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Abstract We study amarket situationwhere two firmsmaximizemarket capture by deciding
on the location in the plane and investing in a competing quality against investment cost.
Clients choose one of the suppliers; i.e. deterministic supplier choice. To study this situation,
a game theoretic model is formulated. We show that for the modelled situation no Nash
equilibrium exists. However, a so-called Stackelberg equilibrium, where one of the firms
(the leader) is aware of what the other (follower) is going to do, exists. The questions under
study is whether co-location is a natural phenomenon in this case and in which situation one
of the firms is not entering the market. The study requires a multi-level thinking where the
decisions on location follow from the known quality investment behavior and the actions of
the leader take the decisions of the follower into account.

Keywords Game theory · Competitive location · Bi-level · Stackelberg

1 Introduction

In facility location competition, the main instrument is the choice of location. Since the first
model ofHotelling (1929),many extensions have been studied in competitive location science
where firms basically decide on locating one ormore facilities at location(s) x trying to attract
market share.We focus on the situation where the choice of location can be complemented by
investment into the quality of the facility. One of the first models describing market capture
using location and quality (also called location-design) is the original Huff model (Huff
1964). In this model, the market capture is represented by so-called demand points with a
fixed (inelastic) demand called purchase power. Although the model describes the supplier
choice of a customer as so-called probabilistic, i.e. the customer can fulfil her demand partly
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by various suppliers, the supplier choice can also be deterministic, i.e. the customer chooses
one of the suppliers to supply her demand.

Besides the customer behavior, one can distinguish several ways of how suppliers in the
market compete with each other. One question deals with studying the existence of stable
market situations using the concept of Nash equilibria. Another consideration is to study a
market situation where a so-called leader player is knowing how a so-called follower supplier
is going to react. In location literature Hakimi (1983) baptized the latter decision problem as
an (r |p)-centroid problem, where a leader intends to locate r facilities taking into account the
reaction of a competitor (follower) in locating p facilities. In this classification, the problem
under study can be classified as a continuous (1|1)-centroid location-design problem with
deterministic supplier choice, i.e. both competitors locate one facility in the plane and have
a continuous choice in quality, whereas the customer chooses one of the competitors to fulfil
her demand. We first define mathematically what this means and then have a look at what
has already been found in literature with respect to the problem to be investigated before
formulating new research questions.

Consider a location-design problem where the objective Π(x, a) is to capture market
share by attracting customers choosing location x and setting a quality a. As far as known
to the author, Eiselt and Laporte (1989) were the first to include a quality parameter (called
weight) in an optimization attraction problem based on the maximum capture model of
Revelle (1986). Plastria (1997) describes the first competitive location-design problem in the
plane involving both the choice of the location and a continuous quality choice as variables
of the model. Now consider two competitor supplier firms that plan to locate one facility and
choose a quality for it. Define the decision vector (x, y, a, b) with locations x and y of the
two competing firms and a and b their quality. The payoff of firm i is given byΠi (x, y, a, b).
Then we define (x∗, y∗, a∗, b∗) as Nash equilibrium if

x∗, a∗ ∈ argmax
x,a

Π1(x, y
∗, a, b∗) ; y∗, b∗ ∈ argmax

y,b
Π2(x

∗, y, a∗, b). (1)

In a Stackelberg situation, one of the suppliers (let say firm 1) knows how the other is going
to react. This is also called a leader-follower situation and the solution is called a Stackel-
berg equilibrium. For the location-design problem, solution (x∗, y∗, a∗, b∗) is a Stackelberg
equilibrium if

x∗, a∗ ∈ argmax
x,a

Π1(x, y
∗(x, a), a, b∗(x, a)) where (2)

y∗(x, a), b∗(x, a) ∈ argmax
y,b

Π2(x, y, a, b). (3)

We consider fist what has already been found before in literature with respect to this problem.
For a general overview on competitive location, we refer to the overview papers (Eiselt et al.
1993; Plastria 2001; Kress and Pesch 2012). Now let us focus on the (1|1)-centroid location-
design problem in the plane with deterministic supplier choice.

Fernández et al. (2007) analyse first the second level optimisation of Π(x, a) over a
continuous quality parameter a when location x is fixed. They show that for the classical Huff
model with convex investment cost this implies a concave problem. Therefore the optimum
quality level a∗(x) is relatively easy to find. Substitution of the second level decision provides
a first level problem maxx Π(x, a∗(x)) in location space. The latter problem is typically a
Global optimization problem, classified by Hakimi (1983) as a medianoid problem.

