abstract
For finding a common solution of generalized equilibrium problem, fixed point
problem and the zero points of the sum of two operators, a regularization algorithm
is established in the framework of real Hilbert spaces. And the strong convergence
theorem is obtained under certain assumptions. The main results presented in this
paper are useful in nonlinear analysis and optimization. Moreover, the results and
corollaries extend the corresponding conclusions proposed by many authors.
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1 Introduction
In this paper, assume that H is a real Hilbert space with the inner product 〈·, ·〉 and the
norm ‖ · ‖, and let C be a nonempty, closed and convex subset of H . Let N and R be the
sets of positive integers and real numbers, respectively. In the following, we recall some
mappings which will often be used in this paper.

• f : C → C is said to be k-contractive iff there exists a constant k ∈ (, ) such that
‖f (x) – f (y)‖ ≤ k‖x – y‖ for all x, y ∈ C.

• S : C → C is said to be nonexpansive iff ‖Sx – Sy‖ ≤ ‖x – y‖ for all x, y ∈ C.
• T : H → H is said to be firmly nonexpansive iff ‖Tx – Ty‖ ≤ 〈Tx – Ty, x – y〉 for all

x, y ∈ H .
• PC : H → C is said to be metric projection iff ‖x – PCx‖ ≤ ‖x – y‖ for all x ∈ H and

y ∈ C.
• A : H → H is said to be monotone iff 〈x – y, Ax – Ay〉 ≥  for all x, y ∈ H .
• Given a number η > , A : H → H is said to be η-strongly monotone iff

〈x – y, Ax – Ay〉 ≥ η‖x – y‖ for all x, y ∈ H .
• Given a number α > , A : C → H is said to be α-inverse-strongly monotone (α-ism)

iff 〈x – y, Ax – Ay〉 ≥ α‖Ax – Ay‖ for all x, y ∈ C.
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• Y : C → H is a strict pseudo-contraction [] if there exists t ∈R with  ≤ t <  such
that ‖Yx – Yy‖ ≤ ‖x – y‖ + t‖(I – Y )x – (I – Y )y‖ for all x, y ∈ C.

First, we introduce the following generalized equilibrium problem.
Find x ∈ C such that

F(x, y) + 〈Tx, y – x〉 ≥ , ∀y ∈ C, (.)

where T : C → H is a monotone mapping and F : C × C →R is a bifunction.
In this paper, we use GEP(F , T) to denote the set of such x ∈ C, i.e., GEP(F , T) = {x ∈ C :

F(x, y) + 〈Tx, y – x〉 ≥ ,∀y ∈ C}.
In the case of T ≡ , problem (.) is reduced to the following equilibrium prob-

lem [].
Find x ∈ C such that

F(x, y) ≥ , ∀y ∈ C. (.)

In this paper, we use EP(F) to denote the set of such x ∈ C, i.e., EP(F) = {x ∈ C : F(x, y) ≥
,∀y ∈ C}.

In the case of F ≡ , problem (.) is reduced to the classical variational inequality.
To study equilibrium problems (.) and (.), we may assume that F satisfies the follow-

ing conditions:
(A) F(x, x)= for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y, x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim
t↓

sup F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semicontinuous.
Many problems can be transformed into finding solutions of equilibrium problems (.)
and (.), for instance, image recovery, network allocation, inverse problems, transporta-
tion problems and optimization problems; see [–] and the references therein. Recently,
many regularization methods have been extensively studied for solving solutions of equi-
librium problems (.) and (.); see [–] and the references therein.

Second, we introduce the following fixed point problem for a family of infinitely nonex-
pansive mappings. Consider the fixed point problem

Fix(S) := {x ∈ C : x = Sx},

where S : C → C is a mapping, we use Fix(S) to denote the fixed point set of S. If C is a
bounded, closed and convex subset of H , then Fix(S) is not empty; see [].

Let {Si : C → C} be a family of infinitely nonexpansive mappings and {γi} be a nonneg-
ative real sequence with  ≤ γi < , ∀i ≥ . For n ≥ , define a mapping Wn : C → C as
follows:

Un,n+ = I,

Un,n = γnSnUn,n+ + ( – γn)I,
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Un,n– = γn–Sn–Un,n + ( – γn–)I,

. . . ,

Un,k = γkSkUn,k+ + ( – γk)I,

Un,k– = γk–Sk–Un,k + ( – γk–)I,

. . . ,

Un, = γSUn, + ( – γ)I,

Wn = Un, = γSUn, + ( – γ)I.

Such a mapping Wn is nonexpansive from C to C and it is called a W -mapping generated
by Sn, Sn–, . . . , S and γn,γn–, . . . ,γ; see [] and the references therein.

Third, we introduce the problem of zero points of a maximal monotone mapping

M– = {x ∈ H :  ∈ Mx}, (.)

where M is a mapping of H into H , the effective domain of M is denoted by dom M or
D(M), that is, dom M = {x ∈ H : Mx = ∅}. A multi-valued mapping M is said to be a mono-
tone mapping on H if 〈x – y, u – v〉 ≥  for all x, y ∈ dom M, u ∈ Mx, v ∈ My. A monotone
mapping M on H is said to be maximal if its graph is not properly contained in the graph
of any other monotone mapping on H . It is well known that a monotone mapping M is
maximal if and only if, for any (x, u) ∈ H × H , 〈x – y, u – v〉 ≥  for all (y, v) ∈ Graph(M)
implies u ∈ Mx.

For a maximal monotone mapping M on H and r > , we may define a single-valued
mapping Jr = (I + rM)– : H → dom M, which is called the resolvent of M for r. It is easy to
see that M– = Fix(Jr) for all r > , and the resolvent Jr is firmly nonexpansive, i.e.,

‖Jrx – Jry‖ ≤ 〈x – y, Jrx – Jry〉, ∀x, y ∈ H .

Finally, we introduce the subdifferential of a lower semicontinuous convex function and
an indicator function.

Let h be a proper lower semicontinuous convex function on a Hilbert space H into
(–∞,∞]. Then the subdifferential ∂h of h is defined as follows:

∂h(x) =
{

z ∈ H : h(x) + 〈z, y – x〉 ≤ h(y),∀y ∈ H
}

(.)

for all x ∈ H . From Rockafellar [] we know that ∂h is a maximal monotone operator. Let
iC be the indicator function of C (C is a nonempty closed convex subset of H), i.e.,

iC(x) =

{
, x ∈ C,
∞, x /∈ C.

(.)

