Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 (.) JO urna | Of Softwa re E n g | nee ri n g

www jserd.com/content/2/1/9

Research and Development

a SpringerOpen Journal

RESEARCH Open Access

Personalized architectural documentation
based on stakeholders’ information needs

Matias Nicoletti’, Jorge Andres Diaz-Pace, Silvia Schiaffino, Antonela Tommasel and Daniela Godoy

*Correspondence:
matias.nicoletti@isistan.unicen.edu.ar
ISISTAN Research Institute,
CONICET-UNICEN, Paraje Arroyo
Seco, Campus Universitario, Tandil,
Argentina

@ Springer

Abstract

Background: The stakeholders of a software system are, to a greater or lesser extent,
concerned about its software architecture, as an essential artifact for capturing the key
design decisions of the system. The architecture is normally documented in the
Software Architecture Document (SAD), which tends to be a large and complex
technical description, and does not always address the information needs of every
stakeholder. Individual stakeholders are interested in different, sometimes overlapping,
subsets of the SAD and they also require varying levels of detail. As a consequence,
stakeholders are affected by an information overload problem, which in practice
discourages the usage of the architectural knowledge and diminishes its value for the
organization.

Methods: This work presents a semi-automated approach to recommend relevant
contents of a given SAD to specific stakeholder profiles. Our approach assumes that
SADs are hosted in Wikis, which not only favor communication and interactions among
stakeholders, but also enable us to apply User Profiling techniques to infer
stakeholders’ interests with respect to particular documents.

Results: We have built a recommendation tool implementing our approach, which
was tested in two experiments with Wiki-based SADs. The experiments aimed at
assessing the performance reached by our tool when inferring stakeholders’ interests.
To this end, precision and recall metrics were used.

Conclusions: Although preliminary, the results have shown that the
recommendations of the tool help to find the architectural documents that best match
the stakeholders’ interests.

Keywords: Stakeholders; Architectural documentation; Software architecture; Wikis;
Personalization; Recommender systems

1 Contents

This article is organized as follows. Section 2 presents the introduction of this article.
Section 3 discusses related work on architecture documentation. Section 4 provides back-
ground information about the V&B method, and then presents the details of our approach
in terms of user profiles, NLP tools and similarity metrics. Section 5 is devoted to the
experiments used to evaluate the approach. Section 6 discusses the results of the experi-
ments of this study. Finally, Section 7 gives the conclusions and discusses future lines of
work.

© 2014 Nicoletti et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto:matias.nicoletti@isistan.unicen.edu.ar
http://creativecommons.org/licenses/by/2.0

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 2 of 26
www.jserd.com/content/2/1/9

2 Background

Software Architecture is a useful model for describing the high-level structure of a system
in terms of components, responsibilities allocated to those components, and relationships
among them (Bass et al. 2012). The software architecture plays an important role in early
development stages as the container of the main design decisions for satisfying the stake-
holders’ concerns. An example of decisions is the use of certain patterns, such as layers
or client-server, to meet modifiability or performance qualities. In a development project,
the software architecture is typically captured by the Software Architecture Documenta-
tion (SAD), which acts as a channel of communication and knowledge sharing among the
stakeholders of the project (Clements et al. 2010). Along this line, a SAD must be clear
in explaining: i) how the main functional requirements are addressed by the different
software components, and ii) how the component structure satisfies the quality-attribute
requirements of the system (e.g., performance, availability, modifiability). As indicated in
the ISO Standard (ISO/IEC/IEEE 2011), a challenging aspect of the SAD is that is targeted
to multiple readers (i.e., stakeholders such as managers, developers, architects, customers,
testers, sub-contractors), which might have different backgrounds and information needs.
Generally, each reader needs the architectural knowledge in order to understand specific
parts of the system and perform tasks related to the project.

A common problem that stakeholders face when they consume information from a SAD
is that of information overload. For instance, recent studies (Koning and Vliet 2006; Su
2010) have shown that many individual stakeholder’s concerns are addressed by a fraction
(less than 25%) of the SAD, but for each stakeholder a different (sometimes overlapping)
SAD fraction is needed. In practice, the process of creating and maintaining a SAD tends
to be a low-priority or underestimated activity in many projects (due to budget con-
straints, tight schedules, or pressures on developing features, among other reasons). A
common approach is to produce a generic document loaded with development-oriented
contents. However, this approach is not the most convenient solution from a multiple-
stakeholder perspective. In addition, generic SADs are often extensive and complex, and
therefore, stakeholders have difficulties in accessing the information needed for their
tasks.

In this work, we aim at improving the ways by which stakeholders access and find rel-
evant information in architectural documents, in the context of Wiki environments. In
particular, we have investigated techniques to infer the interests of a user® as he/she works
with a Wiki-based SAD, and then generate specific recommendations of SAD sections
(i-e., Wiki documents) that might be relevant to that user. These kind of recommendations
are useful when the size of the documentation is large, as it is common in architectural
documentation. To this end, the techniques should determine the relevance of a given
SAD section for each user by analyzing the characteristics of the SAD sections and the
work context of the users. In other words, we need to characterize (or model) users’
interests, preferences and goals with respect to the SAD. Our approach is based on the
construction of user profiles (Schiaffino and Amandi 2009; Castro-Herrera et al. 2009).
Initially, profiles for different stakeholder types are derived from the Views and Beyond
(V&B) method for architectural documentation (Clements et al. 2003). As stakeholders
browse the SAD, their profiles are enriched with information coming from Wiki docu-
ments via Natural Language Processing (NLP) techniques (Baeza-Yates and Ribeiro-Neto
2011) and implicit interest indicators (Al halabi et al. 2007; Claypool et al. 2001). We apply

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 3 of 26
www.jserd.com/content/2/1/9

the NLP techniques to perform a semantic analysis of the SAD textual contents through
concept and tag mining (Nicoletti et al. 2012; Nicoletti et al. 2013a).

Our approach was initially presented in a previous work (Nicoletti et al. 2013b), and
we employed a similarity function based on TEIDF for matching Wiki documents against
user profiles. We have extended that work by developing a recommendation tool for our
approach, which works integrated into a Wiki-based system (DokuWikiP). In this article,
we additionally investigate alternative similarity functions and assess their performance
empirically. The preliminary results discussed in (Nicoletti et al. 2013b) for a given SAD
are complemented with an additional experiment that uses a different SAD and differ-
ent test subjects. The results of this second experiment confirmed the trends of the first
experiment regarding the performance of our approach and usefulness of the recommen-
dations. The results also shed light on the selection of similarity metrics (according on
their performance) for a future deployment of our tool in real-life software development

environments.

3 Related work

Several documentation methods for architectural knowledge have been proposed in
the literature. Relevant examples include: Kruchten’s 4+1 View Model, Software Systems
Architecture, Siemens 4 Views, and SEI Views & Beyond (Clements et al. 2010). These
methods prescribe a structure for the SAD (i.e., a template) and promote the use of sep-
arate architectural views. These methods provide few or no guidelines for generating the
documentation corpus, and the documenters (in general, the architecture team) need to
determine the right contents for each section of the template.

In particular, Views & Beyond (V&B) (Clements et al. 2003) is an appealing method
for our work, since it proposes a role-based personalization of the SAD contents (a role
here is a stakeholder type). The basic V&B principle states that documenting a software
architecture involves documenting the relevant views, and then documenting information
that applies to more than one view. A view is deemed as relevant if some stakeholder cares
about it, or if the view addresses a key quality-attribute aspect of the system. Also, this
method defines some documentation guidelines, such as the combination of views or the
adjustment of the detail level for each view.

However, V&B still presents some drawbacks in practice. The method assumes that
the stakeholder profiles are static (in time) and that their interests can be inferred
just using the project role. In our opinion, the stakeholders’ interests might change
during the project lifetime, and they might be influenced by other factors, in addi-
tion to the stakeholder’s role. A conditioning factor is the stakeholder’s background.
For instance, two stakeholders who share the developer role but work in different
sub-systems might have different architectural interests (and thus, require different sub-
sets of the SAD). Another factor is the stakeholder’s reading history through the SAD
(Su 2010). Also, V&B is often viewed by practitioners as a heavy-duty method, due
to the amount of documentation to be generated in order to fulfill the SAD template.
A contribution of our approach to fosters the applicability of V&B is the provision of
more accurate profiles of interests regarding architectural documentation, thanks to
the usage of User Profiling techniques. Furthermore, in our proposal, the contents of
user profile can be adjusted as the user’s working context changes during project life
cycle.

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 4 of 26
www.jserd.com/content/2/1/9

To the best of our knowledge, only a few previous works (Castro-Herrera et al. 2009;
Su 2010) have considered User Modeling techniques for architectural documentation.
Su 2010 proposed an automated approach to deal with chunks of architectural informa-
tion. These chunks are the result of specific exploration paths followed by a stakeholder
(or user) when reading a SAD. The relevance of a given chunk is determined by fac-
tors such as the time spent by a reader on a section, or the access frequency of a
section. The idea is that, when a new user is about to navigate the SAD, a tool can assist
him/her to find relevant information by reusing previous similar exploration paths (from
other users). A prototype tool has been recently developed (Su et al. 2011). Unfortu-
nately, this approach still lacks an empirical performance evaluation, in contrast with our
approach.

