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1 Introduction

Works on AdS/CFT has shown that D3 (M2)-branes probing toric Calabi-Yau threefold

(fourfold) give rise to N = 1 (N = 2) toric quiver gauge theories on the worldvolume of

the branes. A toric quiver gauge theory has a superpotential (W ) in which all the matter

fields appear exactly twice, once with positive and once with a negative term respectively.

We will restrict to only those toric quivers in which the gauge group associated to each

node is same (see footnote 5 of ref. [1]). There exists an algorithm for finding the toric

data of Calabi-Yau threefold from the N = 1 quiver gauge theory, which is known in

the literature as forward algorithm [2]. This algorithm can be extended in the context

of M2-branes to obtain the Calabi-Yau fourfold toric data from the (2 + 1) dimensional

quiver supersymmetric Chern-Simons theories with Chern-Simons levels [3–7]. Conversely,

we could obtain the matter content and superpotential of the quiver theories from the toric

data using inverse algorithm [2]. From inverse algorithm, we can find more than one quiver

gauge theory sharing the same toric data. These quiver theories are called toric duals or

phases. Several examples of toric phases both in (3+1) and (2+1) dimensions are available

in the literature [8–11]. All these quiver theories which were studied, admit the dimer tiling

description [12–17]. From the inverse algorithm approach, we obtained toric phases [18]

which do not admit tiling.

One of the main puzzle is to check whether the toric dual quiver theories in (3+1)-d or

(2+1)-d are actually Seiberg duals [19, 20]. TheN = 1 (3+1)-d quiver gauge theories which

are toric duals always have same number of nodes in their quiver diagrams. If we apply
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Figure 1. Seiberg duality transformation on node-A of the quiver diagram. Note that the incoming

and outgoing arrows at node-A are reversed in the dual quiver. There are some mesonic fields M , al-

though some of the fields can be massive due to the superpotential and has to be integrated out [21].

the Seiberg duality transformation on a (3+1)-d quiver gauge theory, we can in principle,

get a Seiberg dual theory as shown in figure 1 and the new superpotential can be obtained

following ref. [21]. Applying the Seiberg duality on node-A, the corresponding gauge group

of node-A will change from SU(N) to SU(nN−N), where n is the number of incoming and

outgoing arrows. For the toric quivers which we consider, the rank of node-A will remain N

if and only if n = 2. So, we apply the Seiberg duality transformation on only those nodes

in the quiver which have exactly two incoming and two outgoing arrows. In the earlier

works of [21], it was found that upon applying the Seiberg duality rules, the (3+1)-d toric

phases transform into one another. Based on such results, it was conjectured [21, 22] that

N = 1 toric dual theories are also Seiberg duals.

For (2+1) dimensional N = 2 quiver Chern-Simons theories, the situation is different.

More details about the Seiberg-like duality in (2+1)-d can be found in [23–29]. The main

theme of this paper is to check whether the (2+1)-d toric phases, with equal number of

nodes in their quiver diagram, are always Seiberg-like duals (see flowchart in figure 2). Each

node in a quiver Chern-Simons theory has an additional assignment of Chern-Simons level.

The Seiberg-like duality transformation will still have same effect on the quiver diagram

as shown in figure 1 with the matter content and the superpotential transforming as in

(3+1)-d case, but the ranks and the Chern-Simons levels for nodes I, O and A will change

as given below [29]:

U(N)kI −→ U(N)kI+kA ,

U(N)kA −→ U(nN −N + |kA|)−kA ,
U(N)kO −→ U(N)kO+kA . (1.1)

So, we must apply the Seiberg-like duality on only those nodes for which n = 2 and k = 0

to study toric duals. For (2+1)-d quiver theories which have (3+1)-d parents [5], the

Seiberg-like dual quiver diagram will be same as in (3+1)-d. Chern-Simons levels can be

then appropriately assigned to each node consistent with the rules (1.1) so that the two

Seiberg-like dual theories also share the same toric data [29].

– 2 –
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(2+1)-d

Toric phases

(having quivers with

equal number of nodes)

Seiberg-like duals?

(3+1)-d

Seiberg duals

(Conjecture) [21, 22]

restricting

to

Figure 2. In (3+1)-d, the toric duality implies Seiberg duality and does it hold in (2+1)-d?

Note that for non-chiral or vector-like theories in which number of incoming and num-

ber of outgoing arrows between any two pair of nodes is same, Seiberg-like duality can be

seen from the brane picture [29]. For chiral theories, which have at least one pair of nodes

(say nodes i and j) such that number of arrows from i → j is different from number of

arrows from j → i, rules (1.1) can not be deduced from brane setup. However we can still

apply (1.1) for Seiberg-like duality if we dualize only those nodes which have Chern-Simons

level k = 0, as mentioned in [29].

For (2+1)-d chiral quivers which do not have (3+1)-d parent [5], the situation is more

subtle. For example, let us consider the phases of Q1,1,1 theory [5] as shown in figure 3.

The quivers 1, 2 and 3 shown in figure 3 are all toric duals or phases of Q1,1,1 theory.

If we apply the Seiberg-like duality transformation (figure 1 + rules (1.1)), quiver-1 will

transform to quiver-2 [29], but quiver-1 can never transform to quiver-3. In ref. [30], it was

shown that the quiver-1 and quiver-3 are toric duals having same superconformal index

indicating that they could be Seiberg-like duals.

One of the tools for checking the Seiberg duality between two superconformal theories

is to compute the Witten type index, which is also known as the superconformal index.