Then iC is a proper lower semicontinuous convex function on H and the subdifferential
∂iC of iC is a maximal monotone mapping. So we can define the resolvent Jr of ∂iC for
r > , i.e.,

Jrx = (I + r∂iC)–x
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for all x ∈ H . We have that for any x ∈ H and q ∈ C,

q = Jrx ⇐⇒ x ∈ q + r∂iC(q)

⇐⇒ x ∈ q + rNC(q)

⇐⇒ x – q ∈ rNC(q)

⇐⇒ 
r
〈x – q, p – q〉 ≤ , ∀p ∈ C

⇐⇒ 〈x – q, p – q〉 ≤ , ∀p ∈ C

⇐⇒ q = PCx,

where NC(q) is the normal cone to C at q, i.e.,

NC(q) =
{

z ∈ H : 〈z, p – q〉 ≤ ,∀p ∈ C
}

.

In the present paper, we study the equilibrium problems (.) and (.), the fixed point
problem for a family of infinitely nonexpansive mappings, and the problem of zero points
of maximal monotone mapping (.). Motivated and inspired by the research going on
in this direction, we propose a new regularization algorithm, and it is proved that the
sequence generated by this algorithm converges strongly to a common solution of the
above three problems. The results presented in this paper improve and extend the corre-
sponding results in Chang et al. [], Takahashi and Takahashi [], Hao [] and Yuan and
Zhang [].

The structure of this paper is set as follows. In Section , we introduce some lem-
mas which will be used in the proof of theorems. The main result, that is, the strong
convergence of the regularization algorithm, is proved in Section . Corollaries to gen-
eralized equilibrium problem and the zero points of the sum of two operators are pre-
sented in Section . And the conclusion of this paper is given in the final section, i.e.,
Section .

2 Preliminaries
In the following, we give some useful lemmas, which will often be used in the proof of the
main results and their corollaries.

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. When
{xn} is a sequence in H , we define that the strong convergence of {xn} is a sequence in H ,
we denote the strong convergence of {xn} to x ∈ H by xn → x and the weak convergence
by xn ⇀ x. Let C be a nonempty closed convex subset of a Hilbert space H , and let T :
C → H be a mapping. We denote by Fix(T) the set of fixed points for T . If T : C → H is a
nonexpansive mapping, then Fix(T) is closed and convex; see [].

Firstly, we recall the metric (nearest point) projection from H onto C is the mapping
PC : H → C which is defined as follows: given x ∈ H , PCx is the unique point in C with the
property

‖x – PCx‖ = inf
y∈C

‖x – y‖ =: d(x, C).

PC is characterized as follows.
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Lemma . Given x ∈ H and y ∈ C. Then y = PCx if and only if the following inequality
holds:

〈x – y, y – z〉 ≥ , ∀z ∈ C.

Then we introduce the lemma below, which shows the uniqueness of solution of the
variational inequality.

Lemma . [] Let H be a Hilbert space, C be a closed convex subset of H , and f : C → C
be a contraction with coefficient α < . Then

〈
x – y, (I – f )x – (I – f )y

〉 ≥ ( – α)‖x – y‖, x, y ∈ C.

That is, I – f is strongly monotone with coefficient  – α.

Lemma . [] Let F : C × C →R be a bifunction satisfying (A)-(A). Then, for any r > 
and x ∈ H , there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Define a mapping Tr : H → C as follows:

Trx =
{

z ∈ C : F(z, y) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
, x ∈ H ,

then the following conclusions hold:
() Tr is single-valued;
() Tr is firmly nonexpansive, i.e., for any x, y ∈ H ,

‖Trx – Try‖ ≤ 〈Trx – Try, x – y〉;

() F(Tr) = EP(F);
() EP(F) is closed and convex.

In the following, we introduce the property of W -mapping generated by a family of
infinitely nonexpansive mappings.

Lemma . [] Let {Si : C → C} be a family of infinitely nonexpansive mappings with a
nonempty common fixed point set, and let {γi} be a real sequence such that  < γi ≤ l < ,
where l is some real number, ∀i > . Then

() Wn is nonexpansive and F(Wn) =
⋂n

i= F(Si) for each n ≥ ;
() for each x ∈ C and for each positive integer k, the limit limn→∞ Un,k exists;
() the mapping W : C → C defined by

Wx := lim
n→∞ Wnx = lim

n→∞ Un,x, x ∈ C, (.)

is a nonexpansive mapping satisfying F(W ) =
⋂∞

i= F(Si) and it is called the
W -mapping generated by S, S, . . . and γ,γ, . . . .
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Lemma . [] Let {Si : C → C} be a family of infinitely nonexpansive mappings with a
nonempty common fixed point set, and let {γi} be a real sequence such that  < γi ≤ l < ,
∀i > . If K is any bounded subset of C, then

lim sup
n→∞,x∈K

‖Wx – Wnx‖ = .

The next lemma which we introduce is about the resolvent of the maximal monotone
operator.

Lemma . (see [–]) Let H be a real Hilbert space, and let B be a maximal monotone
operator on H . For r >  and x ∈ H , define the resolvent Jrx. Then the following holds:

s – t
s

〈Jsx – Jtx, Jsx – x〉 ≥ ‖Jsx – Jtx‖

for all s, t >  and x ∈ H . In particular,

‖Jsx – Jtx‖ ≤ (|s – t|/s
)‖x – Jsx‖

for all s, t >  and x ∈ H .

The following lemma will be used in the proof of the main results.

Lemma . [] Let {xn} and {yn} be bounded sequences in H , and let {βn} be a sequence
in (, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ = ( – βn)yn + βnxn

for all n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Besides, the following two lemmas are extremely important in the proof of theorems.
One is called a demiclosed principle for nonexpansive mappings, the other is called an
important lemma.

Lemma . (Demiclosed principle []) Let T : C → C be a nonexpansive mapping with
F(T) = ∅. If {xn}∞n= is a sequence in C weekly converging to x and if {(I – T)xn}∞n= converges
strongly to y, then (I – T)x = y. In particular, if y = , then x ∈ F(T).

Lemma . [] Assume that {an}∞n= is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnδn + βn, n ≥ ,

where {γn}∞n= and {βn}∞n= are sequences in (, ) and {δn}∞n= is a sequence in R such that
(i)

∑∞
n= γn = ∞;

(ii) either lim supn→∞ δn ≤  or
∑∞

n= γn|δn| < ∞;
(iii)

∑∞
n= βn < ∞.