Related to (Su et al. 2011), de Boer and van Vliet (de Boer and van Vliet 2008)
investigated the application of Latent Semantic Analysis (LSA) techniques to software
documentation with auditing purposes. LSA is used for helping auditors in the search
of specific architectural topics (e.g., terms like architecture, scenario, performance, SOA,
etc.) across several documents by creating a “reading guide”. In background, the LSA
algorithm constructs a vector-space model for the documents. In this approach, the audi-
tors must explicitly indicate the terms of interest (or “search query”), so as to steer the
navigation through potentially-relevant documents. This approach is related to ours in
the sense that documents are modeled with term-based representations. A difference
with our approach is that we do not require explicit queries, because the user interests are
inferred semi-automatically to generate personalized recommendations.

Castro-Herrera et al. 2009 proposed a user modeling approach to support the require-
ments elicitation process. A recommendation system is used to link relevant forums with
the project stakeholders. For this task, the system builds user profiles by combining a
term-based model (extracted with the help of NLP techniques) with context information,
such as the stakeholder’s role or his/her preferences for specific requirements or qual-
ity attributes. This technique is of particular interest for our work, since it is a possible
strategy to solve the problem when the SAD is supported by collaborative tools.

The nature of the software architecting process makes it suitable for employing collab-
orative web-based tools, such as Wikis. In the last years, several successful experiences
of Wiki-based tools applied to architecting tasks have been reported (Farenhorst and van
Vliet 2008; Unphon and Dittrich 2010). A Wiki is an effective communication channel
that improves the sharing of architectural knowledge among stakeholders. From the per-
spective of User Profiling, an advantage of hosting the documentation (e.g., a SAD) in a
Wiki is that users’ interactions can be monitored in order to gather information to build
user profiles.

Graaf et al. 2012 presented an empirical study on semantic Wikis. In this research, there
is a SAD based on a Wiki that supports semantic annotations and, in particular, includes
an ontology of Software Architecture concepts. The authors argued that ontology-based
SADs are more effective than traditional file-based approaches. Effectiveness here refers
to the ability of user to find relevant information according to his/her interests. In a
controlled experiment with a small group of software professionals, the authors showed
evidence supporting their hypothesis. Although the objectives of this research are differ-
ent to ours, our approach shares the usage of a Software Architecture ontology. which is
part of a semantic dictionary (explained in Section 4.1).

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 5 of 26
www.jserd.com/content/2/1/9

4 Our approach

In order to share the architecture knowledge among the stakeholders, it must be ade-
quately documented and communicated. The Software Architecture Document (SAD) is
the usual artifact for capturing this knowledge. The SAD format can range from Word
documents to a collection of Web pages hosted in a Wiki. The latter format is becom-
ing common nowadays (de Graaf et al. 2012; Farenhorst and van Vliet 2008; Jansen et al.
2009). The SAD is generally structured around the concept of architectural views, which
represent the many structures that are simultaneously present in software systems. A
view presents an aspect or viewpoint of the system (e.g., static aspects, runtime aspects,
allocation of software elements to hardware, etc.). Therefore, the SAD consists of a col-
lection of documents (according to predefined templates) whose contents include views
(e.g., module views, components-and-connectors views, allocation views) plus textual
information about the views (e.g., system context, architectural drivers, key decisions,
intended audience).

Stakeholders are important actors in the documentation process as they are the main
consumers of the SAD. By stakeholder (Mitchell et al. 1997), we mean any person, group
or organization that is interested in or affected by the architecture (e.g., managers, archi-
tects, developers, testers, end-users, contractors, auditors). We argue that the value of a
SAD strongly depends on how its contents satisfy the stakeholders’ information needs. As
we mentioned in Section 3, the V&B method proposes a stakeholder-based strategy for
organizing the SAD views and their contents (Clements et al. 2003). V&B characterizes
several types of stakeholders and then links them to specific architectural views, based on
the anticipated usage of the views by the stakeholders and their preferred level of detail
for the views. This information is summarized in the matrix of Figure 1.

We see the V&B characterization of stakeholders as a basic form of user profiles, and

then propose a semi-automated approach that leverages on these profiles (and enriches

TYPES OF ARCHITECTURAL VIEWS
A
f Al
C&C
Information Module Views Views Allocation Views Other Documentation
needs from the
Decomposition =)
view for \> Z g E
different - - S 2
1 - E| & B g8 =» 3
stakeholders 1 = s - E £ =2 35 3
8 g E|lE Z 2 B
1| 3] s g E g2 F 2 & s
2 1 g = = 8 = = F3 2
1 ® B i] E— g - 2 E E E = -E =
§ I« -] B = 2 § 2 E 2|8 = e = = g
s I3 1 § & 3 2 B 8 E 2 2| &8 2 B E 2
Project managers I s| s E d d o s
Members of development team 1 d|Jd d|d d s s | d d d d s
i Testers and integrators Il 4 |]d d d|d s s | s d d s s
5 Designers of other systems Il s d o
x Maintainers llaja ¢ a « d s |s d d d d d
g Product-line application builders 1 djd s s s s s s d s d s
= - Customers I 1 o o o s
5 End users 1 1 s s o s
% Analysts I a jd s d|d s d s d d s d s
E Infrastructure support personnel Il s 1s s s d d o s
New stakeholders | x 1 * X x x x x x x x X x x x x X
Current and future "I' _H 5 o o r= r-1 -1 r-1 s o s o =1 o o d‘
| Key: d = detailed information, s = some details, o = overview information, x = anything |
. “ J
Figure 1 V&B matrix of stakeholder interests versus views (Clements et al. 2010).

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 6 of 26
www.jserd.com/content/2/1/9

them) for establishing links with relevant SAD documents. From this perspective, the
SAD is personalized according to the stakeholders’ information needs, as captured in
his/her profile. The process requires a certain time to learn the user interests and build
accurate profiles. This situation is known as the “cold start” problem (Schiaffino and
Amandi 2009). Initially, the profiles are only based on the V&B matrix of stakeholders’
preferences for architectural views. The “cold start” phase lasts until the system is able
to gather additional information about stakeholders’ interests so as to enrich the pro-
files. The user’s browsing activity over a Web-based SAD is an example of such an
information.

A key aspect of our approach is the granularity of SAD contents when mapped to Wiki
pages. This granularity defines the "unit of recommendation” of our tool. In particular,
we used one Wiki page per architectural view, plus one Wiki page per additional section
(documentation beyond views) of the SEI's V&B template, as it has been suggested by
other Wiki-based SADs based on V&B€ (Clements et al. 2003). However, this mapping
choice is not mandatory.

A general schema of our profile-based recommendation approach is depicted in
Figure 2. The design consists of a pipeline of processing units that: i) generates user pro-
files, ii) generates document representations, and iii) computes matching relationships
among users and SAD documents. We refer to these relationships as relevance links,
which are actually the recommendations provided by our tool. The relevance links are
computed on the basis of the similarity between the user profiles and the document
representations. A detailed description of our pipeline can be found on Section 4.3.

4.1 Inputs of the approach
The inputs needed to perform the analysis of stakeholders and construct their profiles are
the following:

e SAD textual contents: The plain text from SAD documents (or sections) is
automatically processed using NLP techniques (see Section 4.5) in order to generate
documents models.

e Interest indicators: When users interact with Web pages, several interest indicators
can be recorded (Al halabi et al. 2007; Claypool et al. 2001). In particular, we analyzed

stakeholders”

implicit interest profiles
indicators o \
M 1
- - :
SAD textual | L "
contents MODEL USER- I
BUILDING DOCUMENT I
LINKAGE |
semantic e i
annotations | . =4 a |
\ . I
= relevance links |

semantic dictiona
24 documents’ SN m=—=
models RECOMMENDATION

Figure 2 Overview of our recommendation approach.

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 7 of 26
www.jserd.com/content/2/1/9

indicators such as: time spent on reading a page, number of visits, mouse scrolls,
mouse clicks, and the ratio between scrolls and time (which represents the frequency
of scrolls while reading of Web page), among others (Claypool et al. 2001).

e Semantic dictionary: We considered a dictionary composed of a hierarchy of
concepts and categories. Categories are concepts with a higher level of abstraction.
This kind of semantic source of knowledge is derived from a previous work (Nicoletti
et al. 2013a). Instead of using a general-purpose dictionary, we here customized it to
consider only Software Architecture concepts along with their corresponding
categories. This dictionary was built by combining concepts from an existing ontology
for software architectures (de Graaf et al. 2012) with concepts described by the SEI's
software architecture bibliography (Bass et al. 2012). We should note that thesauri
commonly used for NLP tasks, such as WordNet or Wikipedia (Nicoletti et al.
2013a), are not specific enough in the Software Architecture domain of knowledge.

e Semantic annotations: Our approach needs to build a model (or representation) of
each SAD document. We argue that these models can be enriched with explicit
annotations provided by an expert (e.g., a member of the software architecture team),
who, in general, will also generate the SAD contents. This expert is able to select
those concepts or categories that best describe the semantics of each document. The
annotations are considered part of the document representations. Moreover, the
annotations are helpful to model documents/sections of the SAD template that are
partially completed (or even empty), or to refine the representation of documents
that are not accurately described by their textual contents (e.g., documents that
contain many images and little text).

Our approach is regarded as semi-automated because the intervention of experts is
required to input semantic annotations in the SAD documents. The expert also makes
annotations on role types and, thus, incorporates V&B-related information. The initial
stakeholders’ profiles are mainly filled in with these annotations. For both annotation
tasks, the expert uses the semantic dictionary as a “label catalog”. The rest of the tasks
and computations can be performed automatically.