The index for (3+1)-d superconformal field theories was given in [31, 32], which can be

used to check the AdS/CFT [33] conjecture. In [34, 35], the indices were evaluated for the

ABJM theory [36] on the gauge theory side and for AdS4 × S7

Zk
on the gravity side. The

two computations of the superconformal index agreed perfectly and it was considered as a

test of the ABJM proposal. For N = 2, the details about index and a workable formula are

given in [30, 37–40]. One of the feature of the superconformal index which is of relevance to

this paper is that the index matches for any two Seiberg dual theories. It can be therefore

used as a method to check whether two toric dual theories are Seiberg duals. We have

seen in figure 3 that the toric phases may not transform into each other under Seiberg-like

transformation in (2+1)-d. So the only way out to test the Seiberg-like duality between

two toric phases is to compute the superconformal index for the two theories. If the indices

do not match, the theories can not be Seiberg-like duals.
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Figure 3. Quivers 1, 2 and 3 share the same toric data of Q1,1,1. Applying the Seiberg-like

transformation on node-A of quiver-1, we will get quiver-2 [29]. However quiver-1 can not be

transformed to quiver-3. But these quiver theories 1 and 3 have same superconformal indices [30] .

In this work, we will compute the superconformal indices and check for the Seiberg-

like duality between the N = 2 toric dual quiver Chern-Simons theories corresponding to

complex cones over toric Fano threefolds. There are 18 toric Fano threefolds, the toric

data for which are listed in [41]. Using the dimer tiling approach, the quiver Chern-Simons

theories corresponding to 14 Fanos were obtained in [41]. In [18], the quiver theories for the

remaining four Fanos (P3, B1, B2, B3) were obtained using the inverse algorithm approach

and they do not admit a brane tiling description. Out of these 18 toric Fanos, only three

Fano theories, namely, Fanos C3, C5 and B2 have phases. Complex cone over Fano C3 is

also known as Q1,1,1/Z2 (sometimes denoted as Q2,2,2) in the literature and it admits two

phases [41] as shown in figure 4. Superconformal indices for phases of Fano C3 have been

evaluated in [30] and they match. The phases of C5 have the same quiver diagram and

superpotential as that of Fano C3 but with different Chern-Simons levels [41]. Besides these

two Fanos, we also have Fano B2 whose phases [18] are shown in figure 5. In this paper,

we will evaluate the indices for the phases of Fanos C5 and B2 to check for the Seiberg-like

duality. We find that the indices for the two phases of Fano B2 (figure 5(a) and figure 5(b))

do not match, which suggests that these two phases are not Seiberg-like dual theories.

We further study whether we could obtain toric phases by applying Seiberg-like duality

transformation. In particular, we take two examples: quiver theories corresponding to

phase-I of Fano C5 and Fano B3. We find that we can not get a new toric phase for Fano

B3 using Seiberg-like duality transformation rules.
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The plan of the paper is as follows. In section 2, we briefly review the superconformal

index for the N = 2 quiver Chern-Simons theory, giving a workable formula to compute the

index, following the notations and symbols used in [30]. In section 3, we explain the steps

on how to obtain the index by taking the example of Fano C3 and reproducing the results

of [30]. We will then proceed to do the new calculations by computing the indices for phases

of Fano C5 and Fano B2 and quote the results in section 4 and section 5 respectively. In

section 6, we discuss the Seiberg-like duality transformation on the quivers corresponding

to phase-I of Fano C5 and Fano B3 respectively, to check whether we can obtain toric phases

by this approach. We will summarize and discuss in the concluding section 7.

2 Large N index for N = 2 Chern-Simons

The N = 2 superconformal index is given by [30],

I(x, zi) = Tr
[
(−1)Fx∆+j3zi

Fi
]
, (2.1)

where the trace is taken over local gauge invariant operators. Here, F , ∆, j3 and Fi’s are

the fermion number, energy (or conformal dimension), projection of spin and the charge

of a flavor symmetry with fugacity zi’s respectively.

A workable formula for the index can be derived from the path integral approach on

S2 × S1 using the localization methods [35, 37]. The complete index for a N = 2 super-

conformal toric quiver Chern-Simons theory, with nG nodes and group G =
∏nG
A=1 U(N)A,

is given by [30],

I(x, zi) =
∑
m

∫
[da] e−SCSeib0(a)xε0zi

q0i exp

[ ∞∑
n=1

1

n
f
(
eina, xn, zni

)]
, (2.2)

where ‘m’ represents nGN magnetic monopole charges denoted by the set {mA,i} and ‘a’

represents holonomy (Wilson line around S1). The N magnetic charges for each node can

be arranged in a descending order (to incorporate Weyl equivalence) and the corresponding

integral over a can be rewritten as:

∫
da→ (const)

 nG∏
A=1

∏
ρ∈NA

∫
dρ(a)

 = (const)

(
nG∏
A=1

N∏
i=1

∫
daA,i

)
, (2.3)

where we pick a component of ‘a’ belonging to a U(1) subgroup of U(N)A by applying a

weight ρ ∈ NA. Here NA represents fundamental representation of U(N)A corresponding

to node-A. The ‘f ’ in the argument of the exponential in eq. (2.2) is conventionally called

as letter index and it gets contributions from chiral multiplet (fchiral) and vector multiplet

(fvector).

