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Abstract A mixture fraction formulation to perform direct numerical simulations of a disperse and dilute
two-phase system consisting of water liquid and vapor in air in local thermodynamic equilibrium using a two-
fluid model is derived and discussed. The goal is to understand the assumptions intrinsic to this simplified but
commonly employed approach for the study of two-layer buoyancy reversing systems like the cloud-top mix-
ing layer. Emphasis is placed on molecular transport phenomena. In particular, a formulation is proposed that
recovers the actual nondiffusive liquid-phase continuum as a limiting case of differential diffusion. High-order
numerical schemes suitable for direct numerical simulations in the compressible and Boussinesq limits are
described, and simulations are presented to validate the incompressible approach. As expected, the Boussinesq
approximation provides an accurate and efficient description of the flow on the scales (of the order of meters)
that are considered.

Keywords Stratocumulus clouds · Multiphase · Free convection · Free turbulent flows

1 Introduction

Phase transition at the cloud boundaries often compounds the difficulty in understanding turbulent entrain-
ment [15,21]. There are many different aspects of the problem, which can be considered. One of them, the
role of buoyancy reversal due to the evaporative cooling that is promoted by the evaporation of the droplets
under certain mixing conditions, has been long debated using theory, field and laboratory measurements, and
numerical simulations [7,14,25,28,29,36,46,51,54,61]. Although this problem explicitly involves molecular
transport processes, in particular, the transport of latent heat, direct numerical simulation (DNS) has not been
employed to address questions related to buoyancy reversal as extensively as it has been used in other areas
[39]. Continuing and rapid advances in computational capacity is changing this situation and turning DNS
into an increasingly attractive tool for this class of problems. This motivates our study, objective of which is to
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explore formulations to perform DNS of moist (and potentially saturated) fluids so as to investigate the latent
heat effects in the stratocumulus-top turbulent mixing layers that form between the cloud (cool and moist) and
the layer on top, which consists of warmer and dry subsiding air.

There are several simplified formulations of moist convection in the literature applicable to our questions.
Ooyama [40] describes a model for a moist atmosphere based on water phase equilibrium, the thermodynamic
state being calculated from transported values of dry air and water bulk mass densities and entropy. This model
is extended by Ooyama [41] to account for a precipitating mode of the condensate phase. Satoh [47] rewrites
this formulation in terms of the internal energy instead of the entropy. All of these authors neglect molecular
processes and introduce some form of closure instead of deriving a formulation that holds at scales where
diffusion dominates; in his study, Ooyama employs a low-pass sixth-order filter while Satoh makes use of
a fourth-order numerical diffusivity. However, buoyancy reversal due to evaporative cooling is realized as a
result of diffusive processes, and thus it is necessary to develop a model that is valid down to the diffusive
scales if one wishes to look at the coupling between the fluid dynamics and the evaporative cooling at the cloud
boundary. Bannon [5] does essentially just that, as he derives an equation set in which he retains the molecular
transport terms in the governing equations using the results from multicomponent gas mixtures.

The previous approaches can be further simplified when the cloud-top configuration is investigated. The
thermodynamics is then fully reduced to coupling functions between the desired state variable and the mixture
fraction χ , a conserved scalar that represents the amount of matter in a given fluid particle originating from a
specific region in the system. This variable χ is employed when the boundary conditions can be represented
as a mixture of two source fluids: in our case, a homogeneous cloud and a cloud-free layer. In addition, the
small size over which the transition between cloud and cloud-free air is realized at the top of stratocumulus
clouds, of the order of 10 m, and the small velocities, less than 1 m s−1 (cf. Caughey et al. [11]), justify the
use of an incompressible approach. The small variation of the density, usually less than 5%, further permits
the simplifications associated with Boussinesq. Albrecht et al. [1] introduced the mixture fraction into the
analysis of cloud-topped mixed layers, and the formulation has been discussed by Bretherton [8] in a very
comprehensive manner, with special attention to the thermodynamics. Since then, this methodology has been
often employed as a physical model to investigate the role of latent heat effects in the dynamics of cloud inter-
faces [24,25,28,29,36,49–51]. However, a detailed derivation starting from the basic equations governing the
conservation of mass, momentum, and energy has not been presented in the literature, and this is one of the
two objectives of this study.

In particular, the first objective of this article is to demonstrate how to combine the governing equations of
gas mixtures [59], approaches from two-phase flows [16,19] and simplifications in thermodynamics [8,40],
in a manner similar to Bannon [5] but which yields a final set of equations in terms of the mixture fraction as
discussed by Bretherton [8]. In Sect. 2, we clarify and emphasize the required assumptions, not as a criticism
to the existing methodology, but as a complement needed for a correct interpretation of the results obtained
with this approach. Section 3 concludes the derivation by defining the cloud-top mixing layer as an idealized
configuration designed to study the stratocumulus top in terms of that mixture fraction.

The second objective is to present a high-order numerical algorithm suitable for solving the system of equa-
tions we pose. The need for an accurate description of the small scales has been mentioned above and progress
in this direction has been achieved in recent years [4,52]. Section 4 presents a formulation based on compact
Padé schemes which is not restricted to periodic boundary conditions along the vertical direction and that has
been used previously in the study of compressible free turbulent flows [35,37]. Both compressible and incom-
pressible formulations are explained and numerical simulations using both of them are presented in Sect. 5
and compared one-to-one, the results confirming the expected accuracy of the Boussinesq approximation for
the small density variations occurring at the cloud top.

2 Governing equations

The species mass fractions of dry air, water vapor, and liquid water will be denoted by qd, qv, and ql, respec-
tively, according to the notation employed in the literature of atmospheric flows [55], and the total density of
the mixture will be denoted by ρ. Additional derived quantities often used are qg = qd + qv, mass fraction
of the gas phase, and qt = qv + ql, mass fraction of the total water. The quantities qv, ql, and qt will be also
referred to as the specific humidities of vapor, liquid, and total water, respectively. Transport equations will
be written for the bulk partial densities ρqd, ρqv, and ρql. The symbols ρd and ρv indicate the partial density
of the dry air and vapor in the gaseous mixture, respectively, with ρg = ρd + ρv being the density of the gas.
Note that, on the gaseous phase,
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qv

ρv
= qd

ρd
= qg

ρg
. (1)

The volume fraction of gas, the ratio of the gas volume to the total volume of the fluid particle, is φg =
ρqg/ρg. Equivalently, the volume fraction of liquid is given by φl = ρql/ρl, which satisfies φl = 1 − φg and
yields

1

ρ
= qg

ρg
+ ql

ρl
. (2)

The relations φgρd = ρqd and φgρv = ρqv will also be used extensively. The common approximation ρqg � ρg
is justified because the relative error is equal to the ratio between the liquid volume fraction and the gas volume
fraction, qlρg/(qgρl) = φl/φg, of order 10−6 considering ql = O(10−3) and ρg/ρl = O(10−3), and its use in
the equations derived below will be explicitly indicated when needed.

A detailed discussion of these variables and of the corresponding transport equations describing the evolu-
tion of the disperse and dilute two-phase flow is presented in the Appendix, introducing general assumptions
needed to eventually reduce them to a simplified set of equations appropriate for the mixture fraction formu-
lation. This final set of equations corresponds to that of multicomponent gas mixtures [38,59] with particular
terms in the flux vectors depending on the relative velocity of the cloud droplets with respect to the gas, whose
mean value is represented by the mean drift velocity VD. Although the resulting transport equations are similar
to those presented by Bannon [5], it is of interest to include them in this article for several reasons: (a) to
enable a detailed introduction of notation and completeness of the article, (b) to explicitly estimate the order
of magnitude of unclosed terms and justify simplifications in the limit of small droplets needed for the mixture
fraction, and (c) to derive them from a different perspective using the concept of local volume averages.

In this section, those basic assumptions are particularized to the context of stratocumulus tops and, for
this purpose, several estimates of the turbulent scales are necessary; if a reference value of the mean turbulent
dissipation rate ε = 10−3 m2 s−3 is considered [11,30], then the Kolmogorov scales are tη = (ν/ε)1/2 �
0.13 s, vη = (νε)1/4 � 11 mm s−1, and lη = (ν3/ε)1/4 � 1.4 mm, using a kinematic viscosity of air ν =
1.6×10−5 m2 s−1. Sections 2.1, 2.2 and 2.3 discuss the three main assumptions implicit in the mixture fraction
formulation, Sect. 2.4 summarizes the resulting set of governing equations, and Sect. 2.5 explains the treatment
of the discontinuities caused by the thermodynamic equilibrium.

2.1 Approximation 1: the two-fluid formulation

The two-fluid approximation models the disperse liquid phase as a continuum, in addition to the vapor and
the dry air, and solves the corresponding partial differential equations [13,17,19,22]. This formulation can be
understood based on either a local volume average applied to the original governing equations of both phases
[13,16] or based on an ensemble average [62]. The former approach is particularized in the Appendix to the
cloud system using an averaging volume of the order of l3

η , and it is shown there that the chain of relations

l3
η � d3/φl � d3 (3)

must be satisfied for the two-fluid approach to be valid, where d is the droplet diameter. The first inequality
of the sequence can be expressed in terms of the droplet number density nl = φl/(πd3/6) as nll3

η � 1, and
it simply states that there is a large number of droplets in a volume of the order of the Kolmogorov scale for
the continuum approach to be reasonable. The second inequality implies dilute conditions φl � 1, meaning
that droplets do not interact among themselves. Altogether, this approximation states that the droplets are so
small that they can be considered as a small perturbation of the background flow, smooth within a Kolmogorov
length scale, and that they are abundant enough for a continuum description.

For the cloud-top system, the typical diameter of the cloud droplet is d = 10 µm, indeed smaller than the
estimated Kolmogorov scale, and φl ∼ O(10−6), which also satisfies the dilution constraint. On the other
hand, the mean number density is then of the order of 1 mm−3, and the condition nll3

η � 1 is not satisfied. This
is, therefore, one intrinsic hypothesis of the two-fluid formulation that is not correct, which clearly indicates
that a continuum model of the disperse liquid phase at the cloud boundary, like that based on the mixture
fraction, may lead to departures between the calculated and the actual evolutions of the physical system.

Many more assumptions are to be made before obtaining the simplified formulation. It is shown in the
Appendix that the resulting transport equations have unclosed terms, and a major quantity that is needed is the
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mean drift velocity VD representing the mean motion of the liquid phase with respect to the gas phase, defined
by Eq. 56. A transport equation for this velocity can be derived from the equation describing the motion of a
single droplet in the limit of low Reynolds numbers [34] and then taking some appropriate mean value [17,19].
This detailed approach would allow us, for instance, the investigation of preferential accumulation effects,
though numerical problems still exist within the two-fluid formulation due to the strong local gradients of φl
that may be formed [22]. Here, however, these unclosed terms are further simplified, as discussed later.