4.2 Modeling users and documents

Both user profiles and documents are represented by the same structure. This structure
comprises two parts: i) a set of semantic concepts and categories, which are extracted
from the dictionary mentioned above, and ii) a set of tags (or keywords) (Schiaffino and
Amandi 2009; Nicoletti et al. 2013a). For each item (i.e., concept, category or tag), the
number of occurrences is recorded as the item frequency.

In our context, tags are keywords or non-trivial words often extracted with NLP tech-
niques. Trivial words, such us pronouns or prepositions, are usually excluded. Concepts
are basic units of meaning that serves humans to organize and share their knowledge.
For instance, the English Wikipedia articles have been used as a source of concepts.
Categories are concepts with a higher level of abstraction, which might be link to
concrete concepts or to other categories with different level of abstraction. In our dic-
tionary, for instance, performance, fault tolerance and security are examples of concepts
within the category quality atributes, which, in turn, is linked to the high-level category
requirements.

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 8 of 26
www.jserd.com/content/2/1/9

A user profile or a document model is a triple M =< CON, CAT, TAG >, in which:

® CON = {cony,...,con,} is a set of concepts, where con; (1 <1i < n) is a pair
< C,F > with C as the concept and F as its frequency.

e CAT = {cat,...,caty,,} is a set of categories, where cat; (1 <i < m) is a pair
< C,F > with C as the category and F as its frequency.

e TAG = {tag, ..., tag:} is a set of tags, where tag; (1 <i<t)isapair < T,F > with
T as the tag and F as its frequency.

This representation is convenient to calculate similarities between users and docu-
ments, as well as for quickly describing the interests of a given user or the contents of a
given document. For instance, Figure 3 shows how the model of user interests might look
like. We also decided to combine both concepts and tags, since the SAD is generally com-
posed of general concepts and problem-specific concepts. Some examples of problem-
specific concepts are: names of software components, specific stakeholders’ names, and
tactics and patterns that are not included in the common catalogs, among others. The
general concepts are defined in our semantic dictionary, whereas the problem-specific

concepts are mined from the text.

4.3 The processing procedure

The process is divided into three main stages, as depicted in Figure 4. First, the docu-
ment representation generation is performed. This stage runs a NLP semantic analysis
of the documents (hosted in the Wiki), and afterwards merges the semantic annotations
with the partial representation of those documents. We refer to a model (of a document
or a user) as being “partial” when its constituents (e.g., tags) must be refined by running
one or more processing units. First, the document annotations are included in the partial
models of documents. A prefixed value (parameter N) denotes the weight (or frequency)
that each annotation would have in the document model. Second, a NLP analysis of doc-
uments is performed. To this end, we have configured a sub-pipeline of NLP tasks that

pm—— e —— - ———
i User John Smith Role/s: Developer'
high " i o = =S 2 B = S \
I 3 design 3x/ quality 1x [architectural !
1 rationale attribute style 1|2
< =
y <
S | categories set ! E
g | IS, /R RN . P eSO | | B
1 K &
Q
Q I 3x design 1x 2% R cae I|e
“g I decislon performance availability 1x| broker " 8
] | concepts set !
3 fo o " - - !
— l I = g}
| ! 2x server] _'E
[1 I E
L o)
| tags set ' &
O N e e e A
N x O : frequency of a tag Nx I:l : frequency of a concept Nx : frequency of a category
——— : hierarchical relation b ¢ pts and categories KEY
Figure 3 Graphical example of a user profile.

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 9 of 26
www.jserd.com/content/2/1/9

—————————————————————————————————— - -l_ - ===

D textual N7 USERDOCgENT]

| empty documenl tents final 1| | G !

| document ammtalluns d;c:‘;:'esml 1 1
| models 1

’\\\ annotations lext -"'-'- :

| ==l '

NLP — = I

 models ‘—J’m'g'"g mode[s ‘ analysis modet ‘-L—"E qode\s 1

Pl

| n I pocument Nl o 1

\ || semantic REPRESENTATIONS |} S |

N e e A\ Eems | GENERATION |malchmg .

"‘—_____________________‘57 ___________ 1 models 1

\ -

I 4 0\ 1

! ——-Ii_ / 1

~ annotations " items ‘ l I ’E‘m”"-?ﬂ"“ks 1

que[s merging mode[s weighting mode\s - =] \ 1

Y
, 5 8 I
4 i '/ interest | user-document
g er ¢ eaiors Y inins fnal usr! o ke
profiles

! i mphimres ! f‘ <-l

\ based on V&B] el | uSERPROFILES |
N GENERATION }_
| KEY O input processingunit | 1: stage) : datafiow l
Figure 4 Detailed view of the pipeline.

produces a term-based representation of the documents. The details of this sub-pipeline
are described in Section 4.5.

Second, the user profiles generation stage takes place. The initial user profiles, which
are empty at this point, are enriched with semantic annotations coming from the roles
(or stakeholder types) associated to each user. The role annotations and the user profiles
are merged as described in the previous stage. Next, we perform what we call semantic
items weighting: the semantic items that were extracted from the documents visited by
a given user are added to that user profile. We assume that when a user accesses a SAD
section, the contents of that section are likely to be relevant to that user. Therefore, we
consider interest indicators from usage statistics to weight the relevance of the semantic
items incorporated into user profiles. In particular, we used the number of visits as the
frequency of the new items for the user profile. For example, if a user visited a given doc-
ument N times, and that document contains a concept X and a tag T, then both X and
T are incorporated to the user profile with a frequency of N. This indicator was priori-
tized over the others based on an empirical assessment of its relevance for inferring user
interests (see Section 5).

Finally, the user document linkage stage is executed. In this stage, the models for both
users and documents have already been generated. These two kinds of models are pro-
cessed by an algorithm that determines the degree of matching (or similarity) between
the models. In this article, we analyzed several metrics to compute the similarity between
two models (see Section 4.4) and compared them empirically (see Section 5).

The output of the complete procedure is a set of weighted links between users
and documents, in which the weights indicate the relevance of the documents for
each user. The output is grouped by user and anked in descending order to select
the most important links per user. A threshold k is used to establish the number of
documents retrieved as relevant. For example, if we have N different sections in a
SAD, with k = 1/4 we are considering the first 1/4N sections as relevant and the
other 3/4N as irrelevant. Figure 5 shows an snapshot of our recommendation tool at

work.

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 10 of 26
www.jserd.com/content/2/1/9

AticuloDiscusién ditar Revisiones antiguas Q

Sistema de Voto Electrénico

Documento de la Arquitectura de Software (DAS) View Recommended Pages
L

Contenidos

{ roli resules }
1. Guia de Documentacién
Show (25 12] eniries Search;

Lage

Mduics - Maquina de Votar

Componentes y Conectores - Urna de Volos
Deployment - Vista general

Médulos - Componente de Comunicacion de Datos
Background de Ia Arquitectura

Componentes y Conectores - Maguina de Volar
Componentes y Conectores - Vista general

\
LY

d SAD i order by

L. Asignacién

a. Deployment general del sistema

4. Relaciones entre las Vistas

SAD contents in DokuWiki [Recommender system output |

Figure 5 Our recommendation tool integrated in the DokuWiki environment action.

4.4 Computing similarity between models

In general, the strategies to compute the similarity (or distance) between two items map
the similarity between the symbolic descriptions of two objects to a unique numerical
value (Huang 2008). In this section we describe different strategies we used to compute
the degree of matching between user profiles and documents models. For each strategy,
we present a short description, its formal definition and, if necessary, some consideration
for its usage. It is worth noting that for those strategies that compute the distance between
two items, we consider the similarities as the inverse of such distance.

4.4.1 Euclidean distance

The Euclidean distance represents the distance between two points in space, given by the
Phytagorean formula. It is one of the most widely used distances for numerical data (Deza
and Deza 2006; 2009; Liu 2011). Equation 1 (Deza and Deza 2009) is the formal definition
of this distance, where Z and ?b) are the vectors to be analyzed, and w;, and w;;, are the
weights associated to attributes £, and ¢, respectively. In this case, weights correspond to

number of occurrences.

m
Euclidean (Z, 71:) = Z (Wt,a - Wt,b)2 @
0

t=

4.4.2 Manhattan distance

This measure takes its name from its geometrical interpretation in the so called Taxicab
geometry, in which the distance between two points is the sum of the absolute differences
of their Cartesian coordinates. Its name allude to the grid layout of most streets on the
island of Manhattan, which causes the shortest path a car could take between two inter-
sections in the borough to have a length equal to the intersections distance in taxicab
geometry. Equation 2 shows the formal definition of the Manhattan distance between two

= —
vectors £, and £ .

- —
Manhattan (tﬂ , tb) =

Z |Wt,a — Wtb (2)

k=0

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 11 of 26
www.jserd.com/content/2/1/9

4.4.3 Chebyshev distance

This strategy defines the distance between two distributions considering the maximum
difference between their attributes. It is a metric defined on a vector space where the
distance between two vectors is the greatest of their differences along any coordinate
dimension. Equation 3 shows its formal definition (Deza and Deza 2009).

Chebyshev (?a), 7;) = max { ‘wl,ﬂ —

Wma — Wm,b‘} 3)

)

4.4.4 Cosine similarity

The representation of distributions as vectors enables us to measure the similarity
between them as the correlation between the corresponding vectors (Huang 2008). Such
similarity can be quantified as the cosine of the angle between them. The strategy is
independent of the length of the distributions, and it is one of the most widely used in
information retrieval systems. Equation 4 presents the formal definition of the cosine sim-
ilarity of vectors 7; and 7;, where Z . ?b) represents the inner product of these vectors,
and ‘ Z and H ?h) ‘represent their norms (Deza and Deza 2009; Liu 2011).