Focusing on the situation of two competing firms in a location-design environment, Fer-
nández and Hendrix (2013) in a recent overview discuss the different situations considered
in the papers of Kücükaydin et al. (2011), Sáiz et al. (2011), Saidani et al. (2012), that all
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use the Huff model with several cost functions on quality to analyse different settings of a
firm entering the market. In a two competitor case, one can consider a Nash equilibrium or
a Stackelberg situation, as defined before.

For a situation where two competing firms enter a new market without active suppliers
in continuous location-design, Sáiz et al. (2011) derive Nash equilibria. The Huff model
facilitates the derivation of explicit analytical expressions for the optimal (Nash) values of
the quality to be set by the two competitors. This facilitates studying the existence of location
Nash equilibria on the first level. However, if customers choose for one of the suppliers only,
i.e. deterministic behavior, the analytical study is hindered as the market capture depends in
a discontinuous way on the location and quality decision.

For cases where the quality design a, b is fixed, several analyses can be found in liter-
ature for the leader-follower situation. Sáiz et al. (2009) provide for a Huff-like continu-
ous problem, Global Optimization (GO) solution y∗(x) to be substituted into GO problem
maxx Π1(x, y∗(x)). The elegance of the approach described in that paper is that it provides
a guarantee to find the global optimum solution for both leader and follower. More recently
Roboredo and Pessoa (2013) find the optimum with a guarantee for location on a network
where both competitors decide on the location of several facilities, i.e. an (r |p)-centroid
problem. If we now focus on the location-design (1|1)-centroid problem, one can find a
Huff-like description in Redondo et al. (2010). That paper states that this is a “hard to solve
global optimization problem” and does not follow the earlier analytical approach. Instead
it approximates the solution of this six-dimensional problem by heuristics that basically
generate millions of trial points of which the best one is selected.

To the knowledge of the author, no analysis was done on a (1|1)-centroid problem in
the plane with deterministic customer behavior. The research questions of this paper is,
whether a Stackelberg equilibrium exists for deterministic customer behavior and what are
its characteristics. Insight in the characteristics of thismodel facilitates predicting the behavior
in the corresponding market situation. Two companies enter a new market and try to win as
many customerswith their demand (purchase power) as possible by deciding on their location
x and y, but also on their quality a and b. The research question is to predict the behavior of
both actors. For instance, whether co-location is a natural tendency in this market situation
and under which circumstances one of the firms decides not to enter the market. Sáiz et al.
(2011) found that in probabilistic supplier choice the optimal (Nash) locations for each firm
is found at a demand point. Is it natural in deterministic supplier choice that firms locate at
a customer?

To investigate these questions, first a game theoretic model is defined in Sect. 2 describing
the market situation. Section 3 then analyses the decision on the level of the quality. Section 4
investigates several properties of the location behavior. Section 5 summarizes the findings
on the research questions.

2 Model of a Stackelberg location-design market situation

To depict the situation, one can think of two competing news vendors or street bars located
at x and y in a new neighbourhood that attract customers located in points pi to come
over every morning and to buy their desired newspaper or coffee. Customers may have a
different purchase powerwi although this does not have an important influence on the problem
characteristics. The analysis becomesmore cumbersomewhen already several suppliers exist.
To keep notation as simple as possible, we leave this aspect out at the moment, although
tendencies may be similar. The two competitors can also invest in their attractiveness by
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deciding on their quality. The situation under investigation is that in the decision process,
the leader supplier (firm 1), knows what the follower supplier (firm 2) is going to do. The
question is what is the corresponding behavior of the two players. The following notation
describes the situation formally:
Indices

i index of demand points, i = 1, . . . , n, index set I = {1, . . . , n}
Variables

x = (x1, x2) location of firm 1,
y = (y1, y2) location of firm 2
a quality facility firm 1,
b quality facility firm 2

All variables are continuous variables.
Data

pi location of the i-th demand point (customer), P = {pi , i = 1, . . . , n}
wi demand (purchase power) of customer i , wi > 0
α, β cost parameters for firm 1 and 2 respectively, α, β > 0
S location space, in fact the convex hull of the set of demand points

Miscellaneous

W = ∑
i wi total demand

di (z) Euclidean distance between pi and z = x or z = y
c1(), c2() cost functions for firm 1 and firm 2 with respect to quality expressed in

demand
J (x, y, a, b) Subset of clients captured by firm 2, J (x, y, a, b) ⊂ I

We consider the linear relation c1(a) = αa, c2(b) = βb, where the coefficients are
expressed in the same units as the demand. The supplier choice of the customers is to choose
for one of the suppliers according to an attractiveness a

di (x)
for firm 1 and b

di (y)
for firm 2.