– 5 –
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For the toric quivers with bifundamental chiral multiplets directed from node-A to

node-B (ΦAB), the explicit expressions for fchiral and fvector are as follows [30]:

fchiral

(
eia, x, zi

)
=
∑
ΦAB

∑
ρ∈NA

∑
ρ′∈NB

x

∣∣∣ρ(m)−ρ′ (m)
∣∣∣

1− x2

×
(
e
i
[
ρ(a)−ρ′ (a)

]
zi
Fi(Φ)x∆(Φ) − ei

[
ρ
′
(a)−ρ(a)

]
zi
−Fi(Φ)x2−∆(Φ)

)
,

fvector

(
eia, x

)
=

nG∑
A=1

∑
ρ∈NA

∑
ρ′∈NA

(
1− δρ,ρ′

)(
−ei

[
ρ(a)−ρ′ (a)

]
x

∣∣∣ρ(m)−ρ′ (m)
∣∣∣)
. (2.4)

The term SCS is the classical contribution from Chern-Simons term, which is given by [30],

SCS = i

nG∑
A=1

∑
ρ∈NA

kA ρ(a) ρ(m) , (2.5)

where kA denotes the Chern-Simons level for the node-A.

All those terms in eq. (2.2) which have subscript ‘0’ are called zero-point contributions,

where xε0 , zi
q0i and eib0(a) correspond to the zero-point energy, zero-point flavor charges

and zero-point gauge charges, respectively. Their contribution is given by [30]:

ε0 =
1

2

∑
ΦAB

∑
ρ∈NA

∑
ρ′∈NB

∣∣∣ρ(m)− ρ′(m)
∣∣∣ (1−∆(Φ))− 1

2

nG∑
A=1

∑
ρ∈NA

∑
ρ′∈NA

∣∣∣ρ(m)− ρ′(m)
∣∣∣ ,

q0i = −1

2

∑
ΦAB

∑
ρ∈NA

∑
ρ′∈NB

∣∣∣ρ(m)− ρ′(m)
∣∣∣Fi(Φ) ,

b0(a) = −1

2

∑
ΦAB

∑
ρ∈NA

∑
ρ′∈NB

∣∣∣ρ(m)− ρ′(m)
∣∣∣ (ρ(a)− ρ′(a)

)
. (2.6)

The N magnetic charges mA,i associated with every gauge group U(N)A can be

grouped into three sets:
{
m

(+)
A

}
which are positive integers,

{
m

(−)
A

}
which are nega-

tive integers and
{
m

(0)
A

}
= 0 and it has been shown that the index (2.2) in large N limit

can be factorized as [30]:

I = I(0)I(+)I(−) , (2.7)

where I(0) is independent of the magnetic charge m, I(±) depend only on the positive and

negative parts of magnetic charges (m(+) and m(−)) respectively and can be obtained by

summing up the contributions of all possible m(+) and m(−), i.e.,

I(±) =
∑
m(±)

I
(±)

m(±) . (2.8)

Clearly, I(+) and I(−) will have infinite terms to be summed. The index I(x, zi) will be

a power series in x. Truncating the series to a finite order in x results in computing only

finite number of I
(+)

m(+) and I
(−)

m(−) in the above summation.

– 6 –
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For convenience, we could represent the set of positive and negative charges
{
m

(±)
A

}
corresponding to node-A by Young diagrams ±{YA}:{

m
(±)
A

}
= ±

{
•, , , , , , , . . .

}
. (2.9)

Note that on the right hand side, we have ± just to differentiate between m
(+)
A and m

(−)
A .

The descending order of the positive magnetic charges m
(+)
A,i will be the number of boxes

in each row of the Young diagram. For example, the positive magnetic charges of node-A

compactly shown by the Young diagram YA = is m
(+)
A,1 = 4,m

(+)
A,2 = 2,m

(+)
A,3 = 1.

Corresponding to this diagram for the magnetic charge, we will have integration over

three holonomy variables a
(+)
A,1, a

(+)
A,2, a

(+)
A,3. Though the Young diagrams for every node in

the quiver can be independently taken, we restrict to a class, called diagonal monopole

operators [30], where total number of boxes of Young diagram is same for all nodes, that

is, (|YA| = |YB| = . . .). The reason is that the examples which we have considered in this

paper have non-vanishing two-cycles. The non-diagonal monopole operators correspond

to the M2-branes wrapped on these two-cycles on the dual gravity side. These are non-

BPS states and do not contribute to the index [30]. So we keep only diagonal monopole

operators in the index computation [30].

Suppose we take a two node quiver with positive magnetic charge as m(+) = (YA, YB) =(
,

)
. We see that total number of boxes is 3 for both YA and YB. Notice that there

will be only one holonomy variable for node-A and two holonomy variables for node-B. We

will elaborate this approach for a four node quiver corresponding to Fano C3 in the next

section. For completeness, we put forth the explicit expressions for I(0), I
(+)

m(+) and I
(−)

m(−) :

I(0) =

∫
[dρ(a)]e−S

(0)
CS eib

(0)
0 xε

(0)
0 zi

q
(0)
0i exp

[ ∞∑
n=1

1

n
f (0)

(
eina, xn, zni

)]
,

I
(+)

m(+) =

∫
[dρ(a)]e−S

(+)
CS eib

(+)
0 xε

(+)
0 zi

q
(+)
0i exp

[ ∞∑
n=1

1

n
f (+)

(
eina, xn, zni

)]
,

I
(−)

m(−) =

∫
[dρ(a)]e−S

(−)
CS eib

(−)
0 xε

(−)
0 zi

q
(−)
0i exp

[ ∞∑
n=1

1

n
f (−)

(
eina, xn, zni

)]
. (2.10)

For the neutral part (I(0)), the Chern-Simons action and zero-point contributions vanish,

i.e., S
(0)
CS = b

(0)
0 = ε

(0)
0 = q

(0)
0i = 0 and the vector and chiral contributions to letter index

f (0) are given below [30]:

f
(0)
vector

(
eia, x

)
= −

nG∑
A=1

∑
ρ∈NA

∑
ρ′∈NA

(
x
|ρ(m)|+

∣∣∣ρ′ (m)
∣∣∣)
e
i
[
ρ(a)−ρ′ (a)