7 Iy Yorto (Wea * wip)

” \/Zt Owta \/Zto

Given the previous equation, the cosine distance in Equation 5 shows how to adapt it to

Cosine (ta Lt) (4)

4.4.5 Cosinedistance

compute the distance between two distributions.
CosineDistance (Z, 7;) =1 — Cosine <?;, ?Z) (5)

4.4.6 Kullback-Leibler divergence
This strategy is also known as information gain or relative entropy (Huang 2008), and it
is defined as in Equation 6.

m Weg
Dyz (ZHTID =) [Wt,a * log <wtb>} (6)
t=1 b

, and returns O, that is

when w;, or w;, are equal to 0. To avoid this 1ndetermmat10n and be able to compute
the formula correctly, a correction is applied to those value equal to 0. These values are
replaced by 107°, so that it does not affect the original distributions. Additionally, the

. . . - rdlrie . :
strategy is not symmetrical, that is Dy, (tg [| tb> # Dgp, (tb || £,) In this context, it can-
not be used to measure distances. To overcome this difficulty, the average divergence is
Wta Wb

Wt T2 it and

computed using the formula in Equation 7, where 71 = T

WL = T01 % Wy g + T3 * Wy p.
m
AverageKullback (ta || tb) Z 71 % Dip Wmllwt) + 79 * Dy, (wtb||wt)] (7)
t=1

4.4.7 Dice-Sorensen similarity

The Dice-Sorensen coefficient is a statistic used for comparing the similarity of two sam-
ples (Dice 1945; Serensen 1948). It is based on an analysis of the presence or absence of
data in the samples considered. As compared to Euclidean distance, Sorensen distance

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 12 of 26
www.jserd.com/content/2/1/9

retains sensitivity in more heterogeneous data sets and gives less weight to outliers. Its

formal definition is given by Equation 8 (Deza and Deza 2009).

2 *

- —
ta -tb‘

Dice-Sorensen (Z, ?b)) (8)

The Jaccard distance is a statistic used for comparing the similarity and diversity of sample

P4

al

4.4.8 Jaccard distance

sets. This strategy is very useful to analyze text similarity in huge collections (Rajaraman
and Ullman 2012). Equation 9 shows the formal definition of this strategy where ¢, and ¢,
represent the attributes of distributions Z and ?b) respectively.

|22 N] _ ta U tp| — |ta Nty

= ©)
|taUtb| |taUth|

Jaccard (Z, ?b)) =1-

4.4.9 Overlap coefficient

The overlap coefficient, also known as Simpson similarity, is a similarity measure related
to the Jaccard index that computes the overlap between two sets, which is defined as
Equation 10 (Deza and Deza 2009).

ty, Nt
Overlap (Z»E:) = % (10)
min{ tal, tb’}

4.4.10 Pearson correlation coefficient
This strategy measures how related two distributions are. Equation 11 shows its formal
definition, where TF, = Y }" wyzand TFp, = Y /0, wep.

mxY) (Wea X wip) — TFq % TF),

\/[(W‘*Zt Wi, — TF2) x (””*Zt 1w TF2>]

(11)

- —
Pearson (ta , L) =

This strategy gives as result a value in the range [—1, +1], being 1 when ?ﬂ) = ?b)

4.4.11 Pearson correlation coefficient distance

This strategy applies a change to Pearson correlation coefficient so that the value of the
metric fits in the range [0, +1] and hence, the strategy represents the distance between
two distributions Z and ?b)

lfPearson(?;,?b)) ifPeolI‘SO?l(a5 b) >0
. - —

PearsonDistance (ta , by) = N
‘Pearson(?a),?b))‘ if Pearson (ta , th) <0

4.4.12 Tanimoto distance

The Tanimoto distance can be defined as a variation of Jaccard distance (Huang 2008). It
compares the weights of shared attributes with the weights of those attributes that belong
to one of the distributions but are not shared between them. The strategy calculates the

o R o - . .

similarity between two distributions ¢, and ¢, giving a value in the range [0, 1], being 1
when Z = ?b) and 0 when the distributions are completely different. The formula of the
distance is shown in Equation 14.

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 13 of 26
www.jserd.com/content/2/1/9

L0
- — .
TanimotoSem (tﬂ , tb) = 5 2 2b (13)
— — - —
A 1 e
- — - —
Tanimoto (ta , tb) = 1 — TanimotoSem (ta , tb) (14)

4.4.13 TF.IDF-based similarity function

In addition to the previous similarity metrics, we propose a candidate function that specif-
ically fits the problem of matching stakeholder profiles against architecture documents.
Our function is based on the TEIDF (Term Frequency x Inverse Document Frequency)
metric of the Information Retrieval field (Baeza-Yates and Ribeiro-Neto 2011). The func-
tion is computed as indicated in Equation 15, in which U is a triple describing a user
profile, D is a triple describing a document model (Section 4.2), N is the amount of
concepts, M is the amount of categories, T is the amount of tags (all from the user pro-
file), ConF.IDF(x) is the CEIDF-value for user concept x, CatF.IDF(y) is the CEIDF-value
for user category y, and TEIDE(t) is the TEIDF-value for user tag t (Goossen et al. 2011;
Nicoletti et al. 2012). This computation outputs a value in the range of [0, +oc], which
is then normalized to the range [0, 1]. A high value represents a good similarity between
the user and the document. If the value is close to 0, it means that there are few o none

semantic items shared between the two models.

TFIDF-based(U, D) = Z ConE.IDF(con,)+ Z CatF.IDF(catm)—f—Z TEIDF(tag,)
neN meM teT
(15)

4.5 NLP Semantic analysis

This analysis aims at extracting concepts and tags from a textual input. The analysis is
executed on the raw text from the Wiki pages. This involves two processes: tag mining
and concept mining. The sequence of tasks for tag mining is the following:

1. Text parsing: The input text from the SAD is parsed in order to remove custom
annotations from the Wiki syntax as well as invalid characters.

2. Sentence detection: The parsed input text is split into a set of sentences. The
OpenNLP? implementation was used for this task.

3. Tokenizer: The sentences are divided into tokens (terms). The OpenNLP
implementation is again used here.

4. Stop-words removal: Frequently used terms are removed. We use approximately
600 words for this task (a mixture of commonly-used stop-words).

5. Stemming: The terms are reduced to their root form to improve the keyword
matching. Porter’s Stemming algorithm€ is used here.

The sequence of tasks for concept mining is the following:

1. Text parsing: Similar as done in tag mining (above).

2. Sentence detection: Similar as done in tag mining (above).

3. Concept matching: A set of concepts is associated with each sentence. Since the
size of the concept dictionary is relatively small, we process the complete
dictionary and try to match concepts with sentences. We apply stop-words
removal and stemming (Porter’s algorithm) to both concept names and sentence

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 14 of 26
www.jserd.com/content/2/1/9

text alike, aiming at improving the string matching algorithm. In case the match is
positive, the concept is associated with the sentence.

4. Categories matching: The category hierarchy tree is built for each concept. We
associate a set of intermediate level categories to each concept, which is already
associated with each sentence, based on our previous work (Nicoletti et al. 2013a).
The process is repeated for the upper level categories. In the resulting profile, we
register the matching categories and their frequency.

5 Evaluation: methods and results

Our approach was empirically evaluated in two experiments with real users of SADs.
The evaluation pursued two main goals. The first goal was to assess the performance
of the pipeline in terms of correctness of the recommendations (i.e., the relevance links
between users and documents). The second goal was to compare the candidate simi-
larity functions to compute the user-document links and thus determine the functions
with the best performance. Additionally, we analyzed the benefits regarding to the effort
reductions in stakeholders’ tasks, if the people would have been assisted by our recom-
mendation tool. At last, we assessed whether the interest indicators were relevant for
inferring stakeholders’ interests by means of an Information Gain analysis.

To accomplish the goals above, we asked different groups of users to work with
Wiki-based SADs and perform specific architecture-related tasks. In background, we
monitored the browsing activity of these users and collected Wiki usage statistics. We also
had information about the actual users’ interests on the SAD, as they provided us feed-
back during the experiment. This feedback allowed us to check, postmortem, if the SAD
documents recommended by our tool could have been useful to these users (note that
these users did not receive recommendations while working with the SAD).

In this study, inferring the interests of a user on a given document can be seen as a
binary-class classification problem. We used standard Machine Learning metrics such as:
precision, recall, and F-measure (Baeza-Yates and Ribeiro-Neto 2011). In our context, pre-
cision represents the percentage of recommended documents that were actually relevant
to the user. Recall is the fraction of relevant documents that were suggested. F-measure is
considered as the harmonic mean (or weighted average) of precision and recall. In partic-
ular, we used Fo 5 measure that is a variation of the regular metric that prioritizes precision
over recall. We conducted two experiments, each one with a different SAD and separate
groups of subjects, in order to analyze whether our approach exhibits similar performance
trends with different experimental configurations.