Then limn→∞ an = .
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3 Main results
Theorem . Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H . Let F : C × C → R be a bifunction which satisfies (A)-(A), and let f : C → C be a
k-contraction with the constant k ∈ (, ). Let A : C → H be an α-inverse-strongly mono-
tone (α-ism) mapping with α > , let B : C → H be a β-inverse-strongly monotone (β-ism)
mapping with β > , and let T : C → H be a τ -inverse-strongly monotone (τ -ism) mapping
with τ > . Let M be a maximal monotone operator on H such that the domain of M is
included in C, and let Js = (I + sM)– be the resolvent of M for s > . Let N be a maximal
monotone operator on H such that the domain of N is included in C, and let Jr = (I + rN)–

be the resolvent of N for r > . Let {Si : C → C} be a family of infinitely nonexpansive map-
pings. Assume that 
 = GEP(F , T)∩⋂∞

i= F(Si)∩ (A + N)–∩ (B + M)– = ∅. Let {αn}, {βn}
and {γn} be sequences in (, ) such that αn + βn + γn = . Let {rn}, {λn} and {sn} be positive
number sequences. Let x ∈ C and let {xn} be a sequence generated by

{
yn = Jrn (un – rnAun),
xn+ = αnf (yn) + βnWnJsn (yn – snByn) + γnxn, ∀n ≥ ,

(.)

where {un} is such that

F(un, y) + 〈Txn, y – un〉 +

λn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,

and {Wn} is the sequence generated in (.). Assume that the following conditions hold:
(i)  < a ≤ rn ≤ b < α and limn→∞ |rn+ – rn| = ;

(ii)  < c ≤ λn ≤ d < τ and limn→∞ |λn+ – λn| = ;
(iii)  < e ≤ sn ≤ g < β and limn→∞ |sn+ – sn| = ;
(iv) limn→∞ αn = ,

∑∞
n= αn = ∞;

(v)  < lim infn→∞ γn ≤ lim supn→∞ γn < ,
where a, b, c, d, e, and g are real constants. Then {xn} converges strongly to a point q ∈ 
,
which solves uniquely the following variational inequality:

〈
q – f (q), q – x

〉 ≤ , ∀x ∈ 
. (.)

Equivalently, q = P
f (q).

Proof We divide the proof into several steps.
Step . We prove that the sequence {xn} is bounded.
Since A is an α-ism mapping, we see from restriction (i) that ∀x, y ∈ C,

∥
∥(I – rnA)x – (I – rnA)y

∥
∥ = ‖x – y‖ – rn〈x – y, Ax – Ay〉 + r

n‖Ax – Ay‖

≤ ‖x – y‖ – rnα‖Ax – Ay‖ + r
n‖Ax – Ay‖

= ‖x – y‖ + rn(rn – α)‖Ax – Ay‖

≤ ‖x – y‖.

This implies that I – rnA is nonexpansive.
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In the same way, we find that I – snB and I – λnT are nonexpansive. Note that un =
Tλn (I – λnT)xn. Let p ∈ 
, it follows that

‖un – p‖ ≤ ∥
∥(I – λnT)xn – (I – λnT)p

∥
∥ ≤ ‖xn – p‖.

Putting zn = Jsn (yn – snByn), we see that

‖zn – p‖ ≤ ‖yn – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖. (.)

From (.), we find that

‖xn+ – p‖ ≤ αn
∥∥f (yn) – p

∥∥ + βn‖Wnzn – p‖ + γn‖xn – p‖
≤ αnk‖yn – p‖ + αn

∥
∥f (p) – p

∥
∥ + βn‖zn – p‖ + γn‖xn – p‖

≤ (
 – αn( – k)

)‖xn – p‖ + αn( – k)
‖f (p) – p‖

 – k
.

By induction, we derive that

‖xn – p‖ ≤ max

{
‖x – p‖,

‖f (p) – p‖
 – k

}
, ∀n ≥ .

Therefore, it turns out that {xn} is bounded, and so are {yn}, {zn} and {un}.
Step . We show that limn→∞ ‖xn+ – xn‖ = .
Without loss of generality, we can assume that there exists a bounded set K ⊂ C such

that xn, yn, zn, un ∈ K . Since un = Tλn (I – λnT)xn, we find that

F(un+, y) +


λn+

〈
y – un+, un+ – (I – λn+T)xn+

〉 ≥ , ∀y ∈ C (.)

and

F(un, y) +

λn

〈
y – un, un – (I – λnT)xn

〉 ≥ , ∀y ∈ C. (.)

Let y = un in (.) and y = un+ in (.). Then we add up (.) and (.) to derive that

〈
un+ – un, un – un+ + un+ – (I – λnT)xn –

λn

λn+

(
un+ – (I – λn+T)xn+

)〉 ≥ .

This implies that

‖un+ – un‖ ≤
〈
un+ – un, (I – λn+T)xn+ – (I – λnT)xn

+
(

 –
λn

λn+

)
· (un+ – (I – λn+T)xn+

)
〉

≤ ‖un+ – un‖ ·
(∥∥(I – λn+T)xn+ – (I – λnT)xn

∥∥

+
∣∣
∣∣ –

λn

λn+

∣∣
∣∣ · ∥∥un+ – (I – λn+T)xn+

∥
∥
)

.
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From I – λnT is nonexpansive and condition (ii), we obtain that

‖un+ – un‖ ≤ ∥
∥(I – λn+T)xn+ – (I – λnT)xn

∥
∥

+
|λn+ – λn|

λn+

∥
∥un+ – (I – λn+T)xn+

∥
∥

≤ ∥
∥(I – λn+T)xn+ – (I – λn+T)xn

∥
∥ + |λn+ – λn| · ‖Txn‖

+
|λn+ – λn|

c
∥
∥un+ – (I – λn+T)xn+

∥
∥

≤ ‖xn+ – xn‖ + |λn+ – λn|L, (.)

where L is an appropriate constant such that

L = sup
n≥

{
‖Txn‖ +


c
∥∥un+ – (I – λn+T)xn+

∥∥
}

.

Since both Jrn and I – rnA are nonexpansive, it follows from Lemma ., condition (i) and
(.) that

‖yn+ – yn‖ =
∥∥Jrn+ (I – rn+A)un+ – Jrn (I – rnA)un

∥∥

≤ ∥∥Jrn+ (I – rn+A)un+ – Jrn+ (I – rn+A)un
∥∥

+
∥
∥Jrn+ (I – rn+A)un – Jrn+ (I – rnA)un

∥
∥

+
∥
∥Jrn+ (I – rnA)un – Jrn (I – rnA)un

∥
∥

≤ ‖un+ – un‖ +
∥∥(I – rn+A)un – (I – rnA)un

∥∥

+
|rn+ – rn|

rn+

∥
∥Jrn+ (I – rnA)un – (I – rnA)un

∥
∥

≤ ‖un+ – un‖ + |rn+ – rn| · ‖Aun‖
+

|rn+ – rn|
a

∥∥Jrn+ (I – rnA)un – (I – rnA)un
∥∥

≤ ‖xn+ – xn‖ + |λn+ – λn|L + |rn+ – rn|L, (.)

where L is an appropriate constant such that

L = sup
n≥

{
‖Aun‖ +


a
∥
∥Jrn+ (I – rnA)un – (I – rnA)un

∥
∥
}

.

Thus, from both Jsn and I – snB are nonexpansive, we have from Lemma ., condition (iii)
and (.) that

‖zn+ – zn‖ =
∥∥Jsn+ (I – sn+B)yn+ – Jsn (I – snB)yn

∥∥

≤ ∥
∥Jsn+ (I – sn+B)yn+ – Jsn+ (I – sn+B)yn

∥
∥

+
∥
∥Jsn+ (I – sn+B)yn – Jsn+ (I – snB)yn

∥
∥

+
∥∥Jsn+ (I – snB)yn – Jsn (I – snB)yn

∥∥

≤ ‖yn+ – yn‖ +
∥∥(I – sn+B)yn – (I – snB)yn

∥∥
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+
|sn+ – sn|

sn+

∥∥Jsn+ (I – snB)yn – (I – snB)yn
∥∥

≤ ‖yn+ – yn‖ + |sn+ – sn| · ‖Byn‖
+

|sn+ – sn|
e

∥∥Jsn+ (I – snB)yn – (I – snB)yn
∥∥

≤ ‖xn+ – xn‖
+ L

(|λn+ – λn| + |rn+ – rn| + |sn+ – sn|
)
, (.)

where L = max{L, L, supn≥{‖Byn‖ + 
e ‖Jsn+ (I – snB)yn – (I – snB)yn‖}}.

It yields from (.) that

‖Wn+zn+ – Wnzn‖ ≤ ‖Wn+zn+ – Wzn+‖ + ‖Wzn+ – Wzn‖
+ ‖Wzn – Wnzn‖

≤ sup
x∈K

{‖Wn+x – Wx‖ + ‖Wx – Wnx‖} + ‖xn+ – xn‖

+ L
(|λn+ – λn| + |rn+ – rn| + |sn+ – sn|

)
, (.)

where K is the bounded subset of C defined above. Let xn+ = ( – γn)tn + γnxn.
It follows that

tn+ – tn =
αn+f (yn+) + βn+Wn+zn+

 – γn+
–

αnf (yn) + βnWnzn

 – γn

=
αn+

 – γn+
f (yn+) +

 – αn+ – γn+

 – γn+
Wn+zn+

–
(

αn

 – γn
f (yn) +

 – αn – γn

 – γn
Wnzn

)

=
αn+

 – γn+

(
f (yn+) – Wn+zn+

)
–

αn

 – γn

(
f (yn) – Wnzn

)

+ Wn+zn+ – Wnzn.

From (.), we derive that

‖tn+ – tn‖ ≤ αn+

 – γn+

∥
∥f (yn+) – Wn+zn+

∥
∥ +

αn

 – γn

∥
∥f (yn) – Wnzn

∥
∥

+ ‖Wn+zn+ – Wnzn‖
≤ αn+

 – γn+

∥∥f (yn+) – Wn+zn+
∥∥ +

αn

 – γn

∥∥f (yn) – Wnzn
∥∥

+ sup
x∈K

{‖Wn+x – Wx‖ + ‖Wx – Wnx‖} + ‖xn+ – xn‖

+ L
(|λn+ – λn| + |rn+ – rn| + |sn+ – sn|

)
,

which implies that

‖tn+ – tn‖ – ‖xn+ – xn‖ ≤ αn+

 – γn+

∥
∥f (yn+) – Wn+zn+

∥
∥

+
αn

 – γn

∥∥f (yn) – Wnzn
∥∥
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+ sup
x∈K

{‖Wn+x – Wx‖ + ‖Wx – Wnx‖}

+ L
(|λn+ – λn| + |rn+ – rn| + |sn+ – sn|

)
.

It follows from conditions (i)-(v) that

lim
n→∞ sup

(‖tn+ – tn‖ – ‖xn+ – xn‖
) ≤ .

From Lemma ., we derive that limn→∞ ‖tn – xn‖ = .
Since tn – xn = 

–γn
(xn+ – xn), it follows that

lim
n→∞‖xn+ – xn‖ = . (.)

Step . We prove that limn→∞ ‖xn – un‖ = .
Since T is τ -ism, we find from (.) that

‖xn+ – p‖ ≤ αn
∥∥f (yn) – p

∥∥ + βn‖un – p‖ + γn‖xn – p‖

≤ αn
∥
∥f (yn) – p

∥
∥ + βn

∥
∥xn – p – λn(Txn – Tp)

∥
∥ + γn‖xn – p‖

≤ αn
∥
∥f (yn) – p

∥
∥ + ‖xn – p‖ – λnβn(τ – λn)‖Txn – Tp‖,

it turns out that

λnβn(τ – λn)‖Txn – Tp‖

≤ αn
∥
∥f (yn) – p

∥
∥ +

(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖.

By virtue of conditions (ii), (iv), (v), we derive from (.) that

lim
n→∞‖Txn – Tp‖ = . (.)

Since Tλn is firmly nonexpansive, we find from Lemma . that

‖un – p‖ =
∥∥Tλn (I – λnT)xn – Tλn (I – λnT)p

∥∥

≤ 〈
(I – λnT)xn – (I – λnT)p, un – p

〉

≤ 

(‖xn – p‖ + ‖un – p‖ – ‖xn – un‖

+ λn‖Txn – Tp‖ · ‖xn – un‖
)
,

it implies that

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖ + λn‖Txn – Tp‖ · ‖xn – un‖.

Therefore, we derive that

‖xn+ – p‖ ≤ αn
∥∥f (yn) – p

∥∥ + βn‖un – p‖ + γn‖xn – p‖

≤ αn
∥∥f (yn) – p

∥∥ – βn‖xn – un‖

+ λnβn‖Txn – Tp‖ · ‖xn – un‖ + ‖xn – p‖,
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which yields that

βn‖xn – un‖ ≤ αn
∥∥f (yn) – p

∥∥ + λnβn‖Txn – Tp‖ · ‖xn – un‖
+

(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖.

By use of conditions (ii), (iv), (v), we obtain from (.) and (.) that

lim
n→∞‖xn – un‖ = . (.)

Step . We prove that limn→∞ ‖un – yn‖ = .
Since Jrn is nonexpansive, A is α-ism, we find from (.) that

‖yn – p‖ =
∥
∥Jrn (I – rnA)un – Jrn (I – rnA)p

∥
∥

≤ ∥
∥(I – rnA)un – (I – rnA)p

∥
∥

≤ ‖un – p‖ – rnα‖Aun – Ap‖ + r
n‖Aun – Ap‖

≤ ‖xn – p‖ + rn(rn – α)‖Aun – Ap‖.

Therefore, we derive that

‖xn+ – p‖ ≤ αn
∥∥f (yn) – p

∥∥ + βn‖Wnzn – p‖ + γn‖xn – p‖

≤ αn
∥∥f (yn) – p

∥∥ + βn‖yn – p‖ + γn‖xn – p‖

≤ αn
∥
∥f (yn) – p

∥
∥ + rn(rn – α)βn‖Aun – Ap‖ + ‖xn – p‖,

it turns out that

rn(α – rn)βn‖Aun – Ap‖

≤ αn
∥
∥f (yn) – p

∥
∥ +

(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖.

In view of conditions (i), (iv), (v), we obtain from (.) that

lim
n→∞‖Aun – Ap‖ = . (.)

Since Jrn is firmly nonexpansive, I – rnA is nonexpansive, we find from (.) that

‖yn – p‖ =
∥
∥Jrn (I – rnA)un – Jrn (I – rnA)p

∥
∥

≤ 〈
(I – rnA)un – (I – rnA)p, yn – p

〉

=


{∥∥(I – rnA)un – (I – rnA)p

∥∥ + ‖yn – p‖

–
∥
∥(I – rnA)un – (I – rnA)p – (yn – p)

∥
∥}

≤ 

{‖un – p‖ + ‖yn – p‖ –

∥∥un – yn – rn(Aun – Ap)
∥∥}

≤ 

{‖xn – p‖ + ‖yn – p‖ – ‖un – yn‖

+ rn‖un – yn‖ · ‖Aun – Ap‖},
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which implies that

‖yn – p‖ ≤ ‖xn – p‖ – ‖un – yn‖ + rn‖un – yn‖ · ‖Aun – Ap‖.

From (.), this further implies that

‖xn+ – p‖ ≤ αn
∥∥f (yn) – p

∥∥ + βn‖Wnzn – p‖ + γn‖xn – p‖

≤ αn
∥
∥f (yn) – p

∥
∥ + βn‖yn – p‖ + γn‖xn – p‖

≤ αn
∥∥f (yn) – p

∥∥ – βn‖un – yn‖

+ rnβn‖un – yn‖ · ‖Aun – Ap‖ + ‖xn – p‖,

which yields that

βn‖un – yn‖ ≤ αn
∥
∥f (yn) – p

∥
∥ + rnβn‖un – yn‖ · ‖Aun – Ap‖

+
(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖.

By use of conditions (i), (iv), (v), we derive from (.) and (.) that

lim
n→∞‖un – yn‖ = . (.)

Step . We prove that limn→∞ ‖yn – zn‖ = .
Since Jsn is nonexpansive, B is β-ism, we find from (.) that

‖zn – p‖ =
∥∥Jsn (I – snB)yn – Jsn (I – snB)p

∥∥

≤ ∥
∥(I – snB)yn – (I – snB)p

∥
∥

≤ ‖yn – p‖ – snβ‖Byn – Bp‖ + s
n‖Byn – Bp‖

≤ ‖xn – p‖ + sn(sn – β)‖Byn – Bp‖.

Hence, we derive that

‖xn+ – p‖ =
∥∥αn

(
f (yn) – p

)
+ βn(Wnzn – p) + γn(xn – p)

∥∥

≤ αn
∥∥f (yn) – p

∥∥ + βn‖zn – p‖ + γn‖xn – p‖

≤ αn
∥
∥f (yn) – p

∥
∥ + sn(sn – β)βn‖Byn – Bp‖ + ‖xn – p‖,

which implies that

sn(β – sn)βn‖Byn – Bp‖

≤ αn
∥∥f (yn) – p

∥∥ +
(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖.

By virtue of conditions (iii), (iv), (v), we derive from (.) that

lim
n→∞‖Byn – Bp‖ = . (.)
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Since Jsn is firmly nonexpansive, I – snB is nonexpansive, we find from (.) that

‖zn – p‖ =
∥∥Jsn (I – snB)yn – Jsn (I – snB)p

∥∥

≤ 〈
(I – snB)yn – (I – snB)p, zn – p

〉

=


{∥∥(I – snB)yn – (I – snB)p

∥∥ + ‖zn – p‖

–
∥∥(I – snB)yn – (I – snB)p – (zn – p)

∥∥}

≤ 

{‖yn – p‖ + ‖zn – p‖ –

∥∥yn – zn – sn(Byn – Bp)
∥∥}

≤ 

{‖xn – p‖ + ‖zn – p‖ – ‖yn – zn‖

+ sn‖yn – zn‖ · ‖Byn – Bp‖}.

It turns out that

‖zn – p‖ ≤ ‖xn – p‖ – ‖yn – zn‖ + sn‖yn – zn‖ · ‖Byn – Bp‖.

Hence, we obtain that

‖xn+ – p‖ ≤ αn
∥∥f (yn) – p

∥∥ + βn‖Wnzn – p‖ + γn‖xn – p‖

≤ αn
∥∥f (yn) – p

∥∥ + βn‖zn – p‖ + γn‖xn – p‖

≤ αn
∥∥f (yn) – p

∥∥ – βn‖yn – zn‖

+ snβn‖yn – zn‖ · ‖Byn – Bp‖ + ‖xn – p‖,

it follows that

βn‖yn – zn‖ ≤ αn
∥∥f (yn) – p

∥∥ + snβn‖yn – zn‖ · ‖Byn – Bp‖
+

(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖.

By use of conditions (iii), (iv), (v), we obtain from (.) and (.) that

lim
n→∞‖yn – zn‖ = . (.)

Step . We show that

lim
n→∞ sup

〈
f (q) – q, xn – q

〉 ≤ , ∀xn ∈ 
,

where q = P
f (q). It is equivalent to show that q ∈ 
 = GEP(F , T) ∩ ⋂∞
i= F(Si) ∩ (A +

N)– ∩ (B + M)–.
First, we show that q ∈ GEP(F , T). From Lemma ., we get un = Tλn (I – λnT)xn, for any

y ∈ C, we find from (A) that

〈Txni , y – uni〉 +
〈
y – uni ,

uni – xni

λni

〉
≥ F(y, uni ), ∀y ∈ C. (.)
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Putting yh = hy + ( – h)q for any h ∈ (, ] and y ∈ C, we see that yh ∈ C. From (.), we
derive that

〈yh – uni , Tyh〉 ≥ 〈yh – uni , Tyh〉 – 〈Txni , yh – uni〉

–
〈
yh – uni ,

uni – xni

λni

〉
+ F(yh, uni )

= 〈yh – uni , Tyh – Tuni〉 + 〈yh – uni , Tuni – Txni〉

–
〈
yh – uni ,

uni – xni

λni

〉
+ F(yh, uni ).

By virtue of the monotonicity of T and condition (ii), we obtain from (A) that

〈yh – q, Tyh〉 ≥ F(yh, q). (.)

From (A) and (A), we see that

 = F(yh, yh) ≤ hF(yh, y) + ( – h)F(yh, q)

≤ hF(yh, y) + ( – h)〈yh – q, Tyh〉
= hF(yh, y) + ( – h)h〈y – q, Tyh〉.

It turns out from (A) that q ∈ GEP(F , T).
Then we show that q ∈ ⋂∞

i= F(Si). Indeed, choose a subsequence {xni} of {xn} such that

lim
n→∞ sup

〈
(f – I)q, xn – q

〉
= lim

i→∞
〈
(f – I)q, xni – q

〉
.

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} such that {xnij

} converges
weakly to q. Without loss of generality, we may assume that xni ⇀ q. In view of (.),
(.) and (.), we know xni ⇀ q is equivalent to uni ⇀ q, yni ⇀ q and zni ⇀ q.

Since xn+ = αnf (yn) + βnWnzn + γnxn, it implies that

βn‖Wnzn – xn‖ ≤ ‖xn+ – xn‖ + αn
∥
∥f (yn) – xn

∥
∥.

By virtue of conditions (iv), (v), we derive from (.) that

lim
n→∞‖Wnzn – xn‖ = . (.)

Observing that

‖Wnzn – zn‖ ≤ ‖Wnzn – xn‖ + ‖xn – un‖ + ‖un – yn‖ + ‖yn – zn‖,

and from (.), (.), (.) and (.), we derive that

lim
n→∞‖Wnzn – zn‖ = . (.)

It is not hard to find that

‖Wzn – zn‖ ≤ ‖Wzn – Wnzn‖ + ‖Wnzn – zn‖ ≤ sup
x∈K

‖Wx – Wnx‖ + ‖Wnzn – zn‖.
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From Lemma . and (.), we obtain that

lim
n→∞‖Wzn – zn‖ = .

Since zni ⇀ q, W : C → C is a nonexpansive mapping, we get by Lemma . that q ∈ F(W ).
Then by Lemma ., we know that q ∈ F(W ) is equivalent to q ∈ ⋂∞

i= F(Si).
In the following, we show that q ∈ (A + N)–.
As in [], we have that for any r > ,

q ∈ (A + N)– ⇐⇒  ∈ Aq + Nq

⇐⇒  ∈ rAq + rNq

⇐⇒ q – rAq ∈ q + rNq

⇐⇒ q = Jr(I – rA)q

⇐⇒ q ∈ Fix
(
Jr(I – rA)

)
. (.)

In view of condition (i), we can take r ∈ [a, b]. From Lemma . and Jr is nonexpansive,
we derive that

∥
∥Jr (I – rA)un – yn

∥
∥ ≤ ∥

∥Jr (I – rA)un – Jr (I – rnA)un
∥
∥

+
∥∥Jr (I – rnA)un – yn

∥∥

≤ ∥∥(I – rA)un – (I – rnA)un
∥∥

+
∥
∥Jr (I – rnA)un – Jrn (I – rnA)un

∥
∥

≤ |rn – r| ·
∥∥A(un)

∥∥

+
|rn – r|

r

∥
∥Jr (I – rnA)un – (I – rnA)un

∥
∥ → . (.)

Observing that

∥∥Jr (I – rA)un – un
∥∥ ≤ ∥∥Jr (I – rA)un – yn

∥∥ + ‖yn – un‖,

and from (.) and (.), we have that

∥∥Jr (I – rA)un – un
∥∥ → . (.)

From the boundedness of {xn}, we may assume that there exists a subsequence {xni} of {xn}
such that xni ⇀ q, q ∈ C. By (.), we also have that uni ⇀ q, q ∈ C. On the other hand,
from rn → r ∈ [a, b], we have that rni → r ∈ [a, b].

By use of (.), we have that

∥
∥Jr (I – rA)uni – uni

∥
∥ → .

Since Jr (I – rA) is nonexpansive, we have from Lemma . that q = Jr (I – rA)q. In virtue
of (.), this means that q ∈ (A + N)–.
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By use of the similar proof method, we can also derive that

∥∥Js (I – sB)yn – zn
∥∥ → , (.)

and we also have from (.) and (.) that

∥
∥Js (I – sB)yn – yn

∥
∥ ≤ ∥

∥Js (I – sB)yn – zn
∥
∥ + ‖yn – zn‖ → .

From the above proof processing, xni ⇀ q and ‖xn – yn‖ → , we have that yni ⇀ q, where
q ∈ C. On the other hand, from sn → s ∈ [e, g], we have that sni → s ∈ [e, g].

In view of the above inequality, we have that

∥∥Js (I – sB)yni – yni

∥∥ → .

Since Js (I – sB) is nonexpansive, we also have from Lemma . that q = Js (I – sB)q. By
(.), we obtain that q ∈ (B + M)–.

Step . We finally prove that xn → q in norm.
Indeed, we derive from (.) and (.) that

‖xn+ – q‖ = αn
〈
f (yn) – q, xn+ – q

〉
+ βn〈Wnzn – q, xn+ – q〉

+ γn〈xn – q, xn+ – q〉
≤ αnk‖yn – q‖ · ‖xn+ – q‖ + αn

〈
f (q) – q, xn+ – q

〉

+ βn‖zn – q‖ · ‖xn+ – q‖ + γn‖xn – q‖ · ‖xn+ – q‖
≤ (

 – αn( – k)
)‖xn – q‖ · ‖xn+ – q‖ + αn

〈
f (q) – q, xn+ – q

〉

≤ 

(
 – αn( – k)

)(‖xn – q‖ + ‖xn+ – q‖)

+ αn
〈
f (q) – q, xn+ – q

〉
,

it turns out that

‖xn+ – q‖ ≤ (
 – αn( – k)

)‖xn – q‖ + αn
〈
f (q) – q, xn+ – q

〉
.

By use of condition (iv), we obtain from Lemma . that

lim
n→∞‖xn – q‖ = ,

i.e., xn → q as n → ∞.
It is easy to see that the variational inequality (.) can be rewritten as

〈
f (q) – q, q – x

〉 ≥ , ∀x ∈ 
.

From Lemma ., it is equivalent to the following fixed point equation:

P
f (q) = q.

This completes the proof. �
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4 Theorems
Theorem . Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H . Let F : C × C → R be a bifunction which satisfies (A)-(A), and let f : C → C be a
k-contraction with the constant k ∈ (, ). Let T : C → H be a τ -ism mapping with τ > . Let
{Si : C → C} be a family of infinitely nonexpansive mappings. Assume that 
 = GEP(F , T)∩
⋂∞

i= F(Si) = ∅. Let {αn}, {βn} and {γn} be sequences in (, ) such that αn + βn + γn = . Let
{λn} be a positive number sequence. Let x ∈ C and let {xn} be a sequence generated by

xn+ = αnf (yn) + βnWnun + γnxn, ∀n ∈N, (.)

where {un} is such that

F(un, y) + 〈Txn, y – un〉 +

λn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,

and {Wn} is the sequence generated in (.). Assume that the following conditions hold:
()  < c ≤ λn ≤ d < τ and limn→∞ |λn+ – λn| = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()  < lim infn→∞ γn ≤ lim supn→∞ γn < ,
where c and d are real constants. Then {xn} converges strongly to a point q ∈ 
, which solves
uniquely the variational inequality (.).

Theorem . Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H . Let F : C × C → R be a bifunction which satisfies (A)-(A), and let f : C → C be a
k-contraction with the constant k ∈ (, ). Let A : C → H be an α-ism mapping with α > .
Let T : C → H be a τ -ism mapping with τ > . Let N be a maximal monotone operator
on H such that the domain of N is included in C. Let Jr = (I + rN)– be the resolvent of N
for r > . Let {Si : C → C} be a family of infinitely nonexpansive mappings. Assume that

 = GEP(F , T) ∩ ⋂∞

i= F(Si) ∩ (A + N)– = ∅. Let {αn}, {βn} and {γn} be sequences in (, )
such that αn + βn + γn = . Let {rn} and {λn} be positive number sequences. Let x ∈ C and
let {xn} be a sequence generated by

{
yn = Jrn (un – rnAun),
xn+ = αnf (yn) + βnWnyn + γnxn, ∀n ∈N,

(.)

where {un} is such that

F(un, y) + 〈Txn, y – un〉 +

λn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,

and {Wn} is the sequence generated in (.). Assume that the following conditions hold:
()  < a ≤ rn ≤ b < α and limn→∞ |rn+ – rn| = ;
()  < c ≤ λn ≤ d < τ and limn→∞ |λn+ – λn| = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()  < lim infn→∞ γn ≤ lim supn→∞ γn < ,
where a, b, c, and d are real constants. Then {xn} converges strongly to a point q ∈ 
, which
solves uniquely the variational inequality (.).
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Theorem . Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H . Let F : C × C → R be a bifunction which satisfies (A)-(A), and let f : C → C be a
k-contraction with the constant k ∈ (, ). Let A : C → H be an α-ism mapping with α > ,
let B : C → H be a β-ism mapping with β > , and let T : C → H be a τ -ism mapping
with τ > . Let {Si : C → C} be a family of infinitely nonexpansive mappings. Assume that

 = GEP(F , T) ∩ ⋂∞

i= F(Si) ∩ VI(C, A) ∩ VI(C, B) = ∅. Let {αn}, {βn} and {γn} be sequences
in (, ) such that αn + βn + γn = . Let {rn}, {λn} and {sn} be positive number sequences. Let
x ∈ C and let {xn} be a sequence generated by

{
yn = PC(un – rnAun),
xn+ = αnf (yn) + βnWnPC(yn – snByn) + γnxn, ∀n ∈N,

(.)

where {un} is such that

F(un, y) + 〈Txn, y – un〉 +

λn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,

and {Wn} is the sequence generated in (.). Assume that the following conditions hold:
()  < a ≤ rn ≤ b < α and limn→∞ |rn+ – rn| = ;
()  < c ≤ λn ≤ d < τ and limn→∞ |λn+ – λn| = ;
()  < e ≤ sn ≤ g < β and limn→∞ |sn+ – sn| = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()  < lim infn→∞ γn ≤ lim supn→∞ γn < ,
where a, b, c, d, e, and g are real constants. Then {xn} converges strongly to a point q ∈ 
,
which solves uniquely the variational inequality (.).

Proof Put N = ∂iC and M = ∂iC in Theorem .. Then, for rn >  and sn > , we have that
Jrn = PC and Jsn = PC . Furthermore, we have (A + ∂iC)– = VI(C, A) and (B + ∂iC)– =
VI(C, B). Indeed, for q ∈ C, we have

q ∈ (A + ∂iC)– ⇐⇒  ∈ Aq + ∂iC(q)

⇐⇒  ∈ Aq + NCq

⇐⇒ –Aq ∈ NCq

⇐⇒ 〈–Aq, p – q〉 ≤ , ∀p ∈ C

⇐⇒ 〈Aq, p – q〉 ≥ , ∀p ∈ C

⇐⇒ q ∈ VI(C, A).

Similarly, for q ∈ C, we also have

q ∈ (B + ∂iC)– ⇐⇒ q ∈ VI(C, B).

Thus, we obtain the desired result by Theorem .. �

Theorem . Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H . Let F : C × C → R be a bifunction which satisfies (A)-(A), and let f : C → C be a
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k-contraction with the constant k ∈ (, ). Let A : C → H be an α-ism mapping with α > ,
and let B : C → H be a β-ism mapping with β > . Let {Si : C → C} be a family of infinitely
nonexpansive mappings. Assume that 
 = EP(F)∩⋂∞

i= F(Si)∩VI(C, A)∩VI(C, B) = ∅. Let
{αn}, {βn} and {γn} be sequences in (, ) such that αn + βn + γn = . Let {rn}, {λn} and {sn}
be positive number sequences. Let x ∈ C and let {xn} be a sequence generated by

{
yn = PC(un – rnAun),
xn+ = αnf (yn) + βnWnPC(yn – snByn) + γnxn, ∀n ∈N,

(.)

where {un} is such that

F(un, y) +

λn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,

and {Wn} is the sequence generated in (.). Assume that the following conditions hold:
()  < a ≤ rn ≤ b < α and limn→∞ |rn+ – rn| = ;
()  < c ≤ λn ≤ d < τ and limn→∞ |λn+ – λn| = ;
()  < e ≤ sn ≤ g < β and limn→∞ |sn+ – sn| = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()  < lim infn→∞ γn ≤ lim supn→∞ γn < ,
where a, b, c, d, e, and g are real constants. Then {xn} converges strongly to a point q ∈ 
,
which solves uniquely the variational inequality (.).