]
,

f
(0)
chiral

(
eia, x, zi

)
=
∑
ΦAB

(0)∑
ρ∈NA

(0)∑
ρ
′∈NB

x

(
|ρ(m)|+

∣∣∣ρ′ (m)
∣∣∣)

1− x2

×
(
e
i
[
ρ(a)−ρ′ (a)

]
zi
Fi(Φ)x∆(Φ) − ei

[
ρ
′
(a)−ρ(a)

]
zi
−Fi(Φ)x2−∆(Φ)

)
. (2.11)
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Similarly for the positive and negative magnetic charges, Chern-Simons action and zero-

point contributions to I
(+)

m(+) and I
(−)

m(−) are [30]:

S
(±)
CS = i

nG∑
A=1

(±)∑
ρ∈NA

kA ρ(a) ρ(m) ,

b
(±)
0 (a) = −1

2

∑
ΦAB

(±)∑
ρ∈NA

(±)∑
ρ′∈NB

(∣∣∣ρ(m)− ρ′(m)
∣∣∣− |ρ(m)| −

∣∣∣ρ′(m)
∣∣∣) (ρ(a)− ρ′(a)

)
,

ε
(±)
0 =

1

2

∑
ΦAB

(±)∑
ρ∈NA

(±)∑
ρ′∈NB

(∣∣∣ρ(m)− ρ′(m)
∣∣∣− |ρ(m)| −

∣∣∣ρ′(m)
∣∣∣) (1−∆(Φ))

− 1

2

nG∑
A=1

(±)∑
ρ∈NA

(±)∑
ρ′∈NA

(∣∣∣ρ(m)− ρ′(m)
∣∣∣− |ρ(m)| −

∣∣∣ρ′(m)
∣∣∣) ,

q
(±)
0i = −1

2

∑
ΦAB

(±)∑
ρ∈NA

(±)∑
ρ′∈NB

(∣∣∣ρ(m)− ρ′(m)
∣∣∣− |ρ(m)| −

∣∣∣ρ′(m)
∣∣∣)Fi(Φ) . (2.12)

Further the vector and chiral field contributions to letter index f (±) will be:

f
(±)
vector

(
eia, x

)
=

nG∑
A=1

(±)∑
ρ∈NA

(±)∑
ρ′∈NA

[
−
(

1− δρ,ρ′
)
x

∣∣∣ρ(m)−ρ′ (m)
∣∣∣
+x
|ρ(m)|+

∣∣∣ρ′ (m)
∣∣∣]
e
i
[
ρ(a)−ρ′ (a)

]
,

f
(±)
chiral

(
eia, x, zi

)
=
∑
ΦAB

(±)∑
ρ∈NA

(±)∑
ρ′∈NB

(
x

∣∣∣ρ(m)−ρ′ (m)
∣∣∣ − x

(
|ρ(m)|+

∣∣∣ρ′ (m)
∣∣∣))

1− x2

×
(
e
i
[
ρ(a)−ρ′ (a)

]
zi
Fi(Φ)x∆(Φ) − ei

[
ρ
′
(a)−ρ(a)

]
zi
−Fi(Φ)x2−∆(Φ)

)
. (2.13)

In the case of I(0) (2.10), the integral over ρ(a) after substituting (2.11) can be written as

a Gaussian integral [30]. Hence the expression for I(0) involves the determinant of nG×nG
matrix M as follows:

I(0) =
1

∞∏
n=1

Det [M (xn, zin)]

, (2.14)

where the off-diagonal and diagonal elements of M are given by [30],

MAB (off-diagonal) =
1

1− x2

∑
ΦAB

(
zi
Fi(ΦAB)x∆(ΦAB)

)
−
∑
ΦBA

(
zi
−Fi(ΦBA)x2−∆(ΦBA)

) ,

MAA (diagonal) =

−1 +
1

1− x2

∑
ΦAA

(
zi
Fi x∆ − zi−Fi x2−∆

) . (2.15)

Here ΦAA represents an adjoint field which transforms in the adjoint representation under

the gauge group U(N)A.

– 8 –
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Figure 4. Quiver diagrams and superpotentials (W1, W2) for phase-I and phase-II of Fano C3.

In the following sections, we will use the formula and notations given here, to obtain

the indices for phases of Fanos C3, C5 and B2. Particularly, we will evaluate in detail, the

index of phase-I of Fano C3 in the next section.

3 Fano C3 theory

We will compute the superconformal index, using the formula presented in the previous

section, for the two toric phases of quiver Chern-Simons theory corresponding to Fano C3.

The results match with the index presented in [30].

3.1 Index for Phase-I of Fano C3

The quiver diagram and superpotential (W1) for phase-I of Fano C3 is given in figure 4(a).

The Chern-Simons level assigned to the four nodes is ~k1 = (1,−1,−1, 1). The ∆ charge

of the fields can be taken to be same as their R-charges. For an interaction term in

the superpotential, the R-charge is always two. For every term in W1, we see that

∆(Ai) + ∆(Bi) + ∆(Ci) + ∆(Di) = 2. We choose ∆ = 1/2 for all the fields to simplify the

computation.

We will compute the index as a series in only one parameter x by setting the other

fugacities zi’s as 1 and putting all flavor charges to zero (Fi(Φ) = 0). These indices can

be called unrefined indices. It may happen that we find the unrefined index equal for

two different toric quivers which are not toric phases. In such a case, we have to turn on

the fugacities and work out ‘refined index’ [30] and most likely the refined indices will be

different. We will encounter such a situation, when we compute the unrefined index for

Fano C5.

We change the integration variable (ρ(a)→ eiρ(a)) in eq. (2.10) which will convert the

integration into a contour integration:∫
[dρ(a)] Integrand

(
eiρ(a)

)
−→

∮ [
d
(
eiρ(a)

)]
2πi

[
eiρ(a)

] Integrand
(
eiρ(a)

)
.

As a warmup exercise, we evaluate the I
(+)

m(+) for phase-I of Fano C3. The theory has

four gauge group factors U(N)1×U(N)2×U(N)3×U(N)4 and corresponding Chern-Simons
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levels are (k1, k2, k3, k4) = (1,−1,−1, 1). Corresponding to these gauge group factors, we

will have Young diagrams Y1, Y2, Y3 and Y4 respectively. Recall that the total number

of boxes in Yi’s associated to the four gauge groups is same as we are also interested in

diagonal monopole operators [30]. As explained with a two node example in section 2, the

number of rows in each of them can be different. Let us assume that the number of rows

in Y1 is P . So each row of Y1 is specified by ρ(m) and eiρ(a), where, ρ(m) will indicate

the number of boxes in any row and eiρ(a) will be the corresponding integration variable.

Thus, ρ(m) will take values, say, l1, l2, . . . , lP , where li denotes the number of boxes in

i-th row of Y1. Correspondingly, we take eiρ(a) variables as u1, u2, . . . , uP , where ui is the

integration variable corresponding to li. Same will be true for Y2, Y3 and Y4. Thus, for

each gauge group factor, we will assign three labels: (Young diagram, ρ(m), eiρ(a)). For

the Phase I of Fano C3, with four nodes, we will use the following notations for these labels:

U(N)1 : (Y1, lp, up) , p runs from 1 to P , where P is total number of rows in Y1 .

U(N)2 : (Y2,mq, vq) , q runs from 1 to Q, where Q is total number of rows in Y2 .

U(N)3 : (Y3, nr, wr) , r runs from 1 to R, where R is total number of rows in Y3 .

U(N)4 : (Y4, os, ts) , s runs from 1 to S, where S is total number of rows in Y4 .

The I(+)(x) will be sum of the indices for all valid Young diagrams (i.e., the total number

of boxes in Y1, Y2, Y3, Y4 is equal):

I(+)(x) =
∑

Y1,Y2,Y3,Y4

I
(+)
(Y1,Y2,Y3,Y4)(x) . (3.1)

The contribution of Chern-Simons action S
(+)
CS (2.12) in I

(+)
(Y1,Y2,Y3,Y4) will be:

e−S
(+)
CS = exp

−i nG∑
A=1

+∑
ρ∈NA

kAρ(a)ρ(m)


= exp

−
i +∑

ρ∈Y1

ρ(a)ρ(m)

+

i +∑
ρ∈Y2

ρ(a)ρ(m)


+

i +∑
ρ∈Y3

ρ(a)ρ(m)

−
i +∑

ρ∈Y4

ρ(a)ρ(m)


= exp

−
i P∑

p=1

ρ(a)lp

+

i Q∑
q=1

ρ(a)mq

+

(
i
R∑
r=1

ρ(a)nr

)
−

(
i
S∑
s=1

ρ(a)os

)
=

 P∏
p=1

u
−lp
p

 Q∏
q=1

v
mq
q

( R∏
r=1

wnr
r

)(
S∏
s=1

t−oss

)
, (3.2)

where
∑+

ρ∈NA
denotes summing over ρ for the positive magnetic charges.
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The contribution to b
(+)
0 (2.12) from the bifundamental field A1 (from node-1 to node-2

as shown in figure 4(a)) will be:

b
(+)
0 (A1) = −1

2

(+)∑
ρ∈Y1

(+)∑
ρ′∈Y2

(∣∣∣ρ(m)− ρ′(m)
∣∣∣− |ρ(m)| −

∣∣∣ρ′(m)
∣∣∣) (ρ(a)− ρ′(a)

)

= −1

2

P∑
p=1

Q∑
q=1

(|lp −mq| − |lp| − |mq|)
(
ρ(a)− ρ′(a)

)

=⇒ eib
(+)
0 (A1) =

P∏
p=1

Q∏
q=1

(
u−1
p vq

) 1
2

(|lp−mq |−|lp|−|mq |)
. (3.3)

Taking the contributions from all bifundamental fields, we obtain:

eib
(+)
0 =

 P∏
p=1

Q∏
q=1

(
u−1
p vq

)(|lp−mq |−|lp|−|mq |)

×
 Q∏
q=1

R∏
r=1

(
v−1
q wr

)(|mq−nr|−|mq |−|nr|)


×

(
R∏
r=1

S∏
s=1

(
w−1
r ts

)(|nr−os|−|nr|−|os|)
)
×

 S∏
s=1

P∏
p=1

(
t−1
s up

)(|os−lp|−|os|−|lp|) . (3.4)

Similarly, the expression for ε
(+)
0 (2.12) will be given as:

ε
(+)
0 =

1

2

 P∑
p=1

Q∑
q=1

(|lp −mq| − |lp| − |mq|)

+
1

2

 Q∑
q=1

R∑
r=1

(|mq − nr| − |mq| − |nr|)


+

1

2

(
R∑
r=1

S∑
s=1

(|nr − os| − |nr| − |os|)

)
+

1

2

 S∑
s=1

P∑
p=1

(|os − lp| − |os| − |lp|)


− 1

2

 P∑
i=1

P∑
j=1

(|li − lj | − |li| − |lj |)

− 1

2

 Q∑
i=1

Q∑
j=1

(|mi −mj | − |mi| − |mj |)


− 1

2

 R∑
i=1

R∑
j=1

(|ni − nj | − |ni|−|nj |)

− 1

2

 S∑
i=1

S∑
j=1

(|oi − oj | − |oi| − |oj |)

 . (3.5)

Substituting the vector (f
(+)
vector) and chiral (f

(+)
chiral) parts from eq. (2.13) in the expo-

nential part of I
(+)

m(+) given in eq. (2.10), we can write the complete integral for I
(+)

m(+) as:

I
(+)
(Y1,Y2,Y3,Y4) =

∮ P∏
p=1

(
dup

2πiup

) Q∏
q=1

(
dvq

2πivq

) R∏
r=1

(
dwr

2πiwr

) S∏
s=1

(
dts

2πits

)
×
(
e−S

(+)
CS eib

(+)
0 xε

(+)
0 F

(+)
vectorF

(+)
chiral

)
, (3.6)

– 11 –



J
H
E
P
0
7
(
2
0
1
4
)
0
8
4

where F
(+)
vector and F

(+)
chiral are the Plethystic exponential of f

(+)
vector and f

(+)
chiral which can be

written as:

F
(+)
vector =

 P∏
i=1

P∏
j=1

(
1− (1− δi,j)x|li−lj |uiuj−1

)(
1− x(|li|+|lj |)uiu

−1
j

)
 Q∏

i=1

Q∏
j=1

(
1− (1− δi,j)x|mi−mj |vivj

−1
)(

1− x(|mi|+|mj |)viv
−1
j

)


 R∏
i=1

R∏
j=1

(
1− (1− δi,j)x|ni−nj |wiwj

−1
)(

1− x(|ni|+|nj |)wiw
−1
j

)
 S∏

i=1

S∏
j=1

(
1− (1− δi,j)x|oi−oj |titj−1

)(
1− x(|oi|+|oj |)tit

−1
j

)
 ,

F
(+)
chiral =

 ∞∏
d=0

 P∏
p=1

Q∏
q=1

(
1− x(2d+|lp−mq |+ 3

2)u−1
p vq

)(
1− x(2d+|lp|+|mq |+ 1

2)upv
−1
q

)
(

1− x(2d+|lp−mq |+ 1
2)upv

−1
q

)(
1− x2d+|lp|+|mq |+ 3

2u−1
p vq

)
2


 ∞∏
d=0

 Q∏
q=1

R∏
r=1

(
1− x(2d+|mq−nr|+ 3

2)v−1
q wr

)(
1− x(2d+|mq |+|nr|+ 1

2)vqw
−1
r

)
(

1− x(2d+|mq−nr|+ 1
2)vqw

−1
r

)(
1− x2d+|mq |+|nr|+ 3

2 v−1
q wr

)
2


 ∞∏
d=0

 R∏
r=1

S∏
s=1

(
1− x(2d+|nr−os|+ 3

2)w−1
r ts

)(
1− x(2d+|nr|+|os|+ 1

2)wrt
−1
s

)
(

1− x(2d+|nr−os|+ 1
2)wrt

−1
s

)(
1− x2d+|nr|+|os|+ 3

2w−1
r ts

)
2


 ∞∏
d=0

 S∏
s=1

P∏
p=1

(
1− x(2d+|os−lp|+ 3

2)t−1
s up

)(
1− x(2d+|os|+|lp|+ 1

2)tsu
−1
p

)
(

1− x(2d+|os−lp|+ 1
2)tsu

−1
p

)(
1− x2d+|os|+|lp|+ 3

2 t−1
s up

)
2
 .

Though these expressions have infinite products, we will truncate to certain power of x,

say x5, which will result in computing finite number of terms in product.

Having obtained all the factors, we can perform the integration, for a particular choice

of Y1, Y2, Y3, Y4, by obtaining the residues at the origin for all the integration variables. We

can have the following cases.

Number of boxes in Y1, Y2, Y3, Y4 = 0. Here, P = Q = R = S = 0. So the only

possibility is Y1 = Y2 = Y3 = Y4 = • and we have I
(+)
(•,•,•,•) = 1.

Number of boxes in Y1, Y2, Y3, Y4 = 1. Since we have one box, only one row is

possible. Hence, P = Q = R = S = 1 and Y1 = Y2 = Y3 = Y4 = . Up to order x5, we

obtain,

I
(+)

( , , , )
= 8x2 . (3.7)

Number of boxes in Y1, Y2, Y3, Y4 = 2. As the total number of boxes are two, so

each of Y1, Y2, Y3, Y4 can have either one or two rows. So we can have total 24 possibil-

ities. However, I
(+)
(Y1,Y2,Y3,Y4) will be same up to permutations of Y1, Y2, Y3, Y4. Thus we

are only required to evaluate I
(+)

( , , , )
, I

(+)(
, , ,

), I
(+)(

, , ,

),

I
(+)(

, , ,

) and I
(+)(

, , ,

). The contributions of these up to order x5 are given
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below:

I
(+)

( , , , )
= 16x4 , (3.8)

I
(+)(

, , ,

) = I
(+)(

, , ,

) = I
(+)(

, , ,

) = I
(+)(

, , ,

) = 0 .

The Young tableau with higher number of rows and boxes will not contribute up to

order x5. If we set the flavor fugacities to 1, then I(−)(x) will be same as I(+)(x).

Let us now calculate I(0) (2.14). Using the simplifications given in this section, the

elements of matrix M (2.15), which is a 4× 4 matrix, are given by:

MAB =
1

1− x2

∑
ΦAB

x∆(ΦAB) −
∑
ΦBA

x2−∆(ΦBA)

 =
1

1− x2

∑
ΦAB

x1/2 −
∑
ΦBA

x3/2

 ,

MAA =

−1 +
1

1− x2

∑
ΦAA

(
x∆ − x2−∆

) = −1 . (3.9)

Hence the matrix M will be given by,

M(x) =


−1 2x1/2

1−x2 0 −2x3/2

1−x2

−2x3/2

1−x2 −1 2x1/2

1−x2 0

0 −2x3/2

1−x2 −1 2x1/2

1−x2
2x1/2

1−x2 0 −2x3/2

1−x2 −1

 . (3.10)

The determinant of this matrix |M (xn)| = 1. Thus, from (2.14), we get I(0)(x) = 1.

The main purpose of the detailed steps is to provide a clear understanding of the index

computation. This will help the readers to work out index for other quivers. In the following

subsection, we will present the unrefined index up to order x5 for another toric phase of

Fano C3.

3.2 Index for Phase-II of Fano C3

The quiver and superpotential (W2) for phase-II of Fano C3 is given in figure 4(b). The

Chern-Simons levels are ~k2 = (−1,−1, 1, 1). The ∆ charge of the fields can be taken as

∆ = 2/3. Using the systematic approach given for the phase-I, one can evaluate the indices

for phase-II of Fano C3. The non-zero contributions up to order x5 are given below:

I
(+)

( , , , )
= 8x2, I

(+)

( , , , )
= 16x4, I(0) = 1 , (3.11)

which is same as corresponding indices for phase-I of Fano C3. It is appropriate to mention

that the refined indices, with the flavor fugacities (zi) turned on, for the two phases also

agree [30].
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Figure 5. The two phases of Fano B2 theory. Both the phases have same Chern-Simons level and

superpotential with different quiver diagrams.

4 Indices for the two phases of Fano C5

The quiver diagram and the superpotential for phase-I and phase-II of Fano C5 is exactly

the same as that of Fano C3 as shown in figure 4(a) and figure 4(b). However the Chern-

Simons levels are different [41] which are ~k1 = (1,−2, 1, 0) and ~k2 = (0, 0, 1,−1) for phase-I

and phase-II of Fano C5 respectively. The non-zero contributions to the unrefined index up

to order x5 are:

For phase-I : I
(+)

( , , , )
= 8x2, I

(+)

( , , , )
= 16x4, I(0) = 1 . (4.1)

For phase-II : I
(+)

( , , , )
= 8x2, I

(+)

( , , , )
= 16x4, I(0) = 1 . (4.2)

Thus, the unrefined index for the two phases agree. Further they seem to accidentally match

with the corresponding indices for phases of Fano C3. But we have checked by turning on

fugacities, that the refined indices for Fano C5 is not the same as that of Fano C3.

5 Indices for the two phases of Fano B2

This theory was obtained in [18] and it does not admit a dimer tiling description. The

theory has 2 toric phases whose quivers are shown in figure 5(a) and figure 5(b) respectively.

Both the phases have Chern-Simons level ~k = (2,−2, 0) and superpotential,

W =X1X4X8X12−X1X4X9X11−X2X5X7X12+X2X5X9X10+X3X6X7X11−X3X6X8X10 .

The explicit evaluation for I
(+)
(Y1,Y2,Y3) and I(0) for some of the (Y1, Y2, Y3), keeping terms up

to x2 have been performed for the two phases and results are given below.
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Index for Phase-I of Fano B2.

I
(+)

, ,
= 138 +

36

x
+

81√
x

+ 399
√
x+ 369x+ 363x3/2 + 891x2 ,

I
(+)

, ,
= 825 +

225

x2
+

375

x3/2
+

558

x
+

1413√
x

+ 1365
√
x+ 3030x+ 2094x3/2 + 3375x2 ,

I(0) = 1 + 3
√
x+ 12x+ 63x3/2 + 246x2 . (5.1)

Index for Phase-II of Fano B2.

I
(+)

, ,
= −2 +

1

x2
+

3

x
− x+ 4x2 ,

I
(+)

, ,
= 3 +

1

x4
+

3

x3
− 4

x2
− 2

x
− 24x+ 28x2 ,

I(0) = 1 + 18x+ 306x2 . (5.2)

Comparing the results of eqs. (5.1) and (5.2), we see that the indices for the two phases do

not match. So we can conclude that phase-I and phase-II of Fano B2 are not Seiberg-like

dual theories.

6 Seiberg-like duality transformation and toric phases

In this section, we will study the Seiberg-like duality transformation (1.1) on the quiver

Chern-Simons theories corresponding to Phase-I of Fano C5 and Fano B3 and check if we

can find the toric phases for these quivers. The Seiberg-like duals of phase-I of Fano C5 has

already been discussed in [29]. In the following subsection, we will briefly review it.

6.1 Seiberg-like dual theory of phase-I of Fano C5

The quiver diagram for phase-I of Fano C5 is shown in figure 6(a). The Chern-Simons level

is ~k1 = (1,−2, 1, 0) and superpotential is,

W1 = εijεkl (AiBkCjDl) . (6.1)

This phase has a (3+1)-d parent [21]. The Seiberg duality on this phase was done in [21]

to get the toric phase which is the (3+1)-d parent of quiver diagram shown in figure 6(b).

In [29], the Chern-Simons levels were assigned appropriately on these two Seibeg-like dual

theories in accordance with rules (1.1) so that they become toric duals. Applying Seiberg-

like duality on node-4 of phase-I of Fano C5, we get a theory as shown in figure 6(b) which

has Chern-Simons level ~k2 = (1,−2, 1, 0) and superpotential,

W2 = εijεkl (QiMjlPk − SiRkMjl) . (6.2)

This theory is a toric quiver Chern-Simons theory. Moreover, for this choice of Chern-

Simons level, the toric data obtained turns out to be related by a GL(4,Z) transformation,

with the toric data of phase-I of Fano C5 [29]. So, these two theories are also toric duals.

This approach has led to obtaining a toric phase [29] of Fano C5 which is different from

phase-I and phase-II, which we call as phase-III of Fano C5 as shown in figure 6. This

phase-III is a member of the more general family discussed in [29].
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Figure 6. Seiberg-like duality on node-4 of phase-I of Fano C5. The dual theory obtained is toric

dual to phase-I, which we call as phase-III of Fano C5.

6.2 Seiberg-like dual theory of Fano B3

The quiver diagram for Fano B3 theory is given in figure 7(a). This theory has Chern-

Simons level ~k1 = (6,−6, 0) and the superpotential as,

W1 = X1X4X5X8 −X1X4X6X7 −X2X3X5X8 +X2X3X6X7 . (6.3)

In the quiver diagram of Fano B3, we see that node-3 has level 0 and also has two incoming

and two outgoing arrows as shown in figure 7(a). So, we perform the Seiberg-like duality

on node-3. Using the steps illustrated in figure 1 and rules given in eq. (1.1), we obtain the

Seiberg-like dual of Fano B3, the quiver diagram of which is shown in figure 7(b). This dual

theory has same Chern-Simons level ~k2 = (6,−6, 0) and we obtain the new superpotential

(W2) following ref. [21] to be,

W2 = Y1Y4Y11 − Y1Y4Y10 − Y2Y3Y11 + Y2Y3Y10

− Y9Y7Y5 + Y10Y7Y6 + Y11Y8Y5 − Y12Y8Y6 , (6.4)

where, Y1, Y2 are the adjoints on node-1 and remaining fields Yi(3 ≤ i ≤ 12) are the bifun-

damental fields as shown in the figure 7(b). From eq. (6.4), we see that fields Y9, Y10, Y11, Y12

do not appear exactly twice in W2. Hence the superpotential W2 is not toric and hence,

the Seiberg-like dual theory of Fano B3 is not a toric quiver Chern-Simons theory.

From the examples of Fano B3 and phase-I of Fano C5 worked out in this section, we

cannot expect Seiberg-like duals in (2+1)-d to be toric duals, in general.

7 Conclusion

In this work, we have reviewed some of the issues relating toric duality and Seiberg-like

duality in (2+1)-dimensions for the N = 2 quiver Chern-Simons theories corresponding to

complex cones over Fano threefolds. In particular, we have focused on Fanos C3, C5 and

B2, which are the only Fanos in the literature, known to admit phases [18, 41]. We try to

find out whether these phases are also Seiberg-like duals. The usual Seiberg-like duality
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Figure 7. Seiberg-like duality on node-3 of Fano B3 theory. We obtain the Seiberg-like dual theory

whose superpotential (W2) is not toric.

transformation in (2+1)-d can not be trusted for chiral quivers. For example, the phases

shown by quiver-1 and quiver-3 in figure 3 do not transform into each other by rules (1.1).

However, the superconformal indices at large N for these theories, up to second order in

x [30], seem to match.

We work out the indices for phases of Fanos C3, C5, B2 to see if they agree. Our

computation of large N indices for phases of Fano C3 is consistent with the calculations

done in [30]. In section 4 and section 5, we have done new calculations by evaluating the

superconformal indices for the phases of Fano C5 and Fano B2 respectively. We find that

the indices for phases of Fano B2 do not match, which suggests that these two toric dual

theories are not Seiberg-like duals.

We have also performed the Seiberg-like transformation on the quivers corresponding

to phase-I of Fano C5 and Fano B3 as shown in figure 6 and figure 7 respectively, to check

if this method can give toric phases. In case of Fano B3, the new Seiberg-like dual theory

obtained has a superpotential given in eq. (6.4), which does not satisfy the toric condition.

It means that the dual theory obtained is not a toric quiver gauge theory. This suggests

that Seiberg-like duality may or may not be toric duality. It would be an interesting

exercise to check if the Seiberg-like duality can give new phases for other Fano threefold

theories, which were studied in [41].

In this paper, we have worked out unrefined large N superconformal indices for toric

phases. Except for phase-II of Fano B2, all the quivers we considered are chiral quivers.

We hope to pursue AdS4/CFT3 checks for the chiral quivers in future.

It is pertinent to mention some of the issues about chiral quivers. The free energy

for chiral quivers scale as N2 instead of the N3/2 [28, 42–44] which is required to cor-

rectly reproduce the volume of the dual 7-dimensional Sasaki-Einstein manifold (SE7) .

However in [45], a symmetrization technique was proposed to address this free energy scal-

ing problem. This technique was used for phase-I of Fano C3 with Chern-Simons level

– 17 –
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(k,−k, k,−k) and also for Fano B4 with Chern-Simons level (k,−2k, k) and the correct

volumes of Q2,2,2/Zk and M1,1,1/Zk were reproduced [28, 43]. Further for chiral theories,

there is a discrepancy between the gauge theory superconformal index and the index on

the corresponding gravity side at higher orders [46, 47]. We hope to figure out whether

there is procedure analogous to symmetrization procedure which will help in resolving this

discrepancy. For Fano C3 and C5, our index computation upto order x2 matched with the

gravity index [48, 49]. We are presently working on refined index beyond order x2 for chiral

quivers and comparing with the corresponding gravity index.
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