5.1 Experiment #1: Electronic voting system
For this first experiment, we employed 77 test subjects, who were undergraduate and
graduate students from a Software Architecture course taught at UNICEN University
(Tandil, Argentina). The graduate students were practitioners taking software develop-
ment courses for their Master degree. We organized the participants into 11 groups: 10
groups of 7 undergraduate students each, plus an additional group of 7 practitioners.
The materials used in the experiment were: a SAD describing an Electronic Voting Sys-
tem according to the V&B template?, and predefined question sets for evaluating the qual-
ity of the architectural documentation”. The SAD documents were hosted on DokuWiiki,
and described the main design decisions and architectural views for the system. The SAD

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 15 of 26
www.jserd.com/content/2/1/9

contained 24 pages (documents) and 22 architectural diagrams, which are representative
amounts of real-life SADs. After discarding those SAD pages containing general informa-
tion, such us indexes, acronyms or definitions, the documentation corpus was reduced to
16 pages. The mapping of Wiki pages to SAD contents was as follows: one Wiki page per
architectural view, and one Wiki page per additional section (i.e., documentation beyond
views) of the V&B template.

The SAD contents were of acceptable quality, but still had some inconsistencies, omis-
sions, and opportunities for improvement. The question sets were geared to discover
these problems from the perspective of different types of stakeholders. A question set is a
questionnaire designed with a specific stakeholder role in mind, so as to influence his/her
navigation patterns through the Wiki. The questionnaire included: i) a set of quality-
attribute scenarios to be evaluated with an ATAM-like design review (Bass et al. 2012),
and ii) a set of role-specific questions (also ATAM-like) referring to the quality of the
architectural descriptions (Nord et al. 2009). We decided to work with 4 common stake-
holder roles, namely: manager, software architect, evaluator, end-user/client; and defined
a question set for each role accordingly. Each person was asked to record the elapsed
time per item, the difficulty of the task, and the SAD documents that supported his/her
responses.

5.1.1 Experimental procedure

The experiment involved five main steps. First, an instance of DokuWiki with the SAD
was deployed on a public-access server. This Wiki used a modified version of the soft-
ware that included monitoring capabilities via PHP/JQuery scripts. Second, the subjects
were asked to browse our Wiki for a week, so that they could familiarized with the soft-
ware architecture of the Electronic Voting System as well as with the V&B templates.
Then, we assigned a role to each user within the groups, and distributed the correspond-
ing question sets. Third, the groups were given 3 weeks to go through their question
sets and produce an assessment report. After the 3 weeks, we collected the usage statis-
tics logged by the Wiki. Fourth, we generated a matrix with the real user interests on
the SAD documents per group. That is, each user-document pair was labeled as rele-
vant or not-relevant (1 or 0). These matrices of real interests were determined from: i)
the question sets assigned to the user roles (indirect source), and ii) the answers of the
users to those question sets (direct source). In the first source, each question set was
designed in such a way it predetermined the types of SAD documents that a user should
look at to answer it. Still, users playing the same role but in different groups might read
different documents (of the same SAD). In the second source, each user explicitly said
in his/her questionnaire what SAD documents he/she looked at. These matrices were
actually the references for computing precision, recall, and F-measure (see Sections 5.1.3
and 5.2.2).

The explicit feedback reported by the subjects in their questionnaires also allowed us
to analyze the difficulty and time required to solve each questionnaire item, which we
called task-difficulty and resolution-time respectively (see Sections 5.1.4 and 5.2.3). Task-
difficulty was measured in a categorical scale: low, medium and high. Resolution time
was also binned in a categorical scale: low (0-20 minutes), medium (20-60 minutes) and
high (more than 60 minutes). For each user-document pair, we recorded the maximum
task-difficulty and the maximum resolution-time, which were computed as follows. If a

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 16 of 26
www.jserd.com/content/2/1/9

user indicated that a given item had a difficulty-value D and a resolution-time T, then we
labeled the SAD documents associated to that item with a difficulty D and a time T only
when: i) the documents had not been labeled before, or ii) the documents had been labeled
before with lower values. This procedure was repeated for each item of the questionnaire,
for every user’s report.

Asregards the semantic annotations (inputs of our approach), each Wiki document was
annotated with semantic concepts and tags by mutual agreement among the authors (sim-
ulating an expert’s opinion). These annotations were not visible to the subjects during the
experiments. We annotated the roles considering the V&B model (Clements et al. 2003)
and the topics involved in the questionnaire for each role. These role annotations con-
stituted the initial stakeholders’ profiles, which were later enriched by interest indicators
and items coming from the Wiki pages visited by the users.

5.1.2 Relevance of interest indicators

Prior to the evaluation of our approach, we conducted an Information Gain (IG) analy-
sis (Mitchell 1997) in order to assess the importance of interest indicators for inferring
relevance labels of documents for each user. This analysis measures the quality of a given
independent variable (e.g., an indicator such as the number of visits) for predicting a tar-
get dependent variable (e.g., the relevance label). The IG value for an indicator is in the
range [0, 1]. A value of 0 means that the indicator is irrelevant, whereas a value of 1 means
that it is highly relevant.

In our study, we employed the Wiki usage statistics to build a dataset (with >~ 900
samples) and computed the IG value of each interest indicator. The 1G values for this
experiment were: IGyisits = 1 (number of visits), IGgeoime = 0.80 (scrolling time),
IGime = 0.74 (time spent reading a SAD document), which show that these 3 indicators
are suitable to classify the user interests. Based on these results, we chose the number of
visits as the main interest indicator in our NLP pipeline.

5.1.3 Performance of the recommender system (experiment #1)

We ran the NLP pipeline with the following inputs: i) the text contents from the SAD
documents, ii) the number of visits for each SAD document, iii) the document anno-
tations provided by experts, and iv) the role annotations for each user (i.e., the basic
profiles per stakeholder type). We experimented with several values for the k parame-
ter (see Section 4.3), in order to assess the performance of the recommender system.
For each k-value, we firstly computed the measures per user, and then an average for
the 77 users. In addition, we tested the 13 candidate similarity functions described in
Section 4.4.

Figure 6 summarizes the precision, recall and F-measure in our approach for dif-
ferent configurations (i.e., k-values and similarity functions). Considering that we pri-
oritized precision over recall, the best F-measure value was obtained for a k-value
in the range [0.3,0.4] with very small variations depending on the similarity func-
tion being used. . In particular, the best performance was exhibited by the Tanimoto
function with k& = 0.35, with an F-measure of 0.66 that corresponded to a precision
of 0.67 and a recall of 0.65). However, the maximum precision obtained was 0.7 for
k = 0.25, but the recall dropped to 0.5 because of the natural trade-off between these

metrics.

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 17 of 26
www.jserd.com/content/2/1/9

= Tanimoto
0.700 -} u CosineDistance
m DiceSorensen
0.600 - uCosine
S = TFIDF-based
2050 = Euclidean
g = Manhattan
0.400 u Chebyshev
u Overlap
0.300 1 = Pearson
« PearsonDistance
0200 - u AverageKullback
0.2 0.25 0.3 0.35 04 045 0.5 0.55 0.6
threshold k u.Jaccard
1.000

u Tanimoto

u CosineDistance
u DiceSorensen
u Cosine

u TFIDF-based

u Euclidean

= Manhattan

u Chebyshev

= Overlap

i Pearson

u PearsonDistance
= AverageKullback

0.2 0.25 03 0.35 04 045 05 0.55 06
threshold k = Jaccard
0.800
= Tanimoto
0.700 = CosineDistance
u DiceSorensen
0.600 | m Cosine
g = TFIDF-based
@ 0.500 = Euclidean
E = Manhattan
W
0.400 u Chebyshev
= Overlap
0.300 = Pearson
« PearsonDistance
0.200

mAverageKullback

0.2 0.25 0.3 0.35 04 045 05 0.55 0.6
threshold k m Jaccard

Figure 6 Performance of our approach for different k-values and similarity functions (experiment #1).

We additionally performed a statistical analysis of the similarity functions based on
their F-measure values. To this end, we applied both the Student’s t-test (two-sided)
and the Mann-Whitney-Wilcoxon (MW W) test to the average F-measure obtained for
the different 77 subjects. We used the MWW test in those cases in which normality
of samples could not been verified with Shapiro-Wilk Normality test. For each pair of
similarity functions, we tested the null hypothesis Hy : F-measure values of one function
tend to be equal to those of the other function, against the alternative hypothesis H; :
F-measure values of one function tend to be higher (or lower) than those of the other func-
tion. For non-normal distributions, we used the notation Hj and H7, respectively. In those
cases were the Student’s test was used (normal distributions), we were able to verify the
homoscedasticity of the samples by using the F-test (two-samples) with a significance
level of 0.95.

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 18 of 26
www.jserd.com/content/2/1/9

Figure 7 presents the results of this statistical analysis, in which each cell of the tablel
represents the accepted hypothesis for each pair of functions with a significance level
of 0.05. This table also includes the corresponding p-values for each statistical test.
Notice that we can identify a subset of 3 functions (Tanimoto, Cosine, andCosineDistance)
with the highest performance, which are also statistically different from the remaining
functions, but similar to each other.

5.1.4 Usefulness of the recommendations (experiment #1)

To analyze the quality of the recommendations, we recorded the maximum of both task-
difficulty and resolution-time associated with those SAD documents recommended by
our tool. The set of recommended documents for a given user are those ranked in the
first places (i.e., high similarity values), and the size of that set is determined by the k
value. For example, if the system recommended N documents to a particular user, and
they were linked to high-difficulty tasks, we categorized the recommendations as poten-
tially useful. On the other hand, if the N sections were linked to tasks requiring little
time to be solved, the recommendations were considered not as useful as in the previous
case.

Figure 8 shows a comparative chart between the percentage of potentially useful rec-
ommendations (high or medium values) and the less useful ones (low values)regarding
both task-difficulty and resolution-time. The results of this chart were computed with the
Cosine function (one of the best performing functions) for the range of k values [0.3, 0.4].
The chart shows that a high percentage of the recommended documents are generally
related to tasks with high or medium difficulty, as well as tasks requiring high or medium
time to be solved.

In the case of task-difficulty, those tasks with high or medium difficulty were targeted
by an average of 75% of the recommendations, whereas tasks with low difficulty were tar-
geted by the remaining 25% recommendations. In the case of resolution time, those tasks
requiring high or medium time (more than 20 minutes) were targeted by an average of
80%, whereas tasks that were quickly solved were targeted by the remaining 20%. Similar
percentages were also observed for the other best performing functions, showing trend
in the quality of recommendations, which seems independent of the similarity function

chosen.
TAN cos COSD DICS TFIDF EUC MAN CHE OVE PEA PEAD KuL JAC
TAN
cos p=0.277 [Hy)
COSD P=0:362[Hd) p=0.917 {He)
DICS P=0.011[H;°} p0(H:"} P30 (Hy*)
TFIDF P30 [H) P30 (Hy) P30 (Ha) P30 (H*)
EUC 930 (Hy) =0 (Hs) PO (Hs) P30 (H;*) p=0.483 (Ho)
MAN P30 (H;°) p0 (H%) P30 (Hy*) p0 (H;*) P30 (H;°) p0 (H%)
CHE P30 (H:) P30 (Hy) PO [Hs)} p=0 (Hy*) P30 [H:) PO (H) p=0.085 (H")
OVE 930 (Hs) 0 (Hy) PO (Ha) <0 (H:*) P30 (Hy) 0 (Hy) p=0 (Hy*) =0 (Hy)
PEA P07 pOMHS) pO(HT pOMHT) pOMT) O pOHT) p0H) p=0.043(H:")
PEAD P30 [H:*) p0 (H:*) P00 (H:*) p0 (H;*) P30 [H:*) P20 (H:*) P00 (H:*) PO (H;*) p=0.005 (H,*) p=0.072 (Hs*)
KuL p=0 (H:) P30 (H) p=0 (Hs} p0 (H;*) p=0 [Hs) P30 (H) P30 (Hy®) p0(H) p=0.004(H;) p0(H:") p=0.026(H;")
JAC P30 (H:) P30 (Hy) P30 (H} B0 (H*) P30 (H:) P30 (Hy) P30 (Hy") P30 (H) p=0.005(H;) p30(H;*) p=0.028(H;*) p=0.821(H,}
Figure 7 Accepted hypothesis and p-values of statistical tests for each pair of functions.

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 19 of 26
www.jserd.com/content/2/1/9

100% 100%

90% 90%
2 s0% 80%
3
§ 70% 70%
N
% 60% 60%
i~
2 so% 50%
&
S 0% 0%
o
B
o 30% 30%
g
§ 20% — A= S—— - 20%
o
] : 0.262
S g0y 023 0262 — 10% — 0.194 0.207 0.207 —

0% 0%
0.3 0.35 0.4 k threshold 0.3 0.35 0.4
low difficulty = medium difficulty ® high difficulty low time = medium time ® high time
Figure 8 Useful (high + medium) versus less useful (low) recommendations, considering
task-difficulty and resolution time (experiment #1).

5.2 Experiment #2: Clemson transit assistance system

This experiment was designed in a similar manner to the first experiment, but had a few
differences. The participants were only 10 graduate students (who also were taking a Soft-
ware Architecture post-graduate course at UNICEN University). As regard the materials,
we used a different SAD hosted on DokuWiki, which materialized a solution for a model
problem: the Clemson Transit Assistance System (CTAS)!. As this SAD was also open to
improvements/suggestions, the students were asked to perform an ATAM-based evalua-
tion activity. The matrix of real users’ interests was computed similarly as in experiment
#1. Despite the differences above, we were careful while designing the experiment #2 so as
to make the results of both experiments comparable. According to Figure 2, we changed
the following inputs of our approach: the interest indicators (different subjects browsing
the Wiki), the SAD textual contents (we used a new SAD), and the semantic annotations.
Actually, only those annotations related to problem-specific aspects of the new SAD were
modified. The experimental procedure of experiment #2 was executed exactly in the same
way as in experiment #1.

5.2.1 Relevance of interest indicators

An Information Gain analysis was performed with the Wiki-usage data from the new
group of subjects. In this case, a dataset of >~ 300 samples was built. In particular, the IG
values were the following: IG,;sitss = 1, IGtime = 0.87, IGyeroi time = 0.72. We notice that
the same 3 interest indicators that showed the highest scores in experiment #1, were also
the highest ones in this second experiment, although with some variations in /Gyjy,and
IGcroi1 time- Like in experiment #1, we selected the number of visits as the main interest
indicator for the NLP pipeline.

5.2.2 Performance of the recommender system (experiment #2)

The results of precision, recall and F-measure, derived from the matrix of users’ interests
are summarized in Figure 9. Similarly to experiment #1, we show a comparison across the
candidate similarity functions. In this experiment, the Cosine function obtained the best

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 20 of 26
www.jserd.com/content/2/1/9

=0.023
«Cosine
0.800 = TFIDF-based
u CosineDistance
0.700 .
uDiceSorensen
S 05600 = Tanimoto
8 = Euclidean
g o800 =Manhattan
mJaccard
0.400 -
u Chebyshev
0.300 - = Qverlap
« Pearson
0.200 - P "
0.2 0.25 0.3 0.35 04 045 05 055 06 = PearsonDistance
threshold k = AverageKullback
1.000 -
I avg 0=0.023 | = Cosine
0900 u TFIDF-based
0.800 = CosineDistance
u DiceSorensen
0.700 N
= u Tanimoto
3 0600 u Euclidean
e
0.500 = Manhattan
m Jaccard
0400 1 = Chebyshev
0.300 - « Overlap
u Pearson
0.200 -
0.2 0.25 03 0.35 04 0.45 05 0.55 06 = PearsonDistance
threshold k mAverageKullback
0.800 avg 0=0.023
m Cosine
0.700 = TFIDF-based
= CosineDistance
0.600 m DiceSorensen
g u Tanimoto
§ 0.500 m Euclidean
E = Manhattan
0400 9 m Jaccard
 Chebyshev
0300 = Overlap
= Pearson
0.200 P ;
02 0.25 03 0.35 04 045 05 0.55 06 = PearsonDistance
threshold k u AverageKullback
Figure 9 Performance of our approach for different k-values and similarity functions (experiment #2).

performance reaching an F-measure of [0.73;0.76] for k = [0.4;0.6], with a precision of
[0.70;0.75] and a recall of [0.75; 0.83]. This performance was higher than the one obtained
in experiment #1. Another interesting result is that the TFIDF-based function performed
slightly better than in the previous experiment, with a F-measure of [0.66;0.68] for k =
[0.3;0.4], reaching a precision of [0.74;0.76] and a recall of [0.66;0.7].

When comparing the performance results of both experiments, we observe that, in gen-
eral, the overall performance of our approach does not significantly differ using a different
set of inputs. This situation can be seen in Table 1, which shows the ranking of similarity
functions for both experiments, using an average of F-measure (the standard deviation
was & 0.03). Although both rankings present several similarities, we may notice that the
exact same ranking could not be verified. For instance, Tanimoto function moved from
the first to the fifth place, whereas the TFIDF-based function (proposed by us) moved
from the fifth to the second place.

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9
www.jserd.com/content/2/1/9

Table 1 Rankings of performance (average F-measure) for the 13 similarity functions

Ranking for experiment #1 Ranking for experiment #2
Tanimoto (TAN) Cosine (COS)
CosineDistance (COSD) TFIDF-based (TFIDF)
Cosine (COS) CosineDistance (COSD)
DiceSorensen (DICS) DiceSorensen (DICS)
TFIDF-based (TFIDF) Tanimoto (TAN)
Euclidean (EUC) Euclidean (EUC)
Manhattan (MAN) Manhattan (MAN)
Chebyshev (CHE) Jaccard (JAC)
Overlap (OVE) Chebyshev (CHE)
Pearson (PEA) Overlap (OVE)
PearsonDistance (PEAD) PearsonDistance (PEAD)
AverageKullback (KUL) Pearson (PEA)
Jaccard (JAC) AverageKullback (KUL)

We identified a subset of 6 out of 13 functions that exhibited twice a noticeably better
performance than the rest (these 6 functions are highlighted in the table). This observa-
tion might indicate that certain functions are best suited to solve the profile similarity
problem in our domain of study. Furthermore, we were able to confirm the statistical
results of Section 5.1.3. However, only 2 of the functions with good performance could
be verified, namely Cosine and CosineDistance. The Tanimoto function actually showed a
considerably lower performance in experiment #2.

5.2.3 Usefulness of the recommendations (experiment #2)

Figure 10 presents results of the quality of recommendations of Cosine function for the
range of best k values [0.4, 0.6]. We can appreciate that in average 72% of the recom-
mendations targeted high or medium difficulty tasks, and that an average of 73% of
recommendations targeted tasks requiring high or medium resolution time. These results
are consistent with the ones of experiment #1, although the percentages of good-quality
recommendations are slightly lower. However these minor differences might be explained

100% — — — — — 100% — — — —
90% 90%

80% 80%

70% — —— — — — — —

70%
60% - = = 6% - L
i | 4 | i | _ 0437 § |] s i | _ 0442
50% 0.429 0.438 0.438 0.442 50% 0.464 o 0.465
i 40% 40%
S 30% i | | | i 0%
»
20% - —— - S — 20% —— - — = L
.268 0.281 0.281 0.296 0.286 0.268 0.299
b 10% |] | | | | |] 0% . 0250 0250 0250 | | |
0% 0% -
04 045 0.5 0.55 06 k threshoid 04 0.45 0.5 055 06
low difficulty = medium difficulty m high difficulty low time medium time m high time

Figure 10 Useful (high + medium) versus less useful (low) recommendations, considering
task-difficulty and resolution time (experiment #2).

Page 21 of 26

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 22 of 26
www.jserd.com/content/2/1/9

by the judgment used by test subjects to classify questionnaire items regarding their diffi-
culty. Also, the required time might differ according to the subjects’ skills on architecture
evaluation.

6 Discussion

From the analysis of the experiments above, we consider that our approach exhibited
a good performance. For the Electronic Vote System (experiment #1), the best
performances were obtained for values of k in the range [0.3,0.4] by the Tanimoto
function with a F-measure of 0.66. The precision was 0.67, meaning that 67% of the
recommendable documents were actually relevant to the users. The recall was 0.65,
meaning that 65% of the documents actually relevant were effectively classified as
relevant.

The second experiment (CTAS architecture) allowed us to verify the trends of the per-
formance values measured in experiment #1. In fact, our pipeline performed even better
than in the first experiment. For instance, the Cosine function achieved an F-measure of
[0.73;0.76] for k =[0.4;0.6]. We noticed that the highest performance was reached for
higher k-values in experiment #2 with respect to the experiment #1. We lately associated
this observation with the fact that the test subjects indicated a higher percentage of actu-
ally relevant documents in the experiment #2. The criterion for choosing k can not be
generalized and depends on problem-specific settings.

For each experiment, we built a ranking that compared the 13 similarity functions
based on their average performance. A statistical analysis allowed us to select 2 good-
performance functions (Cosine and CosineDistance) with a confidence of 95%.

The results were also encouraging in terms of its potential for assisting stakeholders
to deal with the information overload problem, since the recommended sections (in our
experiments) were generally associated to difficult and time-consuming tasks. Anyway, a
more rigorous evaluation on both usefulness of recommendations should be addressed in
future experiments.

The results of this study, although preliminary, have important implications in the field
of Software Architecture Documentation. First, our proposed approach was successfully
evaluated with 2 experiments involving SAD users. To the best of our knowledge, there are
not other similar approaches that had been empirically evaluated. Second, we proposed 2
alternative similarity functions to the function proposed in our previous work (Nicoletti
et al. 2013b). These alternative functions have shown (statistically) higher performances
values than the ones observed in previous results.

6.1 Threats to validity

We carefully designed the experiments in order to recreate a real software develop-
ment scenario. However, there are still some threats to validity that should be consid-
ered (Wohlin et al. 2012).

6.1.1 Construct validity

To measure the time spent to solve each questionnaire item we let the subjects inform an
approximate value, instead of recording the actual time between assignments. Although
the categorical scale is a good approximation of resolution time, there are certainly more
precise alternatives. The reason for our decision was that the experiments were not

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 23 of 26
www.jserd.com/content/2/1/9

designed as a “quiet room”. A resolution procedure based on a quiet room would differ
from a real scenario, in which stakeholders performs several concurrent tasks. Also, exe-
cuting the experiments in a quiet room style would have made it impractical to obtain a
significant sample of data.

Test subjects were not aware of the experimental objectives. Therefore, we minimized
the chance that they had behaved in any particular way that may had biased the results.

6.1.2 Internal validity

Both SADs (e-Vote and CTAS) and the question sets were not part of the actual
“working context” (e.g., artifacts, project tasks) of the subjects, so the values reported for
task-difficulty and resolution-time might be affected by this condition. We also should
note that the evaluation of SADs is not a common case in many architecture-centric
developments, although some experiences have been reported as part of ATAM eval-
uations with checklists (Nord et al. 2009). Furthermore, we argue that the activity of
evaluating a SAD is not very different from that of searching through the SAD during
normal development activities, so the threat effect is reduced.

Another threat is the possible bias caused by some subjects having prior knowledge of
the software architectures (documented by the SADs) or having performed this kind of
practical assignment before. We were careful when selecting the subjects to check that
they had neither participated in similar activities nor worked with the SADs before.

The Wiki pages browsed by the subjects and the V&B stakeholder types provide an
approximation to the user profiles, but they are not the only information sources at work.
Inter-personal conversations, questionnaires or interactions with other artifacts/tools
(not covered by our approach) can reveal additional information about the interests of a
user. We are planning to explore new information sources in future studies.

6.1.3 External validity

We are aware of the fact that an experiment with students in an academic environment
might not be the same as an industrial context with seasoned software practitioners.
Therefore, we cannot generalize the results of our study to an industrial scenario. To mit-
igate this threat, we designed our experimental environment to be as realistic as possible.
First, the architecture documentation was representative of real-life SADs. Second, the
test subjects were not tested in a “quiet room” style (as mentioned above). On the contrary,
the subjects were free to solve the questionnaires at the university or at their homes, even
working in groups. We believe this latter scenario is the closest one to a real development
environment. In addition, most students were actually software practitioners working for
local industries with 1-3 years of experience.

6.1.4 Conclusion validity

In contrast with external validity, the use of graduate and undergraduate students instead
of industry practitioners allowed us to obtain a good sample (87 subjects) to support the
validity of the results. Indeed, it would have been harder to gather a similar number of
industry professionals with the time availability required by the experiments. As a down-
side, the level of heterogeneity of the test groups was low, since most subjects shared
similar levels of knowledge and technical background. This situation reduced threats to
conclusion validity, but it trades off with external validity.

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 24 of 26
www.jserd.com/content/2/1/9

7 Conclusions and future work

In this work, we have proposed an approach for discovering stakeholders’ interests in
a Wiki-based SAD that relies on user modeling and NLP techniques. We capture the
stakeholders’ interests in user profiles, and then look for SAD documents whose con-
tents match those profiles. All the SAD documents are preprocessed in advance by an
NLP pipeline. In this context, our tool can recommend specific SAD documents for
each stakeholder. The ultimate goal is to improve the stakeholders’ access to relevant
architectural information, and thus, make the SAD a more effective artifact for communi-
cating architectural concerns. A preliminary evaluation with simulated recommendations
has shown the potential of our approach. Also, we empirically identified 2 (out of 13)
candidate similarity functions that achieved good performance, with a F-measure value
around 0.73, and precision values of 0.7 and recall of 0.75 (depending on the k threshold
used). Nonetheless, experiments with other SADs and sets of stakeholders are required in
order to validate these claims.

This research opens several lines of future work. In addition to the browsing activity of
users, another source for inferring interests are the interactions between users (e.g., chats
rooms, instant messaging systems, or voice over IP). In the short term, we will add a chat
mechanism to the Wiki infrastructure, so as to monitor user conversations with respect
to the SAD and apply our NLP pipeline on these conversations. The mined information
will be incorporated to the user profiles.

Managing architectural knowledge in a software project involves both production and
consumption of SAD contents. However, as the amount of documentation increases (and
also its production costs), its value for the stakeholders tends to decrease. We believe
that our approach can help to deal with the production-side of the process, i.e., the ways
in which a documenter writes (or updates) SAD documents. Based on the user profiles,
the documenter could document “just enough” of the SAD, by prioritizing those doc-
uments that maximize the stakeholders’ overall satisfaction. In fact, we have recently
developed a prototype tool (Diaz-Pace et al. 2013) to assist the documenter in this
activity, although yet without user profiles. Finally, as a long-term goal, we want to inves-
tigate the pros and cons of personalization techniques when applied to other types of
documents within an architecture-centric development process (e.g., technical manuals,
requirements specifications, or API documentation).

Endnotes

2The terms user and stakeholder are considered synonyms.

>The DokuWiki project official Website might be found at: http://www.dokuwiki.org/.

€A Wiki-based SAD example provided by the SEI (Pittsburgh, EEUU) might be found
at: http://wiki.sei.cmu.edu/sad.

4The OpenNLP official Website might be found at: http://opennlp.apache.org/.

¢The Porter’s Stemming algorithm official Website might be found at: http://snowball.
tartarus.org/.

f\We acknowledge that the experiments are in compliance with the Helsinki
Declaration and were approved by the Professors responsible for the involved academic
courses. The participants were neither negatively affected nor harmed in any way during
the execution of the experiments.

8Examples of V&B templates might be found at: http://wiki.sei.cmu.edu/sad.

"More information about the resources used in our experiments can be found at the
following article Website: http://mnicoletti.sites.exa.unicen.edu.ar/jserd2013.

http://www.dokuwiki.org/
http://wiki.sei.cmu.edu/sad
http://opennlp.apache.org/
http://snowball.tartarus.org/
http://snowball.tartarus.org/
http://wiki.sei.cmu.edu/sad
http://mnicoletti.sites.exa.unicen.edu.ar/jserd2013

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 25 of 26
www.jserd.com/content/2/1/9

IA reference document that describes the CTAS might be found at: http://people.cs.
clemson.edu/~johnmc/courses/cpsc875/resources/Telematics.pdf.

JA quiet room is a term referring to a place used for experimentation with human
subjects in which there are no distractions that may bias the results of tests.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements

This work was partially supported by ANPCyT (Argentina) through PICT Project 2011 No. 0366 and PICT Project 2010 No.
2247, and also by CONICET (Argentina) through PIP Project No. 112-201101-00078. The authors would like to thank to the
reviewers for their valuable feedback to improve the quality of this manuscript.

Received: 14 November 2013 Accepted: 13 May 2014
Published online: 21 August 2014

References

Al halabi WS, Kubat M, Tapia M (2007) Time spent on a web page is sufficient to infer a user’s interest. In: Proceedings of
the IASTED European Conference: Internet and Multimedia Systems and Applications (IMSA IASTED). ACTA Press,
Anaheim, CA, USA, pp 41-46

Baeza-Yates R, Ribeiro-Neto B (2011) Modern Information Retrieval: The Concepts and Technology Behind Search. 2nd
edn. Addison-Wesley Professional, Boston, USA

Bass L, Clements P, Kazman R (2012) Software Architecture in Practice. 3rd edn. Addison-Wesley Professional, Boston, USA

Castro-Herrera C, Cleland-Huang J, Mobasher B (2009) Enhancing stakeholder profiles to improve recommendations in
online requirements elicitation. In: 17th IEEE International Requirements Engineering Conference (RE), Atlanta, USA,
pp 37-46

Claypool M, Le P, Wased M, Brown D (2001) Implicit interest indicators In: Proceedings of the 6th International
Conference on Intelligent User Interfaces (ICIUI). IUI'01. ACM, New York, NY, USA, pp 33-40

Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Nord R, Stafford J (2003) A practical method for documenting
software architectures. In: Proceedings of the International Conference on Software Engineering (ICSE). Portland, USA

Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Merson P, Nord R, Stafford J (2010) Documenting Software
Architectures: Views and Beyond (2nd Edition). 2nd edn. Addison-Wesley Professional, Boston, USA

de Boer RC, van Vliet H (2008) Architectural knowledge discovery with latent semantic analysis: Constructing a reading
guide for software product audits. J Syst Softw 81(9):1456-1469

de Graaf KA, Tang A, Liang P, van Vliet H (2012) Ontology-based software architecture documentation In: Proceedings of
Joint Working Conference on Software Architecture & 6th European Conference on Software Architecture
(WICSA/ECSA). WICSA 2012. [EEE Computer Society, Helsinki, Finland, pp 315-319

Deza E, Deza M (2006) Dictionary of Distances. North-Holland Elsevier, Amsterdam, Netherlands

Deza MM, Deza E (2009) Encyclopedia of Distances. Springer, New York, USA

Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297-302

Diaz-Pace JA, Nicoletti M, Schiaffino S, Villavicencio C, Sanchez L (2013) A stakeholder-centric optimization strategy for
architectural documentation. In: Cuzzocrea A, Maabout S. (eds.) Model and Data Engineering. Lecture Notes in
Computer Science, Springer, New York, USA, pp 104-117

Farenhorst R, van Vliet H (2008) Experiences with a wiki to support architectural knowledge sharing. In: Proceedings of
the 3rd Workshop on Wikis for Software Engineering (Wiki4SE), Porto, Portugal

Goossen F, lIntema W, Frasincar F, Hogenboom F, Kaymak U (2011) News personalization using the cf-idf semantic
recommender. In: Proceedings of the International Conference on Web Intelligence, Mining and Semantics (ICWIMS).
WIMS "11. ACM, New York, NY, USA, pp 10-11012

Huang A (2008) Similarity measures for text document clustering. In: Proceedings of the 6th New Zealand Computer
Science Research Student Conference (NZCSRSC2008). Christchurch, New Zealand, pp 49-56

ISO/IEC/IEEE (2011) ISO/IEC/IEEE 42010: Systems and Software Engineering - Architecture Description. ISO/IEC/IEEE.
International Organization for Standardization, number: 42010. http://www.iso-architecture.org/.

Koning H, Vliet HV (2006) Real-life it architecture design reports and their relation to ieee std 1471 stakeholders and
concerns. Automated Softw Eng 13:201-223

Jansen A, Avgeriou P, van der Ven JS (2009) Enriching software architecture documentation. J Syst Softw
82(8):1232-1248. SI: Architectural Decisions and Rationale

Liu B (2011) Web Data Mining: Exploring Hyperlinks, Contents and Usage Data. 2nd edn. Data-Centric Systems and
Applications. Springer, New York, USA

Mitchell T (1997) Machine Learning, 1st edn. McGraw-Hill Science/Engineering/Math, New York, USA

Mitchell RK, Agle BR, Wood DJ (1997) Toward a theory of stakeholder identification and salience: Defining the principle of
who and what really counts. Acad Manag Rev 22:853

Nicoletti M, Diaz-Pace JA, Schiaffino S (2012) Towards software architecture documents matching stakeholders interests.
In: Cipolla-Ficarra F, Veltman K, Verber D, Cipolla-Ficarra M, Kammuller F (eds.) Advances in New Technologies,
Interactive Interfaces and Communicability. Lecture Notes in Computer Science. Springer, New York, USA, pp 176-185

Nicoletti M, Schiaffino S, Godoy D (2013a) Mining interests for user profiling in electronic conversations. Expert Syst Appl
40(2):638-645

Nicoletti M, Diaz-Pace JA, Schiaffino S (2013b) Discovering stakeholders’ interests in wiki-based architectural
documentation. In: Diego Vallespir MdOB (ed.) Proceedings of CIbSE 2013 (former IDEAS). XVI Ibero-American

http://people.cs.clemson.edu/~johnmc/courses/cpsc875/resources/Telematics.pdf
http://people.cs.clemson.edu/~johnmc/courses/cpsc875/resources/Telematics.pdf
http://www.iso-architecture.org/

Nicoletti et al. Journal of Software Engineering Research and Development 2014, 2:9 Page 26 of 26
www.jserd.com/content/2/1/9

Conference on Software Engineering, Montevideo, Uruguay. Universidad ORT Uruguay, Universidad de la Republica,
Antel, pp 5-18

Nord RL, Clements PC, Emery DE, Hilliard R (2009) Reviewing architecture documents using question sets In: Proceedings
of Joint Working IEEE/IFIP Conference on Software Architecture & European Conference on Software Architecture
(WICSA/ECSA). IEEE, Cambridge, UK, pp 325-328

Rajaraman A, Ullman JD (2012) Mining of Massive Datasets. Cambridge University Press, Cambridge

Schiaffino S, Amandi A (2009) Intelligent user profiling. In: Bramer M (ed.) Artificial Intelligence: An International
Perspective. Lecture Notes in Computer Science. Springer, New York, USA, pp 193-216

Su MT (2010) Capturing exploration to improve software architecture documentation. In: Proceedings of the 4th
European Conference on Software Architecture (ECSA). ECSA '10. ACM, New York, NY, USA, pp 17-21

Su MT, Hosking J, Grundy J (2011) Capturing architecture documentation navigation trails for content chunking and
sharing. In: 2011 9th Working IEEE/IFIP Conference on Software Architecture (WICSA), Boulder, USA, pp 256-259

Serensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species
and its application to analyses of the vegetation on danish commons. Biol Skr 5:1-34

Unphon H, Dittrich Y (2010) Software architecture awareness in long-term software product evolution. J Syst Softw
83(11):2211-2226

Wohlin C, Runeson P, Host M, Ohlsson M, Regnell B (2012) Experimentation in Software Engineering,
Vol. 978-3-642-29043-5. Springer, New York, USA

doi:10.1186/540411-014-0009-3
Cite this article as: Nicoletti et al.: Personalized architectural documentation based on stakeholders’ information
needs. Journal of Software Engineering Research and Development 2014 2:9.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	1 Contents
	2 Background
	3 Related work
	4 Our approach
	4.1 Inputs of the approach
	4.2 Modeling users and documents
	4.3 The processing procedure
	4.4 Computing similarity between models
	4.4.1 Euclidean distance
	4.4.2 Manhattan distance
	4.4.3 Chebyshev distance
	4.4.4 Cosine similarity
	4.4.5 Cosine distance
	4.4.6 Kullback-Leibler divergence
	4.4.7 Dice-Sorensen similarity
	4.4.8 Jaccard distance
	4.4.9 Overlap coefficient
	4.4.10 Pearson correlation coefficient
	4.4.11 Pearson correlation coefficient distance
	4.4.12 Tanimoto distance
	4.4.13 TF.IDF-based similarity function

	4.5 NLP Semantic analysis

	5 Evaluation: methods and results
	5.1 Experiment #1: Electronic voting system
	5.1.1 Experimental procedure
	5.1.2 Relevance of interest indicators
	5.1.3 Performance of the recommender system (experiment #1)
	5.1.4 Usefulness of the recommendations (experiment #1)

	5.2 Experiment #2: Clemson transit assistance system
	5.2.1 Relevance of interest indicators
	5.2.2 Performance of the recommender system (experiment #2)
	5.2.3 Usefulness of the recommendations (experiment #2)

	6 Discussion
	6.1 Threats to validity
	6.1.1 Construct validity
	6.1.2 Internal validity
	6.1.3 External validity
	6.1.4 Conclusion validity

	7 Conclusions and future work
	Endnotes
	Competing interests
	Acknowledgements
	References