2.2 Approximation 2: thermodynamic equilibrium

Mechanical equilibrium assumes that the Stokes number is small enough [13,48]. A Reynolds number based
on a cloud droplet diameter of 10 µm and a slip velocity of the order of vη is vηd/ν = 0.007, and the equations
for the evolution of the droplet mass, velocity, and temperature are developed in the context of low Reynolds
numbers [33,34]. These equations show that relative changes of the droplet velocity of order 1 occur on a time
scale tp = ρld2/(18μg) ∼ 0.3 ms, where μg = 1.9 kg m−1s−1 is the dynamic viscosity of the gas mixture.
Then, the Stokes number tp/tη is less than 0.01, which suggests that the cloud droplets reach equilibrium with
the local environment faster than this local environment evolves, with a terminal velocity gtp with respect to
the gas of the order of 3 mm s−1 using a gravity acceleration of 9.8 m s−2.

This limit of small droplet inertia simplifies considerably the description of the evolution of the mixture
because the transport equation for the mean drift velocity VD is completely substituted by the algebraic explicit
relation VD = gtp, which equates this mean drift velocity with the terminal velocity of a single droplet. The
settling parameter V D/vη for the system is then about 0.3. We show in the Appendix how different unclosed
terms of the transport equations are proportional to some power of this ratio, and therefore the simplifications
in the limit V D → 0 seem to be justified. In particular, the leading order errors occur in the mass and heat
flux vectors, Eqs. 67 and 81, respectively, and these are of the order of (ql/qv)(V D/vη) � 0.03. However,
although numerical studies [53,58] and experiments [2] show that the strongest interaction between particles
and turbulence occurs at Stokes numbers of order 1, preferential accumulation at much lower values, about
10−2, are currently being measured in clouds [30], which indicates that inertial effects may still persist at those
small values of the Stokes number.

The situation is more complicated when phase equilibrium is considered. Phase transition introduces its
own time scale (different from tp) into the problem, and this time scale is of the order of a few seconds in typical
clouds, i.e., large compared with tη [48]. As a consequence, a source term describing phase nonequilibrium
appears in the transport equation of certain variables (see Appendix). Moreover, this nonequilibrium may lead
to inhomogeneity of the thermodynamic fields inside of the local averaging volume, and then the usual closures
for the molecular transport terms within the gas phase and the ideal gas thermodynamic relations applied to
the local average quantities are questionable.

In sum, complete thermodynamic equilibrium is not achieved in real conditions due to these condensa-
tion/vaporization effects even though the Stokes number is small, and this constitutes a second hypothesis of
the mixture fraction formulation that is not correct.

2.3 Approximation 3: liquid-phase diffusivity

So far, the problem can be understood consistently in the limit d/ lη → 0 because then (a) droplet relaxation
times are relatively small and equilibrium holds, and (b) the terminal velocity is relatively small and the settling
parameter V D/vη vanishes. However, the limit d/ lη → 0 within the context of equilibrium formally implies
a droplet size d below which thermal motion overwhelms the gravitational field and the mean drift velocity
VD should then be related to the corresponding diffusion flux of the liquid, and not to the terminal velocity.
At the same time, it will be shown in Sect. 3 that the mixture fraction formulation requires certain specific
conditions on the diffusion terms that cannot be satisfied by the governing equations obtained in the Appendix
if we simply substitute VD = 0 in them. This issue is investigated next.

The droplet velocity scale vB associated with the thermal motion can be estimated from the relation
ρl(π/6)d3v2

B = 3kB T , where kB = 1.381 × 10−23 J K−1 is the Boltzmann constant [44,45]. If we equate this
expression with the terminal velocity gtp = gρld2/(18μg), the cross-over diameter in air at 300 K is 4 μm,
with a velocity about 0.5 mm s−1: smaller droplets have thermal fluctuations larger than the terminal velocity,
and larger droplets have them smaller. Hence, for small enough droplets, the velocity scale vB should be used
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in the estimates of the Appendix related to second- and third-order moments of the velocity fields inside of the
local averaging volume, Eqs. 72 and 79, but those terms involve the liquid volume fraction φl as a multiplying
factor, and it seems reasonable to still neglect them compared to the other unclosed terms related to VD in
view of the small values φl = O(10−6) corresponding to the cloud. (In other cases, they are normally grouped
together with the molecular transport terms and then closed defining new transport coefficients [59].)

With respect to the terms involving this mean drift velocity VD, it is shown in the Appendix that the leading
order corrections appear in the mass and heat flux vectors, Eqs. 67 and 81, respectively, and they describe the
transport of latent heat. Ramshaw [44] provides the following expression for the mean relative velocity of the
liquid continuum with respect to the total mixture due to Brownian motion

ρqlVD,l = −ρκl∇ql − κl,T∇ ln T + κl,p∇ p, (4)

where the diffusion coefficients κl,T and κl,p can be related to κl = (1 −φl)κB, and κB = kB T/(3πμgd) is the
Einstein diffusion coefficient [18]. For temperatures of 300 K and droplets of diameter 10 μm, this diffusion
coefficient is of the order of 10−12 m2 s−1. This value is very small. First, for the Kolmogorov length scales of
the order of 1 mm, which develop in our problem, the corresponding diffusion velocity of the liquid phase is
considerably smaller than the settling velocity due to gravity, and it explains that it is always neglected. Second,
it is much smaller than the other typical diffusivities entering the equations and consequently, if the terminal
velocity is neglected, very thin layers of the field ql can develop, which demands computational resources not
yet available.

These results highlight how the implicit assumption in the mixture fraction formulation (see Sect. 3) of a
liquid-phase diffusivity comparable to that of the gas constituents of the system, though asymptotically con-
sistent (with the limit d/ lη → 0 and Eq. 3), does not hold in reality at the stratocumulus top, and it constitutes
a third simplification (or approximation) to be added to those of liquid-phase continuum and equilibrium.

To the extent that one is prepared to accept the aforementioned limitations, the derivation toward a
mixture fraction formulation can be continued by adding a diffusion model to the governing equations (as
described in the Appendix) such that the liquid phase diffuses with the gas according to Fick’s law and with a
diffusivity κl,

VD,g = vg − v = −κl∇ ln qg,

VD,l = vl − v = −κl∇ ln ql. (5)

This model corresponds to Eq. 4 when only the term proportional to the mass fraction gradient is retained and
can be also interpreted as an ad hoc definition of VD in Eq. 56 as VD = −(κl/qg)∇ ln ql. (The tilde used in the
Appendix to represent local average quantities has been dropped in the main text for notational convenience.)
The set of relative velocities resulting from this model is completed by

VD,d = vd − v = −κv∇ ln qd − (κl − κv)∇ ln qg,

VD,v = vv − v = −κv∇ ln qv − (κl − κv)∇ ln qg. (6)

The mass and heat flux vectors defined in Eqs. 67 and 81 can then be expressed using the new mean drift
velocity as

jt = ρqvVD,v + ρqlVD,l = −ρκv∇qt − (ρκl−ρκv)(qd/qg)∇ql. (7)

and

jq = −λ∇T +
∑

d,v,l

ρqi hi VD,i

= −λ∇T − ρκv(hd∇qd + hv∇qv + hl∇ql) − (ρκl − ρκv)(hl − hg)∇ql, (8)

or in terms of the total enthalpy of the mixture

jq = −(λ/cp)∇h − (ρκv − λ/cp)(hd∇qd + hv∇qv + hl∇ql) − (ρκl − ρκv)(hl − hg)∇ql

= −ρκv∇h − (λ/cp − ρκv)cp∇T − (ρκl − ρκv)(hl − hg)∇ql. (9)

Differential diffusion effects appear into the problem when κl �= κv such that the limit V D → 0 is recovered
asymptotically as κl → 0.
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Table 1 Thermodynamic data

Rd Rv cp,d cp,v cl �e273
lv

0.2870 0.4615 1.0070 1.8700 4.2176 2.5016
Gas constants and (constant) heat capacities are in units kJ kg−1 K−1, and latent heat of vaporization is given at 273.15 K in units
MJ kg−1

2.4 Nondimensional equations

The governing equations presented in the Appendix, with the diffusion terms as formulated in the previous
section, are now summarized and nondimensionalized with a reference density ρ0, velocity U0, length L0,
temperature T0, and reference values of the heat capacity cp,0 and dynamic viscosity μ0. These equations
describe the conservation of mass, Eqs. 65, 66, 68, conservation of momentum, Eq. 73, and conservation of
energy, Eq. 79. (The tilde used in the Appendix to represent average quantities has been dropped in the main
text for notational convenience.) The pressure p is nondimensionalized with ρ0U 2

0 , the specific internal energy
e and enthalpy h with cp,0T0, and ug is a unitary vector in the direction of the volumetric force. The transport
coefficients ρκv, ρκl, and λ/cp are written in terms of μ and the Prandtl and Schmidt numbers by means of the
definitions λ/cp = μ/Pr, ρκv = μ/Sc, and ρκl = μ/Scl, and Pr, Sc, and Scl are taken as constant. Lewis
numbers can be defined as Le = Sc/Pr and Lel = Scl/Pr . The transport equations are

∂ρ/∂t + ∇·(ρv) = 0, (10)

∂/∂t (ρqt) + ∇·(ρqtv) = − 1

Re Sc
∇·jt, (11)

∂/∂t (ρv) + ∇·(ρvv) = −∇ p + 1

Re
∇·τ + Ri

ρ

�ρ/ρ0
ug, (12)

∂/∂t (ρe) + ∇·(ρev) = −(γ0 − 1)M2 p∇·v + (γ0 − 1)
M2

Re
τ :∇v − 1

Re Pr
∇·jq , (13)

with the molecular transport terms

−jt/μ = ∇qt +
(

Sc

Scl
− 1

)
qd

qg
∇ql, (14)

τ/μ = ∇v + (∇v)T − 2/3(∇·v)I, (15)

−jq/μ = ∇h +
(

Pr

Sc
− 1

)
(hd∇qd + hv∇qv + hl∇ql) +

(
Pr

Scl
− Pr

Sc

)
(hl − hg)∇ql, (16)

and the equilibrium condition

ql = ql,eq(ρ, e, qt). (17)

Nondimensional thermodynamic relations are written as

γ0 M2 p/ρ = T [1 + qt(Rv/Rd − 1) − ql Rv/Rd], (18)

e = [(qt− ql)cv,v + (1− qt)cv,d + qlcl]T − ql Q, (19)

hi = ei + (γ0 − 1)M2 pi/ρi , (20)

where the reference ratio of specific heats is defined by γ0 −1 = 1/(cp,0/Rd −1); Rd/cp,0 and Rv/cp,0 are the
nondimensional dry air and vapor gas constants, respectively. Table 1 shows the dimensional thermodynamic
constants used in this study.

The reference nondimensional numbers appearing in these equations, apart from the ratios already defined
before, are

Re = U0L0

μ0/ρ0
, Ri = �ρgL0

ρ0U 2
0

, M = U0√
γ0 RdT0

, Q = �e0
lv

cp,0T0
, �ρ/ρ0. (21)
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Fig. 1 Species mass fractions ql, qv as a function of water content qt for a fixed state (ρ, e). Exact equilibrium (a) and modified
equilibrium (b) as given by Eq. 25 with δs = qs/16. The reference state corresponds to saturation conditions at p = 940 hPa and
T = 10.6◦C (qs = 8.50 g kg−1)

A density difference �ρ has been assumed to enter into the problem. Re is the Reynolds number, Ri is the
Richardson number, M is the Mach number, and Q is a nondimensional latent heat parameter. Other com-
binations can be used, and additional nondimensional parameters can appear through the boundary or initial
conditions, like those related to environmental lapse rates, inversion thicknesses, or the characterization of the
initial perturbation. If there is no velocity scale externally imposed on the system, then we can use (�ρ/ρ0)gL0
in place of U 2

0 in the nondimensionalization and write the problem in terms of

Gr = (�ρ/ρ0)gL3
0

(μ0/ρ0)2 , H/L0 = RdT0

gL0
, Q = �e0

lv

cp,0T0
, �ρ/ρ0, (22)

where Gr = Re2 is the Grashof number, γ0 M2 = (L0/H)(�ρ/ρ0), and Ri = 1; there is one degree of
freedom less in the parameter space. The scale-height is defined by H = RdT0/g; quite often, the Rayleigh
number defined as Ra = Gr Pr is used instead of Gr .

2.5 Equilibrium composition

We follow here previously described approaches [40,47] to obtain ql,eq . For a given thermodynamic state
(ρ, e, qt), a temperature T ∗ can be computed assuming all of the liquid in vapor phase, and the requirement
that qt ≤ ps(T ∗)/(ρRvT ∗) can then be evaluated; if this inequality is satisfied, then the equilibrium state has
been already obtained, and if not, then a nonlinear equation needs to be solved by substituting the conditions
qv = ps(T )/(ρRvT ) and ql = qt − qv into the energy equation.

The saturation pressure ps(T ) is calculated with the polynomial fit provided by Flatau [23]. A ninth-order
polynomial is solved with a Newton–Raphson method, and convergence is achieved in three iterations below
10−7 relative error. The consistency error between the corresponding latent heat obtained from the Clausius–
Clapeyron equation and the linear relation due to the constant heat capacities is less than 5% within the interval
of relevance. Figure 1 shows the variation of the composition with the specific humidity of total water, with
constant density and energy. For low qt (unsaturated conditions), as dry air is substituted by water and qt is
increased, the temperature decreases because the water vapor has larger heat capacity, and the energy e is
fixed. This decrease in temperature implies a decrease in the function ps(T )/(ρRvT ). At the same time, the
vapor content qv increases because qv = qt . This behavior continues until both curves cross with each other,
and at this point, the system is saturated, obtaining the value qs(ρ, e). If more water is added to the system,
then part of this water is present in the form of liquid instead of vapor and the contribution of the latent heat to
the energy implies an increase in the temperature of the mixture, which in turn implies a growth of the vapor
content qv = ps(T )/(ρRvT ).

Figure 1a shows that there is always a discontinuity in the derivative ∂ql/∂qt at constant ρ and e, and the
same is true for the function qv, which translates into a discontinuity with respect to the space coordinates of
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thermodynamic quantities needed in the governing equations. This problem was already identified by Ooyama
[40], although here, in our study, it is not only the pressure gradient but also the diffusion terms (where sec-
ond-order derivatives of the temperature appear) that introduce Gibbs phenomena, whose effect will manifest
later in the simulations in the form of a noisy background dilatation field. A smoothing function similar to
that used in DNS of the Burke–Schumann problem of infinitely fast chemistry [42] has been considered and
is now discussed. Consider the saturation specific humidity qs(ρ, e)

qs � ps(Ts)

ρRvTs
, (23)

where Ts(ρ, e) is the temperature at saturation. This temperature is obtained by solving the nonlinear equa-
tion that results after substituting qv = qs and ql = 0 in the energy equation. Second, consider the function
ql(qt; ρ, e) and decompose it into a piecewise linear part and a remaining contribution �ql in the following
manner

ql(qt; ρ, e) =
{

0, qt ≤ qs(
∂ql
∂qt

)

qs
(qt − qs) + �ql, qt > qs

(24)

where fixed values of ρ and e are assumed in qs(ρ, e). Then, the derivative of the piecewise linear part can be
approximated by a hyperbolic tangent, and the integration provides the following approximation for ql(qt; ρ, e)

q∗
l (qt; ρ, e) =

(
∂ql

∂qt

)

qs

δs ln

[
exp

(
qt − qs

δs

)
+ 1

]
+

{
0, qt ≤ qs
�ql, qt > qs

(25)

The temperature is then recalculated so that the values of density and energy are maintained. This algorithm
can be thought of as a replacement of the exact caloric equation of state by a modified one. Figure 1b shows
that the resulting modified profile has a continuous derivative at qt = qs(ρ, e), the discontinuity being now
only in the second derivative. The smoothing factor δs gives the interval in qt space over which the function is
smoothed and should be defined as a fraction of min{qs, qt,max − qs}.

Note that this approach becomes computationally more expensive; the value qs(ρ, e) has to be computed
for the unsaturated region of the flow as well, and the calculation of the slope at the saturation point

(
∂ql

∂qt

)

qs

= 1 − qsα[ed,0 − el,0 − (cl − cv,d)Ts]
e − ed,0 + qs[ed,0 − ev,0+Rvα(α+1)Ts] (26)

with α given by

α = L(Ts)

RvTs
− 1 = ev,0 − el,0 − (cl − cv,v)Ts

RvTs
− 1 (27)

is also demanding.

3 The cloud-top mixing layer

The equations obtained in the previous section are now particularized for the cloud-top mixing layer. This
system is defined by two infinite (unbounded) horizontal layers, one layer of warm and unsaturated fluid on
top of a second layer of cooler and saturated (condensate laden) fluid, the gravity force acting downward, with
or without shear. The system is statistically homogeneous along horizontal planes and temporally evolving.
This idealized configuration models the top of stratocumulus clouds on a vertical length scale of a few meters
with the objective of studying latent heat effects on the local dynamics.

The definition of the initial conditions is split into the setup of mean velocity and thermodynamic pro-
files, and the addition of perturbation fields. The thermodynamic mean profiles must satisfy the hydrostatic
equilibrium equation

H

L0

dp

dz
+ 1

[1− qt + (qt − ql)(Rv/Rd)]T p � 0, p(zc) = pc, (28)
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where a reference pressure level pc has to be given at the height zc and H = RdT0/g is the scale height, as
introduced before. Two more thermodynamic relations need to be provided, and two options are here consid-
ered. The first option is to impose {T (z), qt(z)}, i.e., given profiles of temperature and water content. With this
data known, Eq. 28 can be solved analytically if the moist air is unsaturated because then ql ≡ 0. On the other
hand, if the moist air is saturated, then the composition is not known because qv = qs also depends on p and
not only on T , but Eq. 28 leads to

H

L0

dp

dz
+ 1

(1 − qt)T
p � ps(T )

(1 − qt)T
, p(zc) = pc,

the solution of which can also be reduced to a quadrature. The second option considers {h(z), qt(z)} given, i.e.,
the enthalpy is specified instead of the temperature. This case appears naturally when studying the buoyancy
reversal instability, as later discussed. The initial hydrostatic equilibrium is then solved iteratively. In any of
the two cases, the imposed thermodynamic mean profiles follow an error function f (z) between two levels f0
and f1,

f (z) = f0 + f1 − f0

2

[
1 + erf

(
z − zc

2δ

)]
. (29)

If a mean gradient needs to be set in each of the layers, �0 and �1, respectively, then the following function is
added

g(z) = x

{
�0 + �1 − �0

2

[
1 + erf

(
z − zc

2δ

)]}
+ (�1 − �0)δ√

π
exp

[
−

(
z − zc

2δ

)2
]
, (30)

which also satisfies the one-dimensional diffusion equation with diffusivity κ if d(δ2)/dt = κ .
Now we turn to discuss the governing equations in Sect. 2.4 within the two-layer system defined above.

First, the Mach number M is a handicap of this system because the characteristic velocities of the problem
are less than 1 m s−1, which implies that M < 1/300 and the time resolution of the acoustic waves dictates
a very small time step in an explicit numerical scheme. Some physical problems allow the artificial increase
of the reference Mach number up to approximately 0.3 (the exact value depending on the definition and the
particular problem) because the results of interest are insensitive to the Mach number below this threshold.
However, the cloud-top mixing layer does not allow this approach. In order to understand why, consider an
expression for the Mach number in terms of the scale height H and other nondimensional parameters of the
problem as

γ0 M2 = L0

H

�ρ/ρ0

Ri
. (31)

The Richardson number Ri and the strength of the inversion �ρ/ρ0 are the dominant terms and need to be
reproduced in the simulations; hence, this equation shows that an increase of the Mach number is equivalent
to an increase of the length L0 compared to the scale height H , this latter being of the order of 8000 m in the
atmosphere. However, the cloud layer (condensate phase) usually varies in a much smaller distance (of the
order of 100 m), and therefore L0 cannot be significantly augmented. There is a need for a low Mach number
formulation.

Second, neglecting differential diffusion effects (Scl/Pr = Sc/Pr = 1) and accepting the previously
stated limitations, the transport equations for the total specific humidity and the enthalpy in the low Mach
number limit become

∂/∂t (ρqt) + ∇·(ρqtv) = ∇·
( μ

Pr
∇qt

)
, (32)

∂/∂t (ρh) + ∇·(ρhv) = ∇·
( μ

Pr
∇h

)
. (33)

Both variables are then conserved scalars with the same diffusivity and obey the same evolution equation.
Therefore, with appropriate boundary and initial conditions, the calculation of both qt and h is reduced to the
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Fig. 2 Sketch (a) showing the two-layer structure of the cloud-top mixing layer in terms of the conserved variables and the
three-layer structure of the density due to buoyancy reversal. Nondimensional buoyancy mixing function (b) for data in Table 2:
dashed, exact thermodynamic equilibrium; solid, approximation Eq. 37

knowledge of one normalized conserved scalar, the mixture fraction χ , which evolves according to the advec-
tion–diffusion equation as above. In the cloud-top mixing layer without lapse rates, denoting with subscript 0
and 1 the lower and upper layer, respectively, we can choose

χ = qt − qt,0

qt,1 − qt,0
= h − h0

h1 − h0
. (34)

The mixture fraction so defined indicates the relative amount of matter of the fluid particle that originates
from the upper layer. According to the notation here adopted, χ = 0 in the lower layer and χ = 1 in the
upper layer, as depicted in Fig. 2a. Bretherton [8] refers to variables obeying this relation as linearly mixing
variables. In combustion theory, linear relations between thermodynamic variables that are conserved, known
as coupling or Shvab–Zeldovich relations, also lead to the introduction of a mixture fraction as described
here [59], and this formulation in terms of χ has allowed a very significant development in the study and
modeling of nonpremixed turbulent reacting flows during the last decades [43]. In order to conclude, note that
the assumption that h and qt follow a similar initial condition is not as restrictive as it seems. Both quantities
(qt − qt,0)/(qt,1 − qt,0) and (h − h0)/(h1 − h0) obey the same advection–diffusion equation in an infinite
two-layer system with the same boundary conditions. Given different initial conditions, there will simply be
a (turbulent) transient in which this difference between the normalized enthalpy and water content evolves
toward zero.

Hence, the fluid particle is advected and its mixture fraction χ diffuses with the environment, with an
approximately constant thermodynamic pressure. The value of χ at each point and time determines com-
pletely the thermodynamic state of the fluid particle through qt(χ) and h(χ), in particular, the density field
ρ(x, t) = ρe(χ(x, t)), the pressure level entering only as a constant external parameter of the problem. Small
fluctuations of the density with respect to a mean value, normally related to the fluctuation of two thermody-
namic variables (like qt and h here) for a given thermodynamic pressure, can now be written in terms of the
conserved scalar χ [8,55]. This linear thermodynamic analysis leads to an expression of the buoyancy b,

b

g
= ρ0 − ρ

ρ0
, (35)

in terms only of χ as a function be(χ) which is piecewise-linear to a very good approximation, as illustrated
in Fig. 2b. Partial derivatives in saturated and unsaturated regimes can be calculated with more or less detail,
but at the end it comes down to providing three parameters describing the function. A usual choice is [51]:
b1/g = (ρ0 −ρ1)/ρ0 = �ρ/ρ0, which quantifies the strength of the stable inversion; χs, which is the mixture
fraction at saturation conditions; and the buoyancy reversal parameter [51]

D = ρs − ρ0

ρ0 − ρ1
= − bs

b1
, (36)
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Table 2 Buoyancy reversal parameters χs, D (defined by Eq. 36) and b1 for different thermodynamic conditions (T0, qt,0) in the
lower layer

qt,0(g kg−1) T0(
◦C) b1(10−2g) D χs

A0 8.0 10.5 2.54 – –
A1 9.0 10.6 2.54 0.031 0.09
A2 10.0 10.8 2.54 0.074 0.22
A3 12.0 11.3 2.54 0.133 0.39

Pressure level 940 hPa and upper layer at 19.1◦C and qt,1 = 1.50 g kg−1

which characterizes the buoyancy value at saturation, bs = be(χs). Figure 2b shows the function be(χ)/b1 for
the cases described in Table 2 as obtained from the equilibrium calculation described in Sect. 2.5. The cases
considered in that table are derived from the reference case A1, this last one corresponding to field exper-
imental data of nocturnal marine stratocumulus from the DYCOMS-II campaign [56]. The thermodynamic
state of the upper layer is kept fixed at a temperature T1 = 19.1◦C and with a total-water specific humidity
qt,1 = 1.5 g kg−1, and the lower state is then varied. The case A0 does not retain evaporation, and cases A2
and A3 augment the buoyancy reversal by means of a higher water content in the lower layer, keeping the
strength of the inversion b1 constant.

The discontinuity in the derivative observed in those curves at χs (saturation conditions) corresponds to
that in Fig. 1a and also needs to be smoothed if the high-order schemes normally employed in DNS, and later
described, are to be used. Therefore, the buoyancy function is approximated as

be(χ)

b1
= − D

χs
χ +

(
1 + D

1 − χs
+ D

χs

)
δs ln

[
exp

(
χ − χs

δs

)
+ 1

]
, (37)

which corresponds to the profile of the derivative dbe/dχ following a hyperbolic tangent between two differ-
ent levels and centered at χs (see also Fig. 2). Since χ is simply a normalized qt , this approximation is the
equivalent to Eq. 25, but written here for the density instead of ql and retaining only the piecewise linear contri-
bution. Mixture fractions smaller than the cross-over value χc = (χs + D)/(1+ D) are negatively buoyant and
represent the phenomenon of buoyancy reversal (in our case, due to evaporative cooling). Numerical studies
performed to calculate the influence of the smoothing parameter δs on growth rates of the thickness of the
mixing layer have been presented elsewhere [36] and show that δs = χs/16 is sufficiently small to regularize
the phase transition without noticeably influencing the evolution of the flow for the cases of interest presented
in Table 2.

In the Boussinesq limit (�ρ/ρ0 � 1 and D�ρ/ρ0 � 1) with constant transport coefficients the nondi-
mensional governing equations are then

∂v
∂t

+ ∇·(vv) = −∇ p + 1

Re
∇2v − Ri

b

b1
ug

∇ · v = 0 (38)
∂χ

∂t
+ ∇·(vχ) = 1

Re Pr
∇2χ

The set of nondimensional parameters is {Re, Pr, Ri, D, χs}, apart from those introduced by the boundary
and initial conditions, and it reduces to {Gr, Pr, D, χs} if there is no velocity scale imposed on the system, as
discussed in Sect. 2.4.

This set of equations is the final result we were pursuing hitherto. It is similar to that proposed by Bretherton
[8], where adiabatic motion was first considered and diffusion was later introduced as a common postulate.
The contribution from this article has been the discussion of these diffusion terms and the clarification of the
assumptions needed to arrive to this simplified mixture fraction formulation. As a reminder, the major hypoth-
eses are (a) liquid-phase continuum, (b) local thermodynamic equilibrium, and (c) liquid-phase diffusivity
equal to the vapor and thermal diffusivities. Estimates in Sect. 2 show that these assumptions are not generally
met at the top of stratocumulus clouds; nevertheless, this physical model has proven useful in the study of
some aspects of latent heat effects at the boundary between cloud and cloud free-air during the past years, as
indicated in the introduction.
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4 Numerical algorithms

A compressible algorithm used previously for DNS of free turbulent flows [37] has been complemented with
the required thermodynamic equilibrium formulae to solve the system of equations of Sect. 2.4 applied to the
cloud-top mixing layer described in the previous section. It is based on finite differences, and the spatial first-
and second-order derivatives are computed using a sixth-order compact Padé scheme. It is one-sided at the
nonperiodic boundaries (top and bottom), having globally fourth-order accuracy [10]. The advancement in
time is performed with a low-storage five-stage, fourth-order Runge–Kutta scheme [9]. The convective term
is written in the skew-symmetric form [20] to reduce aliasing errors [27], and the diffusion terms are treated
in explicit form. A rectangular domain is considered assuming periodicity in the horizontal planes parallel to
x Oy and gravity acting downward, i.e., ug = −k; the boundary conditions in the nonperiodic directions are
implemented using a characteristic nonreflective formulation [32,57].

Compact Padé schemes are thoroughly discussed by Lele [31]. The resulting finite-difference approxima-
tions δz p and δzz p to the first- and second-order derivatives, respectively, of a scalar field p along the Oz
direction are calculated by solving the linear systems A1δz p = B1 p and A2δzz p = B2 p. For the sixth-order
schemes used here, the matrices Ai are tridiagonal and the matrices Bi are pentadiagonal, and the resolving
efficiency measured by the 0.1% error in the corresponding transfer function occurs at about six points per
wavelength.

An incompressible algorithm for solving the set of equations presented in Sect. 3 has been derived from
this compressible formulation following Wilson et al. [60]. In this case, the boundary conditions imposed at
the top and the bottom are zero normal velocity (no-penetration) and zero normal derivative of the horizontal
velocities (free-slip) and the scalar field χ (adiabatic). The Neumann boundary conditions for the Poisson
equation for the pressure at the top and the bottom are then [26]

∂p

∂z
= 1

Re

∂2w

∂z2 + Ri
b

b1
, (39)

where the boundary conditions on the velocity have been already applied, and w is the vertical velocity. In
addition, one reference value of p has to be given at one point (this value is irrelevant since only ∇ p is needed;
recall that the effect of the thermodynamic reference pressure is already included in the curve be(χ)). The
discrete Poisson equation for the pressure is written using Fourier decomposition inside the horizontal planes,
which leads to the following set of difference equations along the vertical direction Oz

δzδz p̂i j − λ2
i j p̂i j = ĝi j , (40)

where p̂i j is the Nz-dimensional vector that contains the horizontal Fourier modes i = 0, . . . , Nx/2 and
j = −Ny/2 + 1, . . . , Ny/2 at each vertical position zk, k = 1, . . . , Nz , and

λ2
i j = [ f1(2π i/Nx)/(�x)]2 + [ f1(2π j/Ny)/(�y)]2. (41)

In these expressions, Nx , Ny , and Nz represent the number of grid points in the directions Ox, Oy, and Oz,
respectively, and �x,�y, and �z indicate the corresponding grid steps. The transfer function f1(ω) of the
first-order finite-difference operator needed in the equation above is

f1(ω) = (14/9) sin(ω) + (1/18) sin(2ω)

1 + (2/3) cos(ω)
, (42)

and f 2
1 (ω) is plotted in Fig. 3a as a function of the scaled wavenumber ω. The boundary value problem is

completely defined by specifying the Neumann boundary conditions {δz p̂i j |1, δz p̂i j |Nz } at the bottom k = 1
and the top k = Nz , values obtained by Fourier transforming Eq. 39. For the case λ = 0, one of the Neumann
boundary conditions has to be substituted by a Dirichlet one, and p̂00|1 = 0 is used without loss of generality.

The three modes (Nx/2, 0), (0, Ny/2), and (Nx/2, Ny/2) are degenerate in the sense that λi j = 0, and the
problem with Neumann boundary conditions, in general, does not have a solution. This is a consequence of the
finite-difference approximation to the first-order derivative, which sets an eigenvalue equal to zero at ω = π ,
as shown in Fig. 3a, and implies that it is not possible to set the dilatation exactly equal to zero. Nonetheless,
the order of magnitude of this error is proportional to the energy of these three modes, which should be small
if the simulation is reasonably well resolved, or even zero if some dealiasing technique is used, because they
represent part of the 2�x and 2�y plane waves.
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Fig. 3 Transfer function (a) of several finite-difference operators approximating the second-order derivative: solid, exact; dashed,
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from Eq. 46. Absolute error (b) in the approximation of f2 by f 2
1

Solving the set of discrete equations Eq. 40 poses some difficulties, since each one is a linear system with
a full matrix of size Nz × Nz . The problem can be simplified by introducing an approximation to the operator
δzδz which leads to a system easier to solve. For instance, introducing the finite-difference operator δzz used
to calculate the second-order derivative, we have

δzz p̂i j − λ2
i j p̂i j = ĝi j − R p̂, (43)

with R p̂ = δzδz p̂ − δzz p̂ = (A−1
1 B1 A−1

1 B1 − A−1
2 B2) p̂ and R being a full matrix. Neglecting this term

[12,60] leads to a pentadiagonal linear system

(B2 − λ2
i j A2) p̂i j = A2 ĝi j (44)

to obtain an approximation to the solution of Eq. 40 with the same order of accuracy. The error R p̂ introduced by
this step in solving the Poisson equation due to the different truncation error between δzδz and δzz is easily ana-
lyzed in the case of periodic boundary conditions with help of the corresponding transfer functions and it is pre-
sented in Fig. 3b. The transfer function of the finite-difference approximation to the second-order derivative is

f2(ω) = (24/11)[1 − cos(ω)] + (3/22)[1 − cos(2ω)]
1 + (4/11) cos(ω)

, (45)

and the truncation error is then given by f2(ω) − f 2
1 (ω). It is observed in Fig. 3b that this error increases

monotonically with the wavenumber and is of the order of 0.1% with six points per wavelength (points per
wavelength are equal to 2π/ω), which is consistent with the properties of the schemes used to calculate the
derivatives of the equations in the first place. However, this step increases the dilatation error in an amount
that depends on the resolution.

This truncation error can be reduced by constructing finite-difference operators whose transfer function f 2
1

follows more closely f2. For instance, if the eighth-order compact scheme, still tridiagonal, were used, then

f1(ω) = (25/16) sin(ω) + (1/10) sin(2ω) − (1/240) sin(3ω)

1 + (3/4) cos(ω)
, (46)

and the truncation error introduced when solving the Poisson equation is smaller, as shown in Fig. 3. The new
scheme is only slightly more expensive, since the matrix B1 is now heptadiagonal instead of pentadiagonal
and the maximum CFL number diminishes only by 7%. Further improvement could be achieved developing
spectral-like schemes with appropriate constraints [31], but that approach is not pursued here any further. One
reason is that, in addition to this truncation error, if nonuniform grids are of interest, the previous formulation
does not allow a simple treatment based on the Jacobian of the stretching function because then the problem
results again in a full linear system.

An improved method to solve Eq. 40 and to cope with both disadvantages can be derived from the solution
to the continuous boundary value problem associated with it, a solution that can be written explicitly in terms
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of quadratures since it is a second-order linear ordinary differential equation with constant coefficients. In
particular, the solution can be expressed as

p̂|k = 1

2λ

[(
b + e−λzN a

)
e−λ(zN −zk ) + (

a + e−λzN b
)

e−λzk + h(1)|k − h(2)|k
]
, (47)

where λ is the principal square root of λ2 �= 0, and it is assumed that z1 = 0, without loss of generality (zN
is then equal to the domain size in the Oz direction). For notational convenience, the subscript i j has been
dropped and the symbol N is chosen to represent Nz . The integration constants {a, b} are to be determined
from the specified boundary conditions, and p̂|k represents the k component of the N -dimensional vector p̂.
The vectors h(1) and h(2) contain the particular solution of the equation and are obtained by solving the two
first-order linear problems

{
δzh(1) − λh(1) = ĝ
h(1)|N = −ĝ|N /λ

{
δzh(2) + λh(2) = ĝ
h(2)|1 = ĝ|1/λ (48)

which then implies that the integration constants of Eq. 47 are given by

a = 1

1 − e−2λzN

[
ĝ|1/λ + h(1)|1 − 2δz p̂|1

]

b = 1

1 − e−2λzN

[
ĝ|N /λ − h(2)|N + 2δz p̂|N

] (49)

The derivative along Oz of the solution is obtained directly as

δz p̂|k = 1

2

[(
b + e−λzN a

)
e−λ(zN −zk ) − (

a + e−λzN b
)

e−λzk + h(1)|k + h(2)|k
]
. (50)

For the case λ = 0, the pressure is obtained solving sequentially, first, for δz p̂ with δz p̂|N given, and then for
p̂ with p̂|1 given.

The particular form chosen for Eq. 48 instead of, for instance, an explicit quadrature, is motivated by the
rounding errors in the floating-point arithmetic calculating the exponential terms at the boundaries for large
values of λ; the expressions presented here led to the best general behavior. For a similar reason, those specific
boundary conditions for h(1) and h(2) where chosen to avoid the formation of a boundary layer in these func-
tions for arbitrary large values of λ. Note that Eq. 41 implies that O(�z) � λ�z � O(1) if the aspect ratios
of the grid are of order 1 and the problem is nondimensionalized with the size of the computational domain.

The two systems Eq. 48 are now solved using the same compact schemes as employed before to calculate
the first-order derivatives. Let us consider for instance h(1). The linear system to be solved can be written
compactly in matrix form as

(B1 − λA∗
1)h

(1) = A∗
1 ĝ, (51)

where A∗
1 indicates the matrix A1 premultiplied by the corresponding Jacobian of the stretched grid. In par-

ticular, the sixth-order schemes used here lead to

B1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5/2 2 1/2−3/4 0 3/4 0
−1/36

−7/9 0 7/9
1/36

. . .
−1/36

−7/9 1 7/9
1/36

0 −3/4 0 3/4
0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A∗
1 = �z

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2
1/4 1 1/4

1/3 1 1/3
. . .
1/3 1 1/3

1/4 1 1/4
0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (52)

where a constant grid step �z has been assumed for simplicity. The last row corresponds to the boundary
condition h(1)|N = −ĝ|N /λ. The other boundary points are implemented using a forth-order compact scheme
at k = 2 and k = N − 1 and a third-order biased one at k = 1. The pentadiagonal system can be solved
efficiently using an LU decomposition similar to the Thomas algorithm for the tridiagonal case. The operation
count for the factorization step is O(10N ), and the forward/backward substitution step requires O(9N ).
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Fig. 4 Eigenvalues (a) in the complex plane of the matrix B1 in Eq. 52: solid, N = 1024; circles, N = 128. Spectral condition
number (b) of the full linear system Eq. 52 for different values of λ�z and grid sizes N

The eigenvalues σk of the (N − 1)2 block matrix in B1 − λA∗
1 are of interest because they characterize

the linear system to be solved. They have been calculated using the GNU scientific library and the spectra
are shown in Fig. 4a when λ = 0 for two different grid sizes N . All of them are nonzero, and therefore the
matrix is regular and can be inverted. (Note that the boundary condition eliminates the two zero eigenvalues
corresponding to ω = 0 and ω = π shown in Fig. 3a for the periodic case and moves the eigenvalues out
of the imaginary axis.) One of them is real σ � −1.6627, independent of the size of the system N (within
the accuracy of the numerical calculation). The rest are complex conjugate pairs in the negative half of the
complex plane, and, when the real part is scaled with N , they follow closely the curve shown in that figure,
where the final point in the real axis is precisely 1.6627N ; i.e., they approach the imaginary axis at a rate N−1.

A related quantity that is of interest is the spectral condition number of the matrix, which measures the
sensitivity of the solution to perturbations of the independent term. This is shown in Fig. 4b for different grid
sizes and two values of λ�z. In this respect, it is noted that λ�z in our problem varies between small values
of order 1/Nx or 1/Ny and values of order 1, and therefore only the limiting cases λ = 0 and λ�z = 1 are
included in that figure. The worst case scenario occurs for λ = 0, corresponding to the matrix B1, where the
condition number can be well fitted to the linear behavior � 2.80N . As λ increases, the condition number
decreases. This result implies a loss of about three digits of accuracy for grid sizes of the order of 1024 when
solving the Poisson equation due to errors in the forcing term. (For comparison, the condition number of the
circulant matrix A1 employed to approximate the first-order derivative with periodic boundary conditions is
equal to 5 and independent of N .)

In brief, this second formulation based on Eq. 47 improves the first approach Eq. 44 by reducing the
dilatation error and, more importantly, allowing stretching in the vertical direction—smaller grids reduce both
memory requirements and the overall computational load. The main disadvantage of this new formulation is
that two pentadiagonal systems need to be solved, instead of only one. However, for simulations involving
large grid sizes and using domain decomposition in parallel computations based on the Message Parallel
Interface, this overhead is small compared to the communication time required to transpose the data across all
the processors to perform the Fourier decomposition.

5 Simulations

The main purpose of this section is the validation of the incompressible algorithm by comparison of results
with those obtained from the compressible one. We use as a test case the shear-free configuration under buoy-
ancy reversal conditions discussed by Mellado et al. [36]. Physical details about the flow and the buoyancy
reversal instability are also provided therein. A case without an imposed mean shear is chosen because then
all of the motion is forced by the initial density distribution and diffusion processes, and it should stress the
possible differences between the two formulations. The main characteristic of the system is that the two-layer
structure in the mixture fraction (i.e., enthalpy and total-water specific humidity) corresponds to a three-layer
system in terms of the density, with the central one heavier than the lower one (cf. Fig. 2a). This configuration
has one stable mode of period 2

√
π

√
λ/b1 (or two dispersive waves with phase velocity

√
λb1/(4π)) and
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Fig. 5 Negative buoyancy field for case A3 showing the evolution (left to right) starting from the initial condition and showing a
frame every cycle of linear stable mode: top, compressible formulation; bottom, Boussinesq formulation. The box height shown
is only the central 2/3 of the domain employed in the simulation

one unstable mode with a characteristic time scale D−1/2 times larger than the stable one. The system is then
linearly unstable and the corresponding buoyancy reversal instability can lead to a turbulent flow in the lower
layer. Figure 5 shows qualitatively the evolution of the instability in terms of the negative buoyancy field every
2
√

π
√

λ/b1 time units (points x for which b(x, t) < 0 are visualized using a gray color scale, white for zero,
and black for minimum)—superimposed on a standing interfacial gravity wave a downdraft develops at the
lowest point of the initial perturbation.

In particular, we focus on case A3 of Table 2 because it corresponds to the strongest buoyancy reversal and
leads to a faster development of the flow. A two-layer mean thermodynamic state is set as described in Sect. 3
and then perturbed by displacing sinusoidally the central isosurface of χ , in the incompressible case, and of
qt and h, in the compressible case, from the hydrostatic equilibrium over a wavelength λ with an amplitude
(a/2)/λ = 0.1. The thicknesses of the initial profiles are δ/λ = 0.05. Mellado et al. [36] shows that a grid
200 × 600 allows a reference Grashof number Gr = λ3b1/ν

2 = 4 × 108, with a Prandtl number equal to
1; the reference length used in Sect. 2.4 has been chosen equal to the wavelength, L0 = λ. In addition, the
incompressible mode needs the corresponding values of D and χs of Table 2. For the compressible case we are
required to specify b1/g = �ρ/ρ0 = 0.0254, as obtained from the initial thermodynamic state and shown in
Table 2, and the scale-height ratio H/λ = 2.8 × 103, where the reference thermodynamic state is dry air at the
temperature and density of the lower layer. For this ratio, a reference length λ = 3 m has been chosen, small
enough compared to the height-scale H of the density variation in the lower layer. (Note that the viscosity
inferred from the previous Gr and the value b1 = 0.25 m s−2 measured at the stratocumulus top is then larger
than the real one in the atmosphere, but that is irrelevant for the validation purpose of these simulations, and
it was more important to retain a higher Mach number to be able to perform a compressible simulation.) The
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Fig. 6 Temporal evolution (a) of the penetration length hb of the downdrafts for case A3 of Table 2: solid, compressible; dashed,
Boussinesq. Effect of smoothing parameter δs on the compressible simulations (b)

rest of the thermodynamic data needed for the compressible case is given in Table 2, case A3, and the heat
release parameter Q introduced in Sect. 2.4 is 8.14.

The comparison between the compressible formulation and the Boussinesq limit in Fig. 5 shows
the high accuracy of the latter approximation. Relative errors due to compressibility, measured by
M2 = (λ/H)(�ρ/ρ0)/γ0 � 10−5, are negligible in our case compared to those introduced by the Bous-
sinesq approximation. The assumption of constant density in the inertial terms leads to errors of the order 3%
at the inversion and Fig. 5 shows that these errors are indeed small and the evolution of the Boussinesq fluid
follows that of the compressible solution. The compressible case also exhibits a slight background gradient
in the buoyancy field due to compressibility, which eventually would modify the evolution if the downdraft
penetrates downward enough, but it is not relevant for the sizes of the system considered in this study, being of
the order of a few meters. The only observed effect of the Boussinesq approximation is a very small difference
in the pattern of the recirculated negatively buoyant fluid inside of the mushroom structure in the last frames.
In contrast, the savings in computational cost allowed by the Boussinesq approach are very significant: about
600 iterations are needed in the incompressible case compared to 1.9 × 106 iterations for the compressible
case, and the computational time per iteration required by this latter is about 2.3 times larger than that needed
by the Boussinesq formulation.

The non-linear evolution of the flow is also quantitatively well represented by the Boussinesq approxi-
mation. In order to see this, we define the height of a falling finger hb(t) based on the mean vertical profile
of the mixture fraction. We consider that mean profile and scan from the lowest boundary upward until the
mean profile reaches a given threshold; the distance from this point to the inversion plane defines the height
hb(t). A threshold value 0.001 is used, and the results are presented in Fig. 6a. This figure shows the increase
with time of the downdraft height, and it confirms the accuracy of the Boussinesq approximation for the usual
thermodynamic conditions characterizing the stratocumulus top. The maximum relative difference between
both curves is about 3%.

Last, the effect of the smoothing parameter δs in the compressible algorithm discussed in Sect. 2.5 (cf. Fig. 1)
is considered. Recall that this parameter needs to be introduced to avoid the discontinuity in the derivatives of
the thermodynamic functions at saturation conditions. This issue is investigated by means of the dilatation ∇·v,
which is very sensitive to Gibbs phenomena occurring somewhere in the computational domain, and Fig. 6b
shows the vertical profile of the fluctuation of the dilatation comparing the cases δs = qs/16 and δs = 0. The
stronger dilatation is found near the inversion, where the stronger mixing events occur (remember that the
compressible formulation retains the small density variation due to the heat conduction and the mass diffusion
that cause this nonzero dilatation), and that is observed in both cases. However, it is clearly seen that the
background noise in the case δs = 0 is comparable to those values of dilatation at the inversion, whereas the
smoothing parameter reduces the background noise by almost two orders of magnitude. This level of accuracy
might be needed for small-scale studies, e.g., those based on enstrophy statistics or gradient trajectories [37].
On the other hand, the effect of δs in large-scale quantities like the evolution of hb (not shown) is negligible
and the maximum difference observed in this quantity is about 1%. Similar comments apply to the smoothing
parameter employed in the Boussinesq formulation (cf. Fig. 2 in Sect. 3), as already discussed by Mellado
et al. [36].
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6 Conclusions

Two major aspects of the problem of buoyancy reversal by isobaric mixing regularly found at the boundaries
of clouds have been addressed in this article. First, the existing mixture fraction formulation has been analyzed
in detail to understand the underlying assumptions (or simplifications) necessary for its derivation. So doing
facilitates a correct interpretation of the results from simulations based on this framework. For that purpose, a
general description of the disperse and dilute two-phase system consisting of liquid and vapor in air has been
introduced and then particularized to the cloud-top mixing layer, an idealized configuration representing the
top of stratocumulus clouds over a size of the order of meters. It has been argued that the main assumptions
intrinsic to this simplified methodology are: (a) the liquid phase can be considered as a continuum, (b) local
thermodynamic equilibrium exists, and (c) the liquid-phase diffusivity is equal to that of vapor and dry air.
Estimates show that these hypotheses do not hold for the conditions normally measured in stratocumulus
clouds. The reasons are: (a) the droplet number density is not large enough to have a smooth liquid-phase
field over distances comparable to the Kolmogorov scales, (b) there is no water phase equilibrium, and (c)
the diffusivity of the water phase due to the thermal motion is significantly smaller than that of the gaseous
constituents.

Second, because the buoyancy reversal is ultimately caused by molecular mixing and, therefore, it occurs
predominantly at the small scales of a system in a turbulent state, high-order numerical algorithms for the
compressible and incompressible cases have been described. They are based on finite differences using sixth-
order compact Padé schemes for the spatial derivatives and a low-storage five-stage, fourth-order Runge-Kutta
scheme for the time advancement. Smoothing parameters have been introduced to deal with the discontinuity
in the partial derivatives of the thermodynamic functions at saturation conditions, following previous study
on infinitely fast nonpremixed reacting flows. In the incompressible case, the algorithm to solve the Poisson
equation has been written using Fourier decomposition in the horizontal planes with a novel technique to solve
the resulting one-dimensional equations. Simulations of both compressible and Boussinesq cases have been
presented and compared in the cloud-top mixing layer under real atmospheric conditions. Results confirm the
expected benefits of the incompressible formulation, which maintains the details of the small diffusive scales
of the problem with a substantial reduction in computational cost.

Acknowledgements Partial financial support for this study was provided by the Deutsche Forschungsgemeinschaft within the
SPP 1276 Metström program.

7 Appendix

The mathematical framework based on local volume averages [16] is particularized here to the disperse and
dilute two-phase flow formed, on the one hand, by the gas mixture of vapor and dry air, and, on the other
hand, by the liquid droplets. The union of the gas and liquid phases will be referred to as total mixture or
simply mixture. Details about the general formulation can be consulted in the previous reference, and the only
objective of this Appendix is to introduce clearly the physical quantities and the conservation equations used
in this article.

7.1 Definitions and notation

At a given time t , consider the phase functions Xg(x′, t) and X l(x′, t) which are equal to 1 if the point x′ is
inside the gas phase or liquid phase, respectively, and zero otherwise. The second tool is a volume average
operator, denoted by 〈·〉(x, t), defined locally at x over a volume V independent of x and t and with only
one characteristic length scale V 1/3. Then, φg(x, t) = 〈Xg〉 = Vg(x, t)/V is the volume fraction of gas at
(x, t), i.e., the volume occupied by the gas divided by the total volume V around x defined above. Similarly
φl(x, t) = 〈X l〉 represents the volume fraction of liquid. The relation φg + φl = 1 follows from Vg + Vl = V .

First, let us consider the material partial density fields, respectively, of dry air and vapor, ρd(x′, t) and
ρv(x′, t), defined on the gas phase so that the gas density is ρg = ρd + ρv, and of the liquid density, ρl(x′, t),
within the liquid phase (it can be ignored for the time being that the liquid density is constant). We define the
phase average partial densities as ρ̃g = 〈Xgρg〉/φg, ρ̃d = 〈Xgρd〉/φg and ρ̃v = 〈Xgρv〉/φg. Then, the relation
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ρ̃g = ρ̃d + ρ̃v holds. Similarly, that of the liquid is defined as ρ̃l = 〈X lρl〉/φl. Further, the bulk density of the
total mixture ρ̃ is defined by ρ̃ = 〈Xgρg + X lρl〉 and represents the total mass divided by the total volume V at
(x, t). The bulk partial densities of vapor, dry air, gas, and liquid are φgρ̃v, φgρ̃d, φgρ̃g, and φlρ̃l, respectively,
and the following relations exist

ρ̃ = φgρ̃g + φlρ̃l = φgρ̃d + φgρ̃v + φlρ̃l. (53)

We can define the bulk mass fractions in terms of the bulk densities by qg = φgρ̃g/ρ̃ and ql = φlρ̃l/ρ̃,
which represent the mass of gas and liquid, respectively, divided by the total mass inside the volume V . Then,
the relation qg + ql = 1 holds, and the condition φg + φl = 1 implies that qg/ρ̃g + ql/ρ̃l = 1/ρ̃. The dry
air and vapor bulk mass fractions are introduced as qd = φgρ̃d/ρ̃ and qv = φgρ̃v/ρ̃. These definitions yield
φg/ρ̃ = qg/ρ̃g = qd/ρ̃d = qv/ρ̃v. Besides, the condition ρ̃g = ρ̃d + ρ̃v implies qg = qd + qv and

1 = qg + ql = qd + qv + ql. (54)

Second, the linear momentum introduces particular velocities into the problem. The continuum description
of multicomponent gas mixtures [38,59] usually considers mass-weighted velocities vd(x′, t) and vv(x′, t),
such that the mean velocity of the gas mixture is given by ρgvg = ρdvd + ρvvv. Consistently, we define the
phase averages by ṽd = 〈Xgρdvd〉/(φgρ̃d) for the dry air inside V and ṽv = 〈Xgρvvv〉/(φgρ̃v) for the vapor, and
similarly for the gas velocity ṽg = 〈Xgρgvg〉/(φgρ̃g), retaining then the relation ρ̃gṽg = ρ̃vṽv + ρ̃dṽd among
volume average quantities. The governing equations are written in terms of ρgvg for the gas phase and ρlvl for
the liquid phase, and we still need the volume average of this latter, which is given by ṽl = 〈X lρlvl〉/(φlρ̃l).
The linear momentum per unit volume of the total mixture is used to define the velocity of the mixture ṽ by
〈Xgρgvg + X lρlvl〉 = ρ̃ṽ, which then yields the following relations

ṽ = qgṽg + qlṽl = qdṽd + qvṽv + qlṽl. (55)

The relative velocities of the gaseous and liquid phases with respect to the total mixture can be written in terms
of the mean drift velocity VD = ṽl − ṽg of the disperse phase with respect to the gas phase

VD,g = 〈Xgρg(vg − ṽ)〉/(φgρ̃g) = ṽg − ṽ = −qlVD,

VD,l = 〈X lρl(vl − ṽ)〉/(φlρ̃l) = ṽl − ṽ = qgVD,
(56)

both satisfying qgVD,g + qlVD,l = 0 for any given VD. In principle, VD needs to be obtained from an appro-
priate governing equation. In equilibrium, it is simply the terminal velocity due to the gravitational field or,
if droplets are small enough for thermal motion to become relevant, VD would be related to some diffusion
velocity (see Sect. 2.3). If a description of the vapor and dry air content separately within the gas phase is
desired, then the corresponding relative velocities

VD,d = 〈Xgρd(vd − ṽ)〉/(φgρ̃d) = ṽd − ṽ = −qv/qg(ṽv − ṽd) + VD,g,

VD,v = 〈Xgρv(vv − ṽ)〉/(φgρ̃v) = ṽv − ṽ = qd/qg(ṽv − ṽd) + VD,g,
(57)

will appear in the formulation. In this case, in addition to VD, a closure for the relative velocity ṽv − ṽd of the
vapor continuum with respect to the dry air needs to be provided. The condition

∑
d,v,l qi VD,i = 0 is always

satisfied for any given pair {VD, ṽv − ṽd}.
The same rationale used before for the velocity can be applied to other specific quantities, like inter-

nal energy, enthalpy, or entropy. For instance, let us consider the specific internal energy. From the fields
ed(x′, t), ev(x′, t) for dry air and vapor, and the corresponding gas mixture value eg(x′, t), all of them defined
inside the gas phase and related through the equation ρgeg = ρvev + ρded, we can the define phase aver-
ages ẽd = 〈Xgρded〉/(φgρ̃d), ẽv = 〈Xgρvev〉/(φgρ̃v), and ẽg = 〈Xgρgeg〉/(φgρ̃g), which satisfy the relation
ρ̃gẽg = ρ̃dẽd + ρ̃vẽv. The same can be done for the liquid, introducing the quantity ẽl = 〈X lρlel〉/(φlρ̃l).
The internal energy per unit volume of the total mixture is 〈Xgρgeg + X lρlel〉 = ρ̃ẽ, which then leads to the
relations

ẽ = qgẽg + qlẽl = qdẽd + qvẽv + qlẽl. (58)

These paragraphs simply recover mathematically the relations between the mass, momentum and energy
of the total mixture and the contributions from each constituent, and could have been equally derived using
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only physical arguments. However, this formalism can be further applied to the governing equations of the gas
and the liquid phase to derive the governing equations of the mixture and to obtain a clear expression of the
unclosed terms in these transport equations. For instance, let us consider the transport equation of the vapor
bulk partial density φgρ̃v = ρ̃qv. From the transport equation for ρv (see e.g., [59])

∂ρv/∂t + ∇·(ρvvg + jv
) = 0 , (59)

where jv = ρv(vv −vg) is the mass diffusion flux vector, Drew [16] shows how to derive the transport equation

∂/∂t
(
φgρ̃v

) + ∇·
(
φgρ̃vṽg + φgj̃v + Mv

)
= Sv (60)

using the properties of the phase function Xg. The term Mv = 〈Xgρvvg〉 − φgρ̃vṽg is nonzero because ṽg is
defined in terms of ρg and constitutes a mass flux to be added to the molecular one j̃v. Both Mv and j̃v require
modeling. The source term Sv = 〈[ρv(vg − vi )] · ∇ Xg〉, where vi is the velocity of the interface and the square
brackets here indicate the jump across that interface, is unclosed and describes the production (consumption)
of vapor at the interface by vaporization (condensation).

A similar approach can be done for each of the governing equations for ρd, ρl, vg, vl, eg, and el, and
unclosed terms appear due to: (a) interface phenomena, (b) nonlinear terms, and (c) molecular transport. In
this article, we consider transport equations for the total mixture quantities ρ̃ṽ and ρ̃ẽ, so that the corresponding
interface terms cancel each other, but the nonlinear and molecular transport of mass, momentum, and energy
need to be closed. In addition, the thermodynamic equations of state, which introduce intensive variables, add
further closure problems. We cannot extend the same rationale as used before for the specific internal energy
and define average values of intensive quantities like the temperature without additional assumptions. In order
to proceed further, we need to introduce certain simplifications.

7.2 Simplifying assumptions

The disperse two-phase flow is now simplified in the following way:

1. The volume fraction φl(x, t) is assumed to be a smooth enough function to apply a differential formulation
over length scales much larger than the droplet diameter d . This requires that the droplet number density
nl(x, t), related to the liquid volume fraction by φl = nlπd3/6, is high enough for the number of droplets
within the volume V to be large, i.e., nlV � 1.

2. The volume V is smaller than or comparable to the Kolmogorov scale l3
η , so that the nonequilibrium within

V is mainly due to the perturbation introduced by the dispersed condensate in the form of small enough
droplets with diameter d � V 1/3. (Larger volumes would fall in the category of large-eddy simulation.)

3. Diluted conditions n1/3
l d � 1 are also assumed so that the interactions among droplets are neglected. By

definition, this condition is equivalent to φl � 1.

In brief, the following chain of inequalities is hypothesized:

lη > V 1/3 � n−1/3
l � d , (61)

and the resulting model is commonly referred to in the literature as the two-fluid formulation [13,17,19,22],
in contrast to the Eulerian–Lagrangian approach where the droplets are followed individually. The mean drift
velocity VD still needs to be provided, and hypothesis (2) and (3) allow us to use the results from the study of
the motion of isolated small particles in a nonuniform flow [34], assuming that

4. the droplets behave as spherical rigid solids.

Local thermodynamic equilibrium inside V needs to be discussed next. Mechanical and thermal equilibria
are assumed when the time scale ratio between the corresponding droplet inertia and the environment evolution
is small enough [48]. Mechanical equilibrium would require uniform pressure within the averaging volume
V and, therefore, no relative motion of the droplet with respect to the gas should be allowed. This condition
is normally relaxed, and a relative velocity of the condensate is considered along with thermal equilibrium,
which could be justified by the very low Mach number associated to the droplet slip velocities. Then, the
thermodynamic pressure of the gas equals that of the liquid and decouples from the small hydrodynamic
pressure field developed by the droplet motion inside V . On the other hand, phase nonequilibrium is more
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often retained because the corresponding relaxation time scale is larger than the mechanical one [48]. These
condensation/vaporization effects lead to source terms in some of the governing equations that require closure
[3,24]. The problem can be even more delicate because, then, thermal equilibrium within the volume V is
questionable. In this respect, two-temperature models (one for the liquid, and one for the gas) have been pro-
posed [5], and nonequilibrium theories derived for small perturbations from the single-phase state have been
also considered [6]. However, the main purpose of this article is to analyze existing equilibrium formulations
and consequently

5. local thermodynamic equilibrium is assumed so that the thermodynamic fields do not vary within the
volume V and are equal to the volume average values.

This will allow us to use the standard thermal and caloric equations of state for the gas mixture and liquid
water. In addition,

6. surface tension effects are neglected.

The assumption of local thermodynamic equilibrium and, therefore, uniform values of the scalar fields in
terms of x′ closes also the molecular diffusion fluxes, as later observed. It also sets Mv = 0 in Eq. 60, and
the corresponding term associated to the internal energy e appearing in the energy transport equation, but an
unclosed term in the momentum and energy equations still remains because of the nonlinearity in the velocities
v(x′, t). For instance, in the momentum equation the following term

Mv,g = 〈Xgρgvgvg〉 − φgρ̃gṽgṽg = 〈Xgρg(vg − ṽg)(vg − ṽg)〉 (62)

appears due to the gas phase, and, similarly, Mv,l appears due to the liquid phase. A second closure problem
occurs also with the nonlinear terms due to a nonzero mean drift velocity VD. All these issues are discussed next
as the transport equations that govern the conservation of mass, momentum, and energy of the total mixture are
introduced. As explained at the end of Sect. 7.1, these equations are derived by applying the average operator
to the governing equations of each phase separately (see e.g., [59]) and then adding the gas and liquid phase
contributions when needed.

7.3 Mass conservation

Conservation of mass of each constituent yields

∂/∂t (ρqd) + ∇·
(
ρqdṽg + φgj̃d

)
= ∂/∂t (ρqd) + ∇·(ρqdṽ + ρqdVD,d) = 0,

∂/∂t (ρqv) + ∇·
(
ρqvṽg + φgj̃v

)
= ∂/∂t (ρqv) + ∇·(ρqvṽ + ρqvVD,v) = Sv, (63)

∂/∂t (ρql) + ∇·(ρqlṽl) = ∂/∂t (ρql) + ∇·(ρqlṽ + ρqlVD,l) = Sl.

The source terms Si are due to the phase transition (both satisfying Sv + Sl = 0), jd = ρd(vd − vg) and
jv = ρv(vv − vg) are the molecular mass flux vectors (both satisfying jd + jv = 0), and the relative velocities
VD,i have been defined in Eqs. 56 and 57 in terms of the mean drift velocity VD and ṽv − ṽd. Fick’s law [59]
is used to model the diffusion between vapor and dry air,

vv − vd = −κv∇ ln(qv/qd), (64)

where κv is the mass diffusivity between water vapor and dry air, so that j̃d = jd = −ρgκv∇(qd/qg) and
j̃v = jv = −ρgκv∇(qv/qg).

Linear combinations of the previous three equations can be solved instead of those equations themselves.
In the first place, the sum of all of them is considered, which represents the total mass conservation

∂ρ/∂t + ∇·(ρṽ) = 0 . (65)

The second combination is the sum of the second and third equations, the transport equation for the total
specific humidity

∂/∂t (ρqt) + ∇·(ρqtṽ) = −∇·jt, (66)
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where the total-water mass flux vector jt = ρqvVD,v + ρqlVD,l is given by

jt = φgjv + ρqdqlVD = −ρqgκv∇(qv/qg) + ρqdqlVD. (67)

The ratio between the second and first term on the right-hand side of the previous equation is of the order of
(ql/qv)(V D/vη) if vη represents an appropriate reference velocity scale associated to the diffusion term, e.g.,
the Kolmogorov velocity scale in a turbulent state.

The third conservation equation could be that describing the evolution of vapor or liquid specific humidity,
with an appropriate model for the corresponding source term [3,24]. However, by our equilibrium assumption,
we can substitute this last transport equation by

ql = ql,eq(ρ, e, qt). (68)

7.4 Momentum conservation

The conservation of momentum is written as

∂/∂t
(
ρqgṽg + ρqlṽl

) + ∇·(ρqgṽgṽg + ρqlṽlṽl + Mv
) = ∇·(φgσg + φlσl

) + ρqgg + ρqlg. (69)

In terms of the mixture velocity ṽ, this equation can be expressed as

∂/∂t (ρṽ) + ∇·(ρṽṽ) = ∇·(φgσg + φlσl + σD) + ρg = −∇ p + ∇·(φgτg + σD) + ρg, (70)

where, for the second equality, the relations σg = −pg I + τg and σl = −pl I + τl have been used (I is the unit
tensor), the pressure inside the liquid pl has been taken equal to the gaseous pressure pg due to equilibrium
conditions as discussed before, and the droplet is assumed to have no internal relative motion, so that the
viscous stress tensor inside the liquid is zero (τl = 0). On top of these two assumptions, the fact that φl is
negligibly small can also be used. The unclosed nonlinear term Mv is included in the stress tensor σD and
explained below.

The viscous stress tensor inside the gas phase for a Newtonian fluid is given by

τg = μg
[∇ṽg + (∇ṽg)

T − 2/3(∇·ṽg)I
]
, (71)

but ṽg − ṽ = VD,g = −qlVD, and, therefore, the viscous stress tensor can be written in terms of the transported
variable ṽ within a relative error of order ql(V D/vη).

Last, the stress tensor σD is given by σ D = σ D,g + σD,l,

−σD,g = 〈Xgρg(vg − ṽ)(vg − ṽ)〉 = 〈Xgρg(vg − ṽg)(vg − ṽg)〉 + ρgφgVD,gVD,g

−σD,l = 〈X lρl(vl − ṽ)(vl − ṽ)〉 = 〈X lρl(vl − ṽl)(vl − ṽl)〉 + ρlφlVD,lVD,l.
(72)

We can compare the order of magnitude of each of these terms with that of the viscous stress, of the order of
ρv2

η . From the set of simplifications introduced above, it is easy to show that the first term in the right-hand
side of the gas contribution is of order φl(V D/vη)

2, whereas that of the liquid is zero, and the last two terms
are of order q2

l (V D/vη)
2 and ql(V D/vη)

2 for the gas and the liquid contributions, respectively. If these ratios
are small enough, then the final transport equation is

∂/∂t (ρṽ) + ∇·(ρṽṽ) = −∇ p′ + ∇·τ + ρ′g, (73)

where

τ = μ
[∇ṽ + (∇ṽ)T − 2/3(∇·ṽ)I

]
, (74)

with μ ≡ φgμg. As it is customary, the pressure and density fields are decomposed into a background profile
and a deviation, p(x, t) = p′(x, t) + pb(x) and ρ(x, t) = ρ′(x, t) + ρb(x), such that ∇ pb = ρbg.
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7.5 Energy conservation

Similar to the conservation of momentum, conservation of energy is expressed as

∂/∂t
(
ρqg(eg + ṽ2

g/2) + ρql(el + ṽ2
l /2)

)
+ ∇·

(
ρqgṽg(eg + ṽ2

g/2) + ρqlṽl(el + ṽ2
l /2) + Me

)

= ρqgg·ṽg + ρqlg·ṽl + ∇·(φgσg ·ṽg + φlσl · ṽl
) − ∇·(φgjq,g + φljq,l

)
, (75)

where ṽg = ‖ṽg‖ and ṽl = ‖ṽl‖ and jq,g and jq,l are the molecular heat flux vectors. Introducing the velocity
of the mixture ṽ, using the continuity equation and assuming that the liquid and gas pressure are equal, then

ρ
d

dt

(
e + (ṽ2 − tr(σD)/ρ)/2

)

= ρg·ṽ − ∇·(pṽ) − ∇·(φgjq,g + φljq,l + jD) + ∇·[(φgτg + φlτl + σD)·ṽ]
, (76)

where the substantial derivative operator is defined by d/dt ≡ ∂/∂t + ṽ·∇ and tr(σD) indicates the trace of the
tensor σD given by Eq. 72. The enthalpies hi = ei + pi/ρi (i = d, v, l) have been introduced; it can be shown
that ρqgeg + φg p = ρqghg and equivalently for the liquid. The viscous stress tensor τl of the liquid phase is
zero because of uniformity inside the droplet and similarly jq,l = 0, and the molecular heat flux vector within
the gaseous phase is [59]

jq,g = −λg∇T + jv(hv − hd). (77)

The flux vector jD is given by jD = jD,g + jD,l, where

jD,g = 〈Xgρg‖vg − ṽg‖2(vg − ṽg)〉/2

+VD,g ·[〈Xgρg(vg − ṽg)(vg − ṽg)〉 − φgτg + (ρqghg− tr(σD,g)/2)I ], (78)

jD,l = 〈X lρl‖vl − ṽl‖2(vl − ṽl)〉/2

+VD,l ·[〈X lρl(vl − ṽl)(vl − ṽl)〉 − φlτl + (ρqlhl− tr(σD,l)/2)I ].
This expression for the heat flux vector coincides with that presented by Williams [59] for a multicomponent
gas mixture, observing that ρqghg− tr(σD,l)/2 = ρqghg+〈Xgρg‖vg − ṽg‖2〉/2+ρqg‖VD,g‖2/2, and similarly
for the liquid.

Simplifications in the limit V D/vη � 1 are now discussed in the same way as introduced in the momen-
tum equation. The contribution of the tensor σD in the explicit terms in Eq. 76 is, at most, of the order of
ql(V D/vη)

2, as already derived in the previous section. The flux vector jD can be similarly simplified. First, the
terms involving second- and third-order central moments of the velocity fields inside the volume V are at most
of order φl(V D/vη)

2 and φl(V D/vη)
3, respectively. Second, the kinetic energy associated to the trace tr(σD)

being transported by the diffusion velocities can be neglected in comparison with the enthalpies transported
by the same diffusion velocities because the Mach numbers of those motions are very small, and the same is
true for the term φgτg. We are left with

∂/∂t
(
ρ(e + ṽ2/2)

) + ∇·(ρ(e + ṽ2/2)ṽ
) = −∇·(pṽ) + ∇·(τ · ṽ) − ∇·jq + ρg · ṽ , (79)

where τ was previously introduced by Eq. 74 (with an error ql(V D/vη), as there discussed). The heat flux
vector of the total mixture is defined as

jq = φgjq,g + ρqgVD,ghg + ρqlVD,lhl = −λ∇T +
∑

d,v,l

ρqi hi VD,i (80)

where λ ≡ φgλg, the relative velocities are defined by Eqs. 56 and 57, and jq,g is given by Eq. 77 with
jv = ρv(vv − vg). Using Eq. 64 yields

jq = −λ∇T − ρqgκv∇(qv/qg)(hv − hd) + ρqlqgVD(hl − hg). (81)

This expression shows that the ratio between the transport of enthalpy by VD and that by mass diffusion
between vapor and dry air is proportional to (ql/qv)(V D/vη), as observed in Eq. 67 for the mass flux vector
jt . However, here we also have a contribution O(hl − hg)/O(hv − hd) proportional to the ratio between the
latent heat and the variation of the sensible enthalpy inside the system; in some cases, like in the cloud-top
mixing layer, this ratio is large, and it can control the evolution of the system.
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7.6 Thermal and caloric equations of state

These equations follow the standard approach in the literature [47], but are written here explicitly for complete-
ness. The pressure has to be related to the other quantities appearing in the previous conservation equations.
Consider first the vapor, which obeys the thermal equation of state of an ideal gas,

pv = ρv RvT = ρg(ρv/ρg)RvT = ρg(qv/qg)RvT = ρqv RvT/φg. (82)

A similar expression is derived for the partial pressure of dry air pd. Therefore, if the volume fraction of liquid
is neglected (relative error φl/φg ∼ O(10−6)), the thermal equation of state, using Dalton’s law, is

p � ρT (qv Rv+qd Rd) = ρT [(1− qt)Rd + qt Rv − ql Rv]. (83)

The energy of the mixture is written as e = ∑
qi ei (T ) (i = d, v, l, surface tension effects are not con-

sidered), the gases are taken as calorically perfect, i.e., ed(T ) = ed(T 0) + cv,d(T − T 0) = e0
d + cv,dT and

ev(T ) = ev(T 0) + cv,v(T − T 0) = e0
v + cv,vT , and for the liquid el(T ) = el(T 0) + cl(T − T 0) = el,0 + clT .

Then, the caloric equation of state reads

e = [(1− qt)cv,d + qtcv,v + ql(cl − cv,v)]T + (1− qt)e
0
d + qte

0
v − ql�e0

lv, (84)

where a heat capacity of the mixture cv can be defined and �e0
lv = e0

v − e0
l is approximately equal to the latent

heat linearly extrapolated to T = 0 K. A reference state e0
v = e0

d = 0 can be used.
The enthalpy of vapor and dry air, required in Eq. 81, is given by hd(T ) = ed(T ) + pd/ρd = cp,dT + e0

d
and hv(T ) = ev(T ) + pv/ρv = cp,vT + e0

v, with cp,d = cv,d + Rd and cp,v = cv,v + Rv. If the liquid is
necessary, hl(T ) = el(T ) + p/ρl = clT + p/ρl + e0

l . Note that the relations introduced in Sect. 7.1 imply
that the total enthalpy of the mixture, h = ∑

qi hi , can be written as

h =
∑

qi ei + pd
qd

ρd
+ pv

qv

ρv
+ p

ql

ρl
= e + p/ρ, (85)

as expected, and if Eq. 83 is substituted, then

h � [(1− qt)cp,d + qtcp,v + ql(cl − cp,v)]T + (1− qt)e
0
d + qte

0
v − ql�e0

lv, (86)

where a heat capacity of the mixture cp can be defined.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are
credited.
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