In our study we assume that there is the so-called ’novelty seeking’ behaviour where the
customer prefers the follower (firm 2) in case the values are the same. Notice that in case
the two suppliers co-locate on a demand point, the customer prefers the one with the best
quality. To describe the market capture M(x, y, a, b) of the follower, we use an index set
J (x, y, a, b) of the customers attracted by the follower:

J (x, y, a, b) = {i ∈ I |b ≥ a if di (x) = di (y) = 0, else bdi (x) ≥ adi (y)} (4)

M(x, y, a, b) =
∑

i∈J (x,y,a,b)

wi (5)

andW − M(x, y, a, b) demand goes to the leader (firm 1). The resulting objective functions
are well defined. The profit function of firm 1 is given by

Π1(x, y, a, b) = W − M(x, y, a, b) − c1(a) (6)

and for firm 2
Π2(x, y, a, b) = M(x, y, a, b) − c2(b). (7)

We assume nonnegativeness of profit, i.e. a firm does not enter the market if it cannot obtain
nonnegative profit. Another assumption of the market situation is that if one of the firms
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manages to capture total demand against a nonnegative profit, it will follow this strategy to
take the competitor out of the market.

On the location decision level (x, y), both firms have to take the optimal decision on
the quality decision level (a, b) into account. Moreover, the leader knows what the fol-
lower is going to do on the quality level, b∗(x, y, a) as well as on the location level:
y∗(x, a, b∗(x, y, a)). This situation makes the supplier behavior hard to analyse. Thinking
in more than one level helps to consider the situation.

We first focus on the question of possible Nash and Stackelberg equilibria with respect
to the choice of the quality of the facilities (a, b) given the facility locations (x, y). Then in
Sect. 4, we study properties of location equilibria given the optimum levels on quality choice.

3 Equilibria on the level of the quality choice

First the behavior of a firm 2 is studied in Sect. 3.1. The follower reacts on the decision of
the other firm, but cannot anticipate on its behavior. Given the behavior, we can focus on
the Nash equilibrium definition and study its existence. Then in Sect. 3.2, we focus on the
behavior of the leader and study possible Stackelberg equilibria.

3.1 Firm 1 quality choice and Nash equilibrium

Firm 2 is choosing its quality level b given the position of both competitors (x, y) and the
quality a set by firm 1. It is convenient to order the location advantage of the firm 1 expressed
by the ratios di (y)

di (x)
. The order of these ratios provides the order in which firm 2 is going to

attract the customers with increasing value for quality b. A complication is that the relative
distance di (y)

di (x)
of two or more customers i and j can be the same. Actually, analysing forward,

it is in the interest of firm 2 that this takes place; increasing his quality he captures several
customers at the same time. In the case of co-location, only one ratio exists with a value of 1.

Definition 1 Let r j (x, y), j = 1, .., t be the ordered values of di (y)
di (x)

from small to big using

the valuation di (y)
di (x)

= 1 for the case where di (x) = di (y) = 0.

Customers i with the same relative distance are included in the same ratio value j , such
that t ≤ n. Notice that rt (x, y) can take the value ∞ if firm 1 is located at a demand
point and firm 2 is not. We can write the total demand m j going to firm 2 after capturing
the customers corresponding to the first j relative distances using an index set I j (x, y) of
captured customers:

I j (x, y) = {i ∈ I |di (y)
di (x)

≤ r j (x, y)} (8)

m j =
∑

i∈I j (x,y)
wi . (9)

Notice that the series m j is strictly increasing and in case of co-location m1 = W . Now we
can rewrite the profit of firm 2 given the locations x, y and quality a as

Π2(x, y, a, b) = mk − βb, k = max{ j |b ≥ ar j (x, y)}. (10)

Example 1 An instance consists of ten customers located at P = {(1, 4), (4, 2), