
Int. J. Inf. Secur. (2016) 15:659–673
DOI 10.1007/s10207-015-0306-9

SPECIAL ISSUE PAPER

Improving the ISO/IEC 11770 standard for key management
techniques

Cas Cremers1 · Marko Horvat1

Published online: 23 November 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We provide the first systematic analysis of the
ISO/IEC 11770 standard for key management techniques
(2009, 2009), which describes a set of key establishment,
key agreement, and key transport protocols. We analyse the
claimed security properties, as well as additional modern
requirements on key management protocols, for over 30 pro-
tocols and their variants. Our formal, tool-supported analysis
of the protocols uncovers several incorrect claims in the stan-
dard. We provide concrete suggestions for improving the
standard.

Keywords Formal analysis · ISO · Protocol standards ·
Security protocols

1 Introduction

The International Organisation for Standardisation (ISO)
develops andpromotes international standards,which include
a wide variety of security mechanisms. Many large vendors
aim to support ISO standards, for example, because they are
mandated by oversight bodies [16] or to prevent trade bar-
riers. Hence, it is critical that the ISO standards for security
mechanisms are thoroughly scrutinised. However, most pre-
vious analyses of the ISO security standards have been very
limited in scope, e.g. [10,11,17,25,27]. One exception is the
analysis of Basin et al. of the ISO/IEC 9798 standard for
entity authentication [4] in 2012. Their analysis uncovered
a series of issues that led to an updated version of the 9798
standard.

B Marko Horvat
marko.horvat@cs.ox.ac.uk

1 University of Oxford, Oxford, UK

In this paper, we focus on the ISO/IEC 11770 standard
for key management protocols, in particular on Parts 2 and 3
of this standard. In the most recent version as of June 2014,
these two parts together describe 33 base protocols for key
establishment, key agreement, and key transport.Many of the
standard’s protocols are based on protocols such as Diffie-
Hellman, variants ofMQV, and theTLShandshake. Formany
of the protocols, at least two variants are described. Thus,
analysing these two parts is a significant undertaking.

In positive contrast to other security protocol standards
[5], the ISO/IEC 11770 standard explicitly specifies security
properties for each of its protocols. Two of these properties
are structural properties, i.e. key control and replay detection.
Additionally, there are four security properties that relate to
active adversaries, namely key authentication, key confirma-
tion, entity authentication, and forward secrecy.

We use tool-supported formal methods to determine if the
protocols indeed satisfy their claimed non-structural secu-
rity properties. We also consider other modern key exchange
security properties, such as resilience against key compro-
mise impersonation (KCI) and unknown key share (UKS)
attacks.

Contributions We perform the first comprehensive analy-
sis of Parts 2 and 3 of the ISO/IEC 11770 standard. Our
analysis uncovers multiple previously unreported errors and
weaknesses. For each of the discovered issues, we provide
concrete recommendations for improving the standard.Many
of the discovered issues could have been prevented if the
recent recommendations for related standards, in particu-
lar ISO/IEC 9798, had been applied to their counterparts in
ISO/IEC 11770.

Our protocol models and tools used are available for
download from http://www.cs.ox.ac.uk/people/cas.cremers/
scyther/iso11770/.

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81520769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-015-0306-9&domain=pdf
http://www.cs.ox.ac.uk/people/cas.cremers/scyther/iso11770/
http://www.cs.ox.ac.uk/people/cas.cremers/scyther/iso11770/


660 C. Cremers, M. Horvat

Overview In Sect. 2, we give some background on ISO/IEC
11770 and illustrate some of its protocols. We describe our
analysis approach in Sect. 3 and present the results in Sect. 4.
We provide concrete recommendations for improving the
standard in Sect. 5, discuss related work in Sect. 6, and con-
clude in Sect. 7.

2 Background on ISO/IEC 11770

The ISO/IEC 11770 standard describes key management
techniques. According to the standard, the purpose of key
management is to provide procedures for handling crypto-
graphic keyingmaterial to be used in symmetric or asymmet-
ric mechanisms. Effectively, the standard describes a large
number of key agreement, key transport, and key establish-
ment protocols. We will therefore use the terms mechanism
and protocol interchangeably.

The standard is currently divided into five parts. Part 1
was originally released in 1996 and has been updated over
the years. It describes the context and framework. Parts 2
and 3 describe mechanisms based on symmetric and asym-
metric techniques. Part 4 describes mechanisms based on
weak secrets, such as password-based key exchange proto-
cols. Part 5 describes group key management mechanisms.
The standard is expected to be extended with a sixth part on
key derivation functions.

2.1 Protocols

In this work, we focus on Part 2 [19] and Part 3 [20] of
the ISO/IEC 11770 standard. Part 2 describes 13 key estab-
lishment mechanisms. Part 3 describes 11 key agreement
mechanisms, six key transport mechanisms, and three public
key transport mechanisms. Many of these 33 mechanisms
have optional message fields and message flows, giving rise
to a large number of variants.

Additionally, the mechanisms produce keying material
that must be used with a key derivation function to form
an encryption key for further messages. The standard does
not specify a single key derivation function; instead, it gives

examples of various possible key derivation functions. Thus,
using a single mechanism with different key derivation func-
tions can be regarded as having multiple variants of the same
base mechanism. As we will see in Sect. 4.4, the choice of a
key derivation function can influence the security of a mech-
anism.

Naming conventions. We provide a unique name for each
base mechanism in the considered parts of the standard. We
refer to the thirteen key establishment mechanisms from Part
2 as protocol 2-1, 2-2, ..., 2-13. We refer to the key agree-
ment mechanisms in Part 3 as 3-KA-1, ..., 3-KA-11, to the
key transport mechanisms as 3-KT-1, ..., 3-KT-6, and to the
public key transport mechanisms as 3-PKT-1, 3-PKT-2, and
3-PKT-3.

We next describe two protocols from the standard. This
enables us to introduce notation and provide an indication of
the protocols contained in the standard.

2.1.1 Key establishment mechanism 12 (2-12)

Wegive an example of a protocol described in Part 2 [19], ref-
erenced in the standard in Section 7.2 as Key Establishment
Mechanism 12. The protocol is stated to be derived from,
but not fully compatible with, the four-pass mutual authen-
tication mechanism specified in ISO/IEC 9798-2 [18]. The
protocol has several variants. For this example, we consider
the variant with all optional parts included, depicted using
a message sequence chart (MSC) in Fig. 1. In the figure,
TA/NA is either a time stamp TA or sequence number NA

of entity A. IA and IB , respectively, identify entities A and
B. eK (m) denotes the encryption of the message m with the
key K . The protocol assumes that entities A and B, respec-
tively, share long-term symmetric keys KAP and KBP with
a trusted third party P . Text1 through Text5 are text fields
whose contents are not specified by the standard. F denotes
keying material.

The protocol proceeds as follows. When a party A wants
to communicatewith another party B, it contacts trusted third
party P . A generates fresh keying material F and includes

Fig. 1 Protocol 2-12 with optional parts

123



Improving the ISO/IEC 11770 standard for key management techniques 661

Fig. 2 Protocol 3-KA-11

it in the message encrypted for P , who responds with two
encrypted messages. They are, respectively, encrypted with
KAP and KBP . Both encrypted messages are sent to A, who
forwards the second encryption to B. B decrypts themessage
and obtains the keying material F . A and B now both use a
key derivation function to compute the session key K from
F .We are only considering the protocol variant with optional
parts, so the protocol proceeds with two messages that allow
both entities to confirm to the other entity that they have
successfully computed the key.

For the key derivation function (KDF), we consider two
extremes from the KDFs described in the standard: at the
one end, some KDFs take as input only F , whereas others
include additional parameters, such as the identities IA and
IB .

2.1.2 Key agreement mechanism 11 (3-KA-11)

Key agreement mechanism 11 from Part 3, shown in Fig. 2,
establishes a key shared by entities A and B. First, A gener-
ates a random value rA and sends it to B. B responds with his
own random value rB and his certificate. Upon receiving this
message, A generates a new random value r ′

A. r
′
A is used with

the other two random values to derive a session key K . Then
r ′
A is encrypted using B’s public key, and sent to B along
with a message authentication code (MAC) keyed with K
that includes the earlier randomness rA. B decrypts the mes-
sage, computes K , and checks the MAC. B then responds
with his own MAC of rB and his certificate.

According to the standard, this protocol is derived from
the TLS handshake protocol [15]. In particular, since only
B uses his private key (to decrypt the message) and the ran-
dom values are directly input to the key derivation function,
the protocol resembles TLS’s unilaterally authenticated RSA
mode, where A corresponds to the client and B to the server.
The random value r ′

A in 3-KA-11 plays the same role as
TLS’s pre-master secret and the two text fields are used in
TLS for the cipher suite negotiation.

2.2 Security properties and threat model of the standard

Most standards for security protocols do not specify threat
models or intended security properties [5]. In this respect,
ISO/IEC 11770 is an exception since it explicitly specifies a
set of security properties, and states for each protocol which
of these properties it satisfies. ISO/IEC 11770 defines the
following properties [19,20]:

Implicit key authentication from entity A to entity B
Assurance for entity B that A is the only other entity
that can possibly be in possession of the correct key.
Key confirmation from A to B Assurance for entity B that
entity A is in possession of the correct key.
Explicit key authentication from entity A to entity B
Assurance for entity B that A is the only other entity
that is in possession of the correct key. 1

Entity authentication of A to B Assurance of the identity
of entity A for entity B.
Forward secrecywith respect to entity ATheproperty that
knowledgeof entity A’s long-termprivate key subsequent
to a key agreement operation does not enable an opponent
to recompute previously derived keys.
Forward secrecy with respect to A and B The property
that knowledge of entity A’s long-term private key or
knowledge of entity B’s long-term private key subse-
quent to a key agreement operation does not enable an
opponent to recompute previously derived keys.
Mutual forward secrecy Property that knowledge of both
entity A’s and entity B’s long-term private keys subse-
quent to a key agreement operation does not enable an
opponent to recompute previously derived keys.

For example, regarding the protocols described in the pre-
vious section, the standard claims the following: protocol
2-12 with optional parts satisfies mutual explicit key authen-
tication, mutual key confirmation and mutual entity authen-
tication, and protocol 3-KA-11 provides mutual explicit key
authentication, mutual key confirmation, entity authentica-
tion to B and mutual forward secrecy.

The standard does not specify an explicit threat model.
However, the security properties described above are not
claimed for all protocols. Because some protocols apparently
do not meet the above properties, we can conclude that the
adversary is considered to have at least the following capa-
bilities:

1 The standard notes that “Implicit key authentication from A to B and
key confirmation from A to B together imply explicit key authentica-
tion from A to B” [19, p. 2]. One might expect also that explicit key
authentication implies the other two properties, but the standard does
not state this.

123



662 C. Cremers, M. Horvat

Injecting network messages Entity authentication is
claimed for some, but not all mechanisms. Entity authen-
tication can only be effectively violated if the adversary
is able to inject or tamper with network messages.
Eavesdropping on network messages If the adversary
could not eavesdrop on messages, we would need no
complex key management mechanism, and could exploit
simple authentication mechanisms.
Compromising long-term private keys Forward
secrecy is claimed for some protocols. The adversary
can only violate forward secrecy by compromising the
long-term private keys of some entities.

3 Formally modelling the protocols and their
properties

We analyse all 33 protocols specified in the standard, along
with their described variants, by using formal methods. In
particular, we use the Scyther framework [14] for the auto-
matic symbolic analysis of security protocols.

The Scyther tool [12] has built-in support for compro-
mising adversaries [2], including support for the analysis
of (weak) perfect forward secrecy, resilience against KCI
attacks, and finding unknown key share attacks. It is therefore
especially suitable for analysing security notions common in
the domain of protocols for key agreement, establishment,
and transport. Another feature of Scyther which is very help-
ful in our research is its option-packedback end,which allows
for a conveniently scriptable analysis of whole classes of
security protocols.

3.1 Protocol specification

Within the Scyther framework, protocols are specified using
so-called role scripts. A protocol can have any finite number
of roles and is run by entities who execute those roles. Enti-
ties may execute each role multiple times, and every role can
be executed by any entity. We call each such role instance a
session. We assume that, prior to protocol execution, every
entity has generated or securely received a long-term asym-
metric key pair consisting of a public and a private key, it has
authentic and secret copies of all its long-term symmetric
keys shared with other entities, and authentic copies of the
public keys of all other entities.

Roles are specified as sequences of send, receive, and
claim events. Events have term parameters, where terms are
constructed from role names, function names, variables, fresh
values, and constants. Receive events correspond to pattern
matching on incoming messages, and may therefore contain
variables to store incoming payloads, and fresh values gen-
erated in previous send steps. Send events can contain fresh
values, and variables that occur in previous receive steps.

These variables are initialised before the send events are exe-
cuted. We specify intended security properties using claim
events.

For example, in Fig. 3, we give the input for the Scyther
tool that encodes protocol 2-12 described in Sect. 2.1.1.
Send, receive, and claim events are, respectively, specified
with send, recv, and claim. Freshly generated values are
declaredwithfresh, variableswithvar, user-defined types
withusertype, andhash functionswithhashfunction.
Every function, constant, fresh value, and variable can have
a different type, such as Nonce or a user-defined type such
as Integer, KeyingMaterial, or String—the types
are used to restrict the pattern matching in the execution of
a receive event. The keyword macro can be used to define
shorthands.

3.2 Specifying security properties

We model the following properties from the standard: key
authentication, key confirmation, entity authentication, and
forward secrecy. Additionally, we model key compromise
impersonation (KCI) and unknown key share (UKS) attacks.

3.2.1 Implicit key authentication

According to the standard, implicit key authentication
requires that if an entity A uses a protocol to establish a
key K with entity B, then only A and B can learn the key.
We model this by analysing the secrecy of K while allow-
ing the adversary to impersonate any entity except for A and
B. The possibility of impersonation is modelled by allowing
the adversary to learn the long-term private key of any entity
except for A and B.

3.2.2 Key confirmation

This property corresponds to one of the authentication
properties in Lowe’s hierarchy [23]. In particular, key con-
firmation from A to B corresponds to non-injective data
agreement on the key, which we model with two claims: a
Running claim in the A role and aCommit claim in the B role.
If the Commit claim is executed, we require that the corre-
sponding Running claim is executed as well: it must have the
entities in reverse order, and the same contents (the entities
are said to agree on the contents). It is called non-injective
data agreement because replays are not considered.

3.2.3 Explicit key authentication

In contrast to implicit key authentication, explicit key authen-
tication additionally requires that entities in fact compute the
key. We model this by the previously defined key confirma-
tion.

123



Improving the ISO/IEC 11770 standard for key management techniques 663

Fig. 3 Scyther input file for 2-12 with confirmation messages and
claimed properties

Recall that the standard only states that implicit key
authentication and key confirmation imply explicit key
authentication [19, p. 2], but not necessarily the other way
around. Thus, if the standard is taken literally, this suggests
that there exist protocols that offer explicit key authentica-
tion but that do not satisfy implicit key authentication or key
confirmation. We attempted to find a formal interpretation
of these concepts that makes the suggestion true, but failed.
Thus,we define explicit key authentication as the conjunction
of key confirmation and implicit key authentication.

3.2.4 Entity authentication

Entity authentication from A to B corresponds to aliveness
[23]: an Alive claim for A is placed in the specification of
role B. Whenever the claim is executed, the entity assumed
to be performing the A role is required to have executed some
event.

3.2.5 Forward secrecy

There are several definitions of forward secrecy in the liter-
ature, and it is not clear from the standard which property
is intended. The mutual forward secrecy (MFS) notion from
the standard seems to be closest to two common formal def-
initions. weak Perfect Forward Secrecy (wPFS) [2,13,21]
requires that the adversary does not actively tamper with the
session that he attacks, e.g. by injectingmessages. In contrast,
(strong) perfect forward secrecy (PFS) allows the adversary
to actively interfere with the messages received by the ses-
sion under attack. Scyther directly supports checking both
properties through its support of the LKRaftercorrect and
LKRafter rules [2]. Our analysis reveals that the majority
of protocols for which MFS is claimed in fact only achieve
wPFS, and we therefore interpret MFS as wPFS.

3.2.6 Key compromise impersonation (KCI)

Another desirable property of key exchange protocols is the
resilience to KCI attacks [6], in which the adversary exploits
his knowledge of the long-term private key of Alice to imper-
sonate any entity in later communication with Alice. This
property is modelled in Scyther by a session key secrecy
claim of an entity whose long-term private keys the adver-
sary is allowed to reveal.

3.2.7 Unknown key share (UKS)

Unknown key share attacks are attacks in which only Alice
and Bob know the session key K ; however, Alice and Bob
disagree on who they share K with [7]. For example, Alice
correctly thinks K is shared with Bob, but Bob might think
that K is sharedwithCharlie. Even though the adversary does

123



664 C. Cremers, M. Horvat

not learn the key in such attacks, using the key is not suffi-
cient to authenticate subsequent messages: if Alice sends a
message encrypted with K or accompanied by aMAC keyed
by K , Bob will assume that the message came from Charlie.
Similarly, Bob will send messages intended for Charlie that
will be received by Alice.

We model UKS attacks in the standard way, i.e. if the
assumptions on the partner identities of the attacked session
s do not match the assumptions of a session s′, we allow the
adversary to reveal the session key of s′. This causes UKS
attacks to manifest as violations of secrecy of the session key
computed by s. Note that false positives can also occur,where
the revealed session key is used for more than computing the
session key of s, e.g. for injecting messages.

We enable session identifier (SID) support in Scyther input
files with option “–partner-definition=2”, and
we specify SIDs for all role instances by annotating each
role with SID claims. For example, in Fig. 3 we enable the
manual specification of a partner session on line 1, define
the session identifier on line 11, and insert it into role spec-
ifications on lines 24 and 45. When session key secrecy is
analysed for a session s, and Scyther’s SKR adversary rule
(Session-Key Reveal) is enabled in the GUI or –SKR=1 is

provided as a command-line option, the adversary is able
to obtain the session keys computed by any session whose
identifier differs from that of s.

4 Results of the formal analysis

For the protocols in Part 2 and Part 3 of the standard, we
model the claimed security properties as well as some addi-
tional properties that serve to sanity-check the models. Also,
we consider KCI and UKS attacks.

4.1 Main analysis results

We analyse each of the resulting models in Scyther’s default
setting. This standard setting covers a wide range of sce-
narios, some of which may not apply to all real-world
implementations. We will return to this below. The results
are displayed in Tables 1, 2, 3, 4. In the tables, we use a cross
(×) to denote that an attack was found, and a check (�) to
denote that no attacks were found. These tables were auto-
matically generated using a script that uses the Scyther tool
as a back end.

Table 1 Main formal analysis
results for key establishment
protocols from Part 2

Protocol Optional
fields

Entity
authentication

Implicit key
authentication

KCI
resilience

Key confirmation/explicit
key authentication

Of A Of B Of A Of B

2-1 × � × ×
2-2 × � × ×
2-3 � � × �
2-3 All � � × �
2-4 � � × �
2-4 All � � × �
2-5 All � � � × × ×
2-6 Fa,Fb × × � × × ×
2-6 Fb × × � × × ×
2-6 B,Fb � � � × � �
2-6 B,Fa � � � × � ×
2-6 All � � � × � �
2-7 × × � × × ×
2-8 N2 × × � × × ×
2-8 N2,MACN3 � � � × × ×
2-9 × × � × × ×
2-9 All × × � × × ×
2-10 × × � ×
2-11 × × � ×
2-12 × � × ×
2-12 All × � � × × ×
2-13 × � × ×
2-13 All × × � × × ×

123



Improving the ISO/IEC 11770 standard for key management techniques 665

Table 2 Main formal analysis results for key agreement protocols from part 3

Protocol Optional
fields

Entity
authentication

Implicit key
authentication

KCI
resilience

Key confirmation/explicit
key authentication

PFS Weak PFS

Of A Of B Of A Of B For A For B Of A Of B For A For B For A For B

3-KA-1 � � × × × × × ×
3-KA-2 × � � × × × × ×
3-KA-3 TVP � � � � × � � × � �
3-KA-3 � � � � × � � × � �
3-KA-4 × × × × × × × × × × ×
3-KA-5 MAC � � � � � × � � × � �
3-KA-6 MAC × � � � × � × � × × × �
3-KA-6 × � � � × � × � × × × �
3-KA-7 � � � � � � � � � � � �
3-KA-8 � � � × � × � ×
3-KA-9 × × � � � � × × × × � �
3-KA-10 � � � � � � � � � � � �
3-KA-11 × � × � � × × × × × × ×

Table 3 Main formal analysis results for key transport protocols from part 3

Protocol Optional
fields

Entity
authentication

Implicit key
authentication

KCI
resilience

Key confirmation/explicit
key authentication

PFS Weak PFS

Of A Of B Of A Of B For A For B Of A Of B For A For B

3-KT-1 × × × � � × × × × ×
3-KT-1 All × × × � � × × × × ×
3-KT-2 � × � � � × × × × ×
3-KT-2 All � × � � � × � × × ×
3-KT-3 � × � � � × � × × ×
3-KT-3 All � × � � � × � × × ×
3-KT-4 All × � � � × � × � × × �
3-KT-5 MACN3 � � � � × × � � × � �
3-KT-6 NoText � � � � � � � � × × ×
3-KT-6 � � � � � � � � × � ×

Table 4 Main formal analysis results for public key transport protocols from part 3

Protocol Optional
fields

Entity
authentication

Implicit key
authentication

KCI
resilience

Key confirmation/explicit
key authentication

PFS Weak PFS

Of A Of B Of A Of B For A For B Of A Of B For A For B For A For B

3-PKT-1 � �
3-PKT-2 N3 sign. � �
3-PKT-2 � �
3-PKT-3 �

In the case that we find attacks for a specific protocol
and property, we use further automated analysis to narrow
down the scenarios in which the protocol is vulnerable. In
particular, we consider the following aspects of an attack:

Agents in multiple roles. Some attacks require that an
agent performs multiple roles. This behaviour is allowed
by our formal models and in many application scenarios.
However, there are application scenarios in which each

123



666 C. Cremers, M. Horvat

agent performs only one role, and where such an attack
would not apply.
Alice-talks-to-Alice. Some attacks require that an agent
starts a role with itself in one of the other roles. This
occurs, for example, inmany implementations of theKer-
beros protocol. However, such attacks would not work on
all implementations.

In the tables, crosses imply that we find attacks that might
rely on these non-standard, subtle requirements on attack
scenarios. On the other hand, if no attacks are found, we
consider the following strengthening of our threat model and
include its impact on the standard in Table 5:

Type flaw. We say an attack requires a type flaw if it
depends on an agent misinterpreting a term as a term of
another type. For example, an agent may misinterpret an
agent name as a nonce.

Note that not all crosses in the tables imply a serious flaw in
the protocol. Rather, they indicate that a different protocol
could have achieved these properties, perhaps at a reduced
efficiency. Also note that we model some properties beyond
those claimed in the standard. We analyse the exact discrep-
ancies between our results and the claims in the standard in
Sect. 4.2, where we also return to the implementation sce-
nario assumptions required for the attacks.

Finally, we manually inspect the attack graphs generated
by Scyther to sanity-check the results and to understand
which aspects of a protocol’s design make it vulnerable.

4.2 Implications for properties claimed in the standard

Wegive an overview of the properties claimed in the standard
in Table 5. The contents of this table are directly taken from
the tables in [19,20], with the difference that we add notes
and use red and bold to mark incorrect statements, based on
our formal analysis results. We classify the incorrect claims
in the standard into five categories AT1…AT5, which we
describe below.

Note that the table in [19] only has a key authentication
column with “yes” or “no” in the cells, but this information
has to be combined with NOTE 2 [19], which states that all
protocols in Part 2 achieve implicit key authentication, and
that “yes” is to be interpreted as explicit key confirmation.

The standard provides a reasonable level of detail in its
specification of security properties and assumptions, but does
not provide sufficient detail to unambiguously construct a for-
mal model. We have therefore chosen to focus on positively
claimed properties and use the formal analysis to construct
counterexamples in the form of attacks.

The benefit of this approach is that we can often exhibit
straightforward attacks without having to argue about the

Table 5 Claimed properties security properties claimed for the proto-
cols in Parts 2 and 3 of the standard

Protocol in part 2 Key auth. Key conf. Entity auth.

2-1 Implicit No No

2-2 Implicit No No

2-3 Explicit No A

2-4 Explicit No A

2-5 Explicit No A & B

2-6 Explicit No A & B

2-7 Implicit No No

2-8 Explicit (AT1) Opt. (AT1) Opt. (AT1)

2-9 Explicit (AT1) Opt. (AT1) Opt. (AT1)

2-10 Explicit No No

2-11 Explicit (AT4) No No

2-12 Explicit (AT1) Opt. (AT1) Opt. (AT1)

2-13 Explicit (AT1) Opt. (AT1) Opt. (AT1)

Protocol
in part 3

Implicit
key auth.

Key
conf.

Entity
auth.

Forward
secrecy

3-KA-1 A,B No No No

3-KA-2 B No No A

3-KA-3 A,B B A A

3-KA-4 No No No MFS

3-KA-5 A,B Opt No A,B

3-KA-6 A,B Opt B B

3-KA-7 A,B A,B A,B MFS

3-KA-8 A,B No No A

3-KA-9 A,B No No MFS

3-KA-10 A,B A,B A,B MFS

3-KA-11 A,B (AT2) A,B (AT2) B MFS (AT3)

3-KT-1 B No No A

3-KT-2 B B A A

3-KT-3 B B A A

3-KT-4 A A B B

3-KT-5 A,B (A),B A,B No

3-KT-6 A,B A,B (AT5) A,B No

Our analysis reveals that some claims are incorrect, and we mark them
using bold

full details of the assumed threat models, protocol execu-
tion model, and modelling properties. However, a drawback
is that we cannot provide conclusive statements about other
oddities in the standard. For example, according to the stan-
dard, protocol 2-5 has a “no” for key confirmation, but it
has a “yes” for explicit key authentication. This seems to
contradict the informal definitions of these notions in the
standard: from their definitions, one would expect protocols
with explicit key authentication to also satisfy key confirma-
tion. Future versions of the standard would benefit from a
clarification of the exact relations between these properties.

123



Improving the ISO/IEC 11770 standard for key management techniques 667

Fig. 4 Entity authentication
attack on protocol 2-12 with
optional parts

4.2.1 AT1: entity authentication failures for 2-8, 2-9, 2-12,
and 2-13

Wefind several possible entity authentication failures for pro-
tocols in Part 2 that are derived from protocols in an earlier
version of the ISO/IEC 9798-2 standard for entity authenti-
cation [18].

These attacks are closely related to the attacks on the cor-
responding protocols from the 9798 standard as presented in
[4]. The attacks work in all implementations where a single
entity can perform not only the role of the trusted third party,
but also another role. The adversary can then cause A to com-
plete the protocol, apparently with B, even though B is not
present. Thus, the attacks violate even the weakest form of
entity authentication.

We show an example of such an attack on protocol 2-
12 in Fig. 4. It depends on the fact that the entity running
role A does not check the contents of the message encrypted
for entities running roles B and P . In fact, normally such a
check is impossible because all three roles are run bydifferent
entities. Seeing the payload of that particular message would
be the only way for Pete to detect that something is wrong: he
could see that themessage contains IAlice where IPete should
be. Since he cannot see the payload, he gladly confirms the
session key to Bob in role B, who falsely thinks that Alice
just confirmed it.

Fixes for these protocols have been proposed in [4], and
they have been integrated into the ISO/IEC 9798 standard.
As a result, these attacks no longer work on ISO/IEC 9798.
However, no changes have been made to the derived proto-
cols in ISO/IEC 11770, so they are still vulnerable to similar
attacks.

4.2.2 AT2: 3-KA-11 key authentication/confirmation failure
for B

According to the standard, this mechanism (depicted in
Fig. 2) offers mutual explicit key authentication and mutual
key confirmation. However, as stated earlier, 3-KA-11 is
derived from the unilaterally authenticated RSA mode of
TLS [15]. In this mode, the server cannot be certain whether
the client is who he claims to be. The same issue occurs for
the B role of 3-KA-11.

Consequently, there is an attack on entity authentication
on the B role that violates both of the claimed properties. In
the attack, the adversary performs the A role, pretending to
be Alice, and sends messages to Bob in the B role. Because
executing the A role does not require the use of any long-
term secrets, the adversary can simply claim to be anybody.
The entity performing the B role therefore cannot obtain any
authentication guarantees about its communication partner
or ascertain the secrecy of the key.

123



668 C. Cremers, M. Horvat

Fig. 5 Protocol 2-11

4.2.3 AT3: failure of MFS for 3-KA-11

Because protocol 3-KA-11 is derived from the RSA mode
of TLS, it provides no forward secrecy with respect to B.
The adversary only needs to observe a regular session. If he
afterwards obtains the long-term private key of B, he can
decrypt eB(r ′

A) and learn r ′
A. Since rA and rB have been

sent in plaintext, the adversary then has all the ingredients he
needs to recompute the key K .

4.2.4 AT4: failure of key authentication for 2-11

The 2-11 protocol, which is depicted in Fig. 5, assumes pre-
shared symmetric keys and a trusted third party P . In a regular
execution of the protocol, A sends a request to P for a ticket
to forward to B. The request is a triple (IB, F,Text1), which
contains keying material F generated by A and is encrypted
with the key shared between A and P . P then returns a triple
(F, IA,Text2) encrypted with the key shared between B and
P , which A forwards to B.

Depending on the implementation, it may be possible for
an agent to misinterpret an agent identity as (random) key-
ing material, for example if both are of the same bit length. If
an implementation of 2-11 cannot tell the difference between
these, it can be vulnerable to a type-flawattack on key authen-
tication. The attack can be seen in Fig. 6.

The adversary Charlie can attack a session in which Bob
assumes to be talking to Alice, even though Alice and Bob
are not compromised. Charlie encrypts a message for the
trusted third party Pete, requesting a key for Alice. How-
ever, instead of generating new keying material F , Charlie
instead includes Bob’s identity in the keying material field.
Pete’s response therefore is the triple (IBob, ICharlie,Text2)
encrypted with KAlice,Pete. Charlie resends this message to
Pete. There is nothing in the standard that prevents Pete
from accepting this message as a valid request. Now, Pete
respondswith the triple (ICharlie, IAlice,Text′2) encryptedwith
KBob,Pete. If Bob receives this message, he will assume that
it is a valid message and that ICharlie is secure keying mate-
rial for communicating with Alice. The adversary can then
compute the session key that Bob computes.

4.2.5 AT5: failure of key confirmation for 3-KT-6

The 3-KT-6 protocol is a three-pass protocol that transfers
two secret keys, KA and KB . After the exchange, a session
key can be computed from either or both of these keys. There
are five text fields designated as optional in the protocol’s
specification. We choose to depict a simple implementation
with only Text1 enabled in Fig. 7.

A complex attack is possible on some implementations
of this protocol. There are three preconditions for the attack,
which will not be met by most implementations. However,
there is nothing in the standard that ensures that they are not
met. The first precondition is that the Text1 field is imple-
mented, and Text3 is not implemented. Second, fresh values
must be acceptable values for the Text1 field. Third, entities
must be able to perform both the A and B role of the protocol.

If an implementation meets these conditions, the adver-
sary can attack an instance of the A role by exploiting three

Fig. 6 Protocol 2-11 key authentication attack

123



Improving the ISO/IEC 11770 standard for key management techniques 669

Fig. 7 Protocol 3-KT-6 combined key variant with Text1 optional field

instances of the B role. We give a graphical representation
of such an attack in Fig. 8. The adversary redirects each
sent message into the first receive of a new instance of the
B role, and the entity assumptions for the next instance of
B are swapped. This is possible since entities can perform
multiple roles, and enabled by the fact that the fresh values
in messages sent by instances of the B role can be accepted

into the Text1 field. After three instances of the B role, the
final message is then rerouted back to the final receive of
the A instance. Consequently, there is no instance of B that
agrees with the A instance on both KA and K ′′

B . Thus, when
the session key is computed from both of these keys, key
confirmation fails for the instance of A.

4.3 Key compromise impersonation (KCI) results

All of the protocols in Part 2 use symmetric cryptography and
hashing only. Hence, they are necessarily vulnerable to KCI
attacks, which is implied by the impossibility result from [3].
All the modelled security properties of key transport proto-
cols from Part 3 that are not satisfied can be violated even
without allowing KCI. In some sense, we can consider all
these attacks to be false positives of KCI attacks [3], which
is the view we adopt in the continuation of our KCI discus-
sion.

The automatic analysis shows that four of the eleven key
agreement protocols in Part 3 are vulnerable to KCI attacks:
3-KA-1, 3-KA-3, 3-KA-6, and 3-KA-8. Mechanisms 3-KA-
1 and 3-KA-3 are variants of the unsigned Diffie-Hellman
protocol. Mechanism 3-KA-1 is the static Diffie-Hellman

Fig. 8 3-KT-6 combined key variant with Text1 optional field key confirmation attack

123



670 C. Cremers, M. Horvat

protocol, so as expected the session key is not secret when
the adversary knows one of the static keys. Similarly, 3-KA-
3 is a one-pass Diffie-Hellman variant where A’s ephemeral
and B’s static half keys are used: if the adversary gets B’s
static private key, he can use A’s half key to infer the session
key.

In 3-KA-6, the fact that the input to the key derivation
function is only protected by the public key of A allows an
adversary who knows A’s private key to impersonate B in
subsequent communications with A that are only protected
by the established session key. Lastly, 3-KA-8 is derived from
one-pass MQV [22]. The adversary can use B’s private key
to infer the session key computed by B without tampering
with the message which B gets from A.

None of theKCI attacks thatwe find in this set of protocols
require the adversary to use the actor’s key to interfere before
the attacked session ends. As a result, the attacker can delay
the use of the actor’s key until after the attacked session ends,
and then use it to compute the session key. Thismeans that the
KCI attacks we find can also be regarded as attacks on wPFS
(and thus PFS). In other words, all protocols in the standard
that satisfy wPFS or PFS, also satisfy KCI resilience.

This observation about the standard may lead to the
hypothesis that all protocols that satisfy PFS are also KCI
resilient. However, this is not the case. For example, consider
the 3-message version of theUnifiedModel (UM) protocol as
described in [26]. This protocol is standardised in the NIST
standard SP 800-56A [1]. The protocol is based on Diffie-
Hellman: the session key derivation includes the ephemeral
DH key (gxy) based on the exchanged DH values gx and
gy . As shown in [26], this helps to ensure that the protocol
satisfies PFS. However, it is not KCI resilient because the
exchanged DH values are authenticated by a MAC whose
key depends critically on the static DH key gab. If the adver-
sary obtains the actor’s long-term key, he can compute gab

and authenticate DH values of his choosing. Inserting a mes-
sage that contains a DH value gz , where z is known to the
adversary, leads to a KCI attack. Note that [26] explicitly
excludes KCI resilience from its adversary model. Thus, this
protocol proves that PFS does not imply KCI resilience in
general.

However, for all the protocols in the ISO/IEC 11770
standard, PFS does imply KCI resilience. Hence, we can
replace each protocol vulnerable to KCI attacks with one that
achieves all the already satisfied security guarantees, plus for-
ward secrecy with respect to both entities, by following the
Forward Secrecy column in Table 5:

– 3-KA-1 can be replaced by 3-KA-5 (optionally, key con-
firmation can be enabled),

– 3-KA-3 and 3-KA-6 can be replaced by 3-KA-7 (if entity
authentication is required) or 3-KA-5 (otherwise), and

– 3-KA-8 can be replaced by 3-KA-9.

4.4 Unknown key share (UKS) results

We use Scyther to analyse all protocols for which key
authentication is claimed for UKS vulnerabilities. We find
that UKS attacks are possible on every implementation of
two such protocols, and on some implementations of several
other protocols.

We first explain the unknown key share attack on the
3-KA-11 protocol in detail. A graphical representation is
given in Fig. 9. In the attack, the adversary does not modify
the contents of any messages, but only changes the implicit
sender/recipient fields. When Alice executes role A with her
intended partner Bob, she sends out her first message. The
adversarymodifies the sender field to “Charlie” and forwards
the message to Bob. Bob assumes Charlie wants to commu-
nicate with him, so Bob starts to execute the B role and sends
the response message to Charlie. The adversary redirects this
message to Alice. The protocol continues as usual, except
that the adversary continues to modify the sender fields and
redirecting the responses. There is nothing in the messages
that allows the entities to check each other’s beliefs about
their communication partner. In the end, Alice and Bob com-
pute the same key K . Although the adversary does not know
this key, Bob will believe that any subsequent messages he
receives, which are encrypted or authenticated using K , are
coming from Charlie, when in fact they come from Alice.
This can lead to a serious authentication flaw [8, p. 139].

Although 3-KA-11 is derived from the TLS protocol, the
TLS protocol is not vulnerable to unknown key share attacks.
The reason for this is that the TLS protocol performs confir-
mation on all previously received messages, which in TLS
contain the identities of the sender and recipient. This confir-
mation will fail if the parties have different views on their
communication partners. In some sense, 3-KA-11 can be
regarded as a stripped down version of the unilateral TLS-
RSA handshake where security-relevant information (the
identities of the participants) has been removed.

A second UKS attack is possible on the 2-10 protocol,
which suffers from a role-mixup attack where Alice and Bob
both perform the A role and compute the same session key.
This can lead to later reflection attacks and misinterpretation
attacks when the session key is used to encrypt payloads. In
implementations inwhich entities canperformmultiple roles,
protocols 2-2, 2-8, 2-9, 2-11, and 2-12 are also vulnerable to
UKS attacks.

Fortunately, UKS attacks can be prevented by choosing
a key derivation function that includes the identifiers (IA
and IB) of the involved entities [7,8]. For example, this is
required by the NIST SP-800-56A key derivation [1], which
is included in Part 3 of the standard. We modelled the use of
this KDF and used automated analysis to confirm that this
prevents the UKS attacks. Intuitively, including the identities
in the KDF ensures that entities that have different beliefs

123



Improving the ISO/IEC 11770 standard for key management techniques 671

Fig. 9 Unknown key share attack on protocol 3-KA-11. Alice shares a key K with Bob as she expects, but Bob mistakenly assumes he shares K
with Charlie

about their intended peers compute different keys, which
thwarts UKS attacks.

5 Recommendations

In this section, we provide four recommendations to improve
the ISO/IEC 11770 standard.

1. Making the threat model explicit It is commendable that
for every protocol in this standard there is a list of fairly pre-
cisely defined security requirements. However, an essential,
yet missing ingredient to unambiguously state what is meant
by these properties is an explicit threat model. Without the
threat model, it is impossible to assess if the security require-
ments are met, as also discussed in [5]. We recommend its
addition to the standard, with the proviso that any introduced
differences from our threat model might require additions to
or revisions of our other recommendations.

2. Improving protocols to achieve stated properties Our
second recommendation is to make small changes to the pro-
tocols to achieve their stated properties, if possible. Themost
straightforward way is to adopt the recommendations made
for ISO/IEC 9798 in [4, p. 14]. In particular, we require that

– no cryptographic data should be interchangeable, which
can be enforced by including unique tags,

– when optional fields are not used, then they must be set
to empty, and

– entities that perform the role of the TTP in the 2-8, 2-9,
2-12, and 2-13 protocols must not perform the A or B
role.

Following these recommendations addresses all of the issues
in Table 5 except for the problems with protocol 3-KA-11.

3. Using appropriate key derivation functions Our third
recommendation improves the security of the standard by
preventing unknown key share attacks. If the input to the
key derivation function includes the identities of the com-
municating parties, UKS is directly prevented. For example,
the execution of protocol 3-KA-11 depicted in Fig. 9 no
longer constitutes a UKS attack: Alice and Bob simply com-
pute different session keys.We therefore recommendmaking
the inclusion of identities in the key derivation an explicit
requirement. A key derivation function from NIST SP-800-
56A [1], which is described in ISO/IEC 11770, meets this
requirement.

4. Addressing remaining issues with 3-KA-11 3-KA-11
inherently does not offer perfect forward secrecy or mutual
authentication. Switching to a protocol that does, such
as mutually authenticated TLS-DHE_RSA, substantially
changes the environmental assumptions, including the pre-
distribution of keys.

123



672 C. Cremers, M. Horvat

A simpler solution is to adapt the statements made about
the protocol. In particular, it should not be claimed in the
overview table [20, p. 42] that 3-KA-11 achieves implicit
key authentication for both entities, that it achieves key con-
firmation for both entities, or that it achievesMFS. Similarly,
the running text [20, p. 26] should not claim that 3-KA-11
achieves mutual explicit key authentication.

6 Related work

In 1998, Horng and Hsu presented an attack on an early
version of the 3-KT-6 protocol [17]. This version contained
no identity IB of B in the second message, which enabled
an attack similar to the 1995 attack by Gavin Lowe on the
Needham-Schroeder protocol [24]. The attack on this version
of 3-KT-6 violated key confirmation and showed that the
protocol did not offer any strong mutual authentication. In
the same year,Mitchell andYeun proposed a fix [27] that was
later introduced in the standard. They essentially performed
Lowe’s Needham-Schroeder fix by adding IB to the second
message.

In 2004, Cheng and Comley presented two attacks on a
previous version of the 2-12 protocol [10,11]. Their first
attack is a replay attack that depends on compromising ses-
sion keys of threads not under attack, and the fact that random
or sequence numbers are used where timestamps would be
appropriate. Cheng and Comley fixed the protocol by replac-
ing the used sequence numbers with timestamps.

A second attack is possible even when timestamps are
used. It is a type-flaw attack based on the possibility of inter-
preting an identity field as a fresh key. The protocol was fixed
by cryptographically binding the twoparts of the secondmes-
sage (the second part became part of the payload encrypted
to form the first part).

Initially, protocol 2-12 was withdrawn from the standard,
but it was later updated in 2008 with a new version that did
not suffer from these attacks. This new version is replay-
protected by tagging with constants [19, p. 17], so that a
mixup of messages can no longer occur. Since the type-flaw
attack was also essentially a replay attack, it was automati-
cally prevented as well.

Mathuria and Sriram [25] used Scyther to discover in
2008 more complex type-flaw attacks on a modified version
of protocol 2-13 and on Cheng’s and Comley’s proposed
fixed protocol. The attacks relied on the possibility that com-
plex fields (concatenations, encryptions) could be interpreted
as atomic fields (random values, keys, identities) in some
implementations. While the first attack did apply to the 2-13
protocol itself, the second one did not apply to the updated
version of 2-12, because this version of 2-12 was not based
on fixes from [10,11].

In 2010, Chen and Mitchell [9] generalised some of the
concepts occurring in this class of type-flaw attacks and pre-
sented countermeasures, some of which found their way
into later versions of ISO standards. They called the gen-
eralised phenomenon parsing ambiguity attacks and showed
how many of these attacks can be found in the then current
versions of ISO/IEC 11770 and ISO/IEC 9798. We contin-
ued their work by systematically analysing all the protocols
in Parts 2 and 3 of the current version of the ISO/IEC 11770
standard.

7 Conclusions

Commendably, the ISO/IEC 11770 standard includes state-
ments about the security guarantees achieved by its protocols,
such as those reflected in Table 5. It is currently rare for a
standard to include such statements. Specifying such secu-
rity guarantees substantially helps the users of the standard
in selecting the appropriate protocol for a given scenario. We
recommend that other standards follow this example and try
to include more precise statements about the intended secu-
rity guarantees in their specifications.

However, there exist attacks which render some of the
statements in the standard false. In retrospect, though we
found all the attacks through automatic analysis, someattacks
should have been found by manual inspection. This holds
especially for 3-KA-11, which is based on TLS’s unilaterally
authenticated RSA handshake: it is clear that this protocol
cannot offer key authentication or confirmation for both par-
ties, since only one party is authenticated.

One way in which standardisation bodies could be more
proactive is by being aware of analyses of standards onwhich
they build. For example, many protocols in ISO/IEC 11770
are mentioned to be derived from authentication protocols
in ISO/IEC 9798. In 2012, the ISO/IEC 9798 standard was
analysed, several problems were identified [4], and it was
subsequently updated to fix the identified problems. How-
ever, it seems that no attempt was made to determine if
the derived protocols inherited these problems. Our analysis
shows that this was in fact the case, implying that the attacks
on protocols from Part 2 of ISO/IEC 11770 could have been
identified earlier. In fact, applying the recommendations for
ISO/IEC 9798 as described in [4] to ISO/IEC 11770 would
have prevented all of the issues in Table 5 except for those
with 3-KA-11.

Standards that cover protocols for a wide range of dif-
ferent usage scenarios benefit from periodic updates with
modern security requirements. The standard currently does
not claim resilience to UKS or KCI attacks. One could con-
sider identifying the protocols that achieve these properties
and improving the other protocols. For example, all UKS
attacks that we found can easily be prevented at negligible

123



Improving the ISO/IEC 11770 standard for key management techniques 673

cost by using key derivation functions that include the iden-
tities of the participants. We therefore recommend including
the identities in the input to the KDFs in the standard.

Compared to other security protocol standards, ISO stan-
dards have been less analysed in the academic literature. A
possible reason for this difference is that people who are not
members of the working groups can only access the stan-
dards by purchasing the final versions. One possible way to
promote the external analysis of ISO standards is to publish
early drafts of proposed changes or new standards. Parties
that are interested in applying the standards will still need to
purchase the final versions to ensure they comply. However,
interested parties can freely analyse the designs from the
early drafts, which may help identify and prevent problems
before the standards are deployed.

Acknowledgments This work builds on, and extends abstract protocol
models originally developed for an earlier analysis of ISO/IEC 11770
by Lara Schmid [28].

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Barker, E., Johnson, D., Smid,M.: NIST SP 800-56A: Recommen-
dation for pair-wise key establishment schemes using discrete loga-
rithm cryptography (revised). Technical report, Gaithersburg, MD,
United States (2007)

2. Basin, D., Cremers, C.: Modeling and analyzing security in the
presence of compromising adversaries. In Computer Security—
ESORICS 2010. vol. 6345, LNCS, pp. 340–356. Springer (2010)

3. Basin, D., Cremers, C., Horvat, M.: Actor key compromise: con-
sequences and countermeasures. In Proceedings of the 27th IEEE
Computer Security Foundations Symposium (CSF), pp. 244–258.
IEEE Computer Society (2014)

4. Basin, D., Cremers, C., Meier, S.: Provably repairing the ISO/IEC
9798 standard for entity authentication. J. Comput. Secur. 21(6),
817–846 (2013)

5. Basin, D., Cremers, C., Miyazaki, K., Radomirovic, S., Watanabe,
D.: Improving the security of cryptographic protocol standards.
IEEE Secur. Priv. 13(3), 24–31 (2015)

6. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement pro-
tocols and their security analysis. In IMA Int. Conf. pp. 30–45
(1997)

7. Blake-Wilson, S., Menezes, A.: Unknown Key-Share Attacks on
the Station-to-Station (STS) Protocol. In: Public Key Cryptogra-
phy, vol. 1560, LNCS, pp. 154–170. Springer (1999)

8. Boyd, C., Mathuria, A.: Protocols for Authentication and Key
Establishment. Information Security and Cryptography. Springer,
Berlin (2003)

9. Chen, L., Mitchell, C.J.: Parsing ambiguities in authentication and
key establishment protocols. Int. J. Electron. Secur. Digit. Forensic
3(1), 82–94 (2010)

10. Cheng, Z., Comley, R.: Attacks on an ISO/IEC 11770-2 key estab-
lishment protocol. Cryptology ePrint Archive, Report 2004/249,
2004. http://eprint.iacr.org/, retrieved on June 1, (2014)

11. Cheng, Z., Comley, R.: Attacks on an ISO/IEC 11770-2 key estab-
lishment protocol. IJ Netw. Secur. 3(3), 290–295 (2006)

12. Cremers, C.: The Scyther Tool: Verification, falsification, and
analysis of security protocols. In Proc. CAV, vol 5123 of
LNCS, pp. 414–418. Springer. http://www.cs.ox.ac.uk/people/cas.
cremers/scyther/index.html (2008)

13. Cremers, C., Feltz,M.: Beyond eCK: perfect forward secrecy under
actor compromise and ephemeral-key reveal. Des. Codes Cryptogr.
74(1), 183–218 (2015)

14. Cremers, C., Mauw, S.: Operational Semantics and Verification
of Security Protocols. Information Security and Cryptography.
Springer, Berlin (2012)

15. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Pro-
tocol Version 1.2. RFC 5246 (2008)

16. European Payments Council: Guidelines on Algorithms Usage and
KeyManagement. Technical report. EPC342-08Version 1.1 (2009)

17. Horng,G.,Hsu,C.-K.:Weakness in theHelsinki protocol. Electron.
Lett. 34(1), 354–355 (1998)

18. International Organization for Standardization, Genève, Switzer-
land. ISO/IEC 9798-2:2008, Information technology—Security
techniques —Entity Authentication—Part 2: Mechanisms using
symmetric encipherment algorithms. Third edition (2008)

19. International Organization for Standardization, Genève, Switzer-
land. ISO/IEC 11770-2:2008, Information technology—Security
techniques —Key Management—Part 2: Mechanisms using Sym-
metric Techniques, 2009. Incorporating corrigendum (2009)

20. International Organization for Standardization, Genève, Switzer-
land. ISO/IEC 11770-3:2008, Information technology—Security
techniques—KeyManagement—Part 3:MechanismsusingAsym-
metric Techniques, 2009. Incorporating corrigendum (2009)

21. Krawczyk,H.:HMQV:Ahigh-performance secureDiffie-Hellman
protocol. Cryptology ePrint Archive, Report 2005/176, 2005.
http://eprint.iacr.org/, retrieved on June 1, (2014)

22. Law, L.,Menezes, A., Qu,M., Solinas, J., Vanstone, S.: An efficient
protocol for authenticated key agreement. Des. Codes Crypt. 28,
119–134 (2003)

23. Lowe, G.: A hierarchy of authentication specifications. In Pro-
ceedings of 10th IEEE Computer Security Foundations Workshop
(CSFW), pp. 31–44. IEEE (1997)

24. Lowe, G.: An attack on theNeedham-Schroeder public key authen-
tication protocol. Inf. Process. Lett. 56(3), 131–136 (1995)

25. Mathuria, A., Sriram, G.: New attacks on ISO key establishment
protocols. IACR Cryptol. ePrint Arch. 2008, 336 (2008)

26. Menezes, A., Ustaoglu, B.: Security arguments for the UM key
agreement protocol in the NIST SP 800-56a standard. In: Abe,
M., Gligor, V.D. (eds). Proceedings of the 2008 ACM Sympo-
sium on Information, Computer and Communications Security,
ASIACCS 2008, Tokyo, Japan, March 18–20, 2008. pp. 261–270.
ACM, (2008)

27. Mitchell, C.J., Yeun, C.Y.: Fixing a problem in the Helsinki proto-
col. SIGOPS Oper. Syst. Rev. 32(4), 21–24 (1998)

28. Schmid, L.: Improving the ISO, IEC 11770 standard, Bachelor’s
thesis. ETH Zurich, Switzerland (2013)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://eprint.iacr.org/
http://www.cs.ox.ac.uk/people/cas.cremers/scyther/index.html
http://www.cs.ox.ac.uk/people/cas.cremers/scyther/index.html
http://eprint.iacr.org/

	Improving the ISO/IEC 11770 standard for key management techniques
	Abstract
	1 Introduction
	2 Background on ISO/IEC 11770
	2.1 Protocols
	2.1.1 Key establishment mechanism 12 (2-12)
	2.1.2 Key agreement mechanism 11 (3-KA-11)

	2.2 Security properties and threat model of the standard

	3 Formally modelling the protocols and their properties
	3.1 Protocol specification
	3.2 Specifying security properties
	3.2.1 Implicit key authentication
	3.2.2 Key confirmation
	3.2.3 Explicit key authentication
	3.2.4 Entity authentication
	3.2.5 Forward secrecy
	3.2.6 Key compromise impersonation (KCI)
	3.2.7 Unknown key share (UKS)


	4 Results of the formal analysis
	4.1 Main analysis results
	4.2 Implications for properties claimed in the standard
	4.2.1 AT1: entity authentication failures for 2-8, 2-9, 2-12, and 2-13
	4.2.2 AT2: 3-KA-11 key authentication/confirmation failure for B
	4.2.3 AT3: failure of MFS for 3-KA-11
	4.2.4 AT4: failure of key authentication for 2-11
	4.2.5 AT5: failure of key confirmation for 3-KT-6

	4.3 Key compromise impersonation (KCI) results
	4.4 Unknown key share (UKS) results

	5 Recommendations
	6 Related work
	7 Conclusions
	Acknowledgments
	References