Proof In Theorem ., put T = . Then, for all τ ∈ (,∞), we have

〈x – y, Tx – Ty〉 ≥ τ‖Tx – Ty‖, ∀x, y ∈ C.

Taking c, d ∈ (,∞) with  < c < d < ∞ and choosing a sequence {λn} of real numbers with
c ≤ λn ≤ d, we obtain the desired result by Theorem .. �

Theorem . Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H . Let PC : H → C be the metric projection. Let f : C → C be a k-contraction with the
constant k ∈ (, ). Let A : C → H be an α-ism mapping with α > , let B : C → H be a
β-ism mapping with β > , and let T : C → H be a τ -ism mapping with τ > . Let
{Si : C → C} be a family of infinitely nonexpansive mappings. Assume that 
 = VI(C, T) ∩
⋂∞

i= F(Si) ∩ VI(C, A) ∩ VI(C, B) = ∅. Let {αn}, {βn} and {γn} be sequences in (, ) such that
αn + βn + γn = . Let {rn}, {λn} and {sn} be positive number sequences. Let x ∈ C and let
{xn} be a sequence generated by

⎧
⎪⎨

⎪⎩

un = PC(xn – λnTxn),
yn = PC(un – rnAun),
xn+ = αnf (yn) + βnWnPC(yn – snByn) + γnxn, ∀n ∈N,

(.)

where {Wn} is the sequence generated in (.). {λn}, {sn}, {rn}, {αn} and {γn} satisfy the
following conditions:

()  < a ≤ rn ≤ b < α and limn→∞ |rn+ – rn| = ;
()  < c ≤ λn ≤ d < τ and limn→∞ |λn+ – λn| = ;



Tian and Jiao Journal of Inequalities and Applications  (2015) 2015:311 Page 21 of 23

()  < e ≤ sn ≤ g < β and limn→∞ |sn+ – sn| = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()  < lim infn→∞ γn ≤ lim supn→∞ γn < ,
where a, b, c, d, e, and g are real constants. Then {xn} converges strongly to a point q ∈ 
,
which solves uniquely the variational inequality (.).

Proof In Theorem ., put F = . Then we find that

〈Txn, y – un〉 +

λn

〈y – un, un – xn〉 ≥ , ∀y ∈ C

is equivalent to

〈y – un, xn – λnTxn – un〉 ≤ , ∀y ∈ C,

i.e., by Lemma ., un = PC(xn – λnTxn). This completes the proof. �

Theorem . Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H . Let PC : H → C be the metric projection. Let f : C → C be a k-contraction with the
constant k ∈ (, ). Let A : C → H be an α-ism mapping with α > , let B : C → H be a
β-ism mapping with β > , and let T : C → H be a τ -ism mapping with τ > . Let {Si :
C → C} be a family of infinitely nonexpansive mappings. Let Y : C → H be a widely r-strict
pseudo-contraction with r <  (r ∈ R). Z : C → H be a widely s-strict pseudo-contraction
with s <  (s ∈ R). Assume that 
 = VI(C, T) ∩ ⋂∞

i= F(Si) ∩ Fix(Y ) ∩ Fix(Z) = ∅. Let {αn},
{βn} and {γn} be sequences in (, ) such that αn + βn + γn = . Let {rn}, {λn} and {sn} be
positive number sequences. Let x ∈ C and let {xn} be a sequence generated by

⎧
⎪⎨

⎪⎩

un = PC(xn – λnTxn),
yn = PC(un – rnAun),
xn+ = αnf (yn) + βnWnPC(yn – snByn) + γnxn, ∀n ∈N,

(.)

where {Wn} is the sequence generated in (.). {λn}, {sn}, {rn}, {αn} and {γn} satisfy condi-
tions (i)-(v) respectively, which appear in Theorem .. {tn} satisfies

() {tn} ⊂ (–∞, );
() r ≤ tn ≤ l < ;
()

∑∞
n= |tn – tn+| < ∞.

Then {xn} converges strongly to a point q ∈ 
.

Proof Put N = ∂iC and A = I – Y in Theorem .. Furthermore, put p =  – l, rn =  – tn and
α =  – r in Theorem .. From {tn} ⊂ (–∞, ) and r ≤ tn ≤ l < , we get {rn} ⊂ (,∞) and
 < p ≤ rn ≤ α. We also get

∞∑

n=

|rn+ – rn| =
∞∑

n=

|tn+ – tn| < ∞

and

I – rnA = I – ( – tn)(I – Y ) = ( – tn)Y + tnI.
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Furthermore, we have (A + ∂iC)– = Fix(Y ). Indeed, for q ∈ C, we have

q ∈ (A + ∂iC)– ⇐⇒  ∈ Aq + ∂iC(q)

⇐⇒  ∈ q – Yq + NC(q)

⇐⇒ Yq – q ∈ NC(q)

⇐⇒ 〈Yq – q, p – q〉 ≤ , ∀p ∈ C

⇐⇒ PCY (q) = q.

Since Fix(Y ) = ∅, we get from [] that Fix(PCY ) = Fix(Y ). Thus we obtain the desired
result by Theorem ..

Similarly, put M = ∂iC and B = I – Z in Theorem .. Furthermore, put p =  – l, sn =  – tn

and β =  – s in Theorem .. From {tn} ⊂ (–∞, ) and s ≤ tn ≤ l < , we get {sn} ⊂ (,∞)
and  < p ≤ sn ≤ β . We also get

∞∑

n=

|sn+ – sn| =
∞∑

n=

|tn+ – tn| < ∞

and

I – snB = I – ( – tn)(I – Z) = ( – tn)Z + tnI.

Furthermore, we also obtain (B + ∂iC)– = Fix(Z). �

Due to Section  and Section , we will give our conclusion in the next section.

5 Conclusion
Methods for solving a generalized equilibrium problem, a fixed point problem and the
zero points of the sum of two operators have been studied by many authors respectively.
However, in this paper, for finding a common solution of the above three problems, we
proposed a new regularization algorithm, and it is proved that the sequence generated
by this algorithm has the strong convergence. And then some corollaries to this strong
convergence theorem are presented, which play important roles in nonlinear analysis and
optimization problem.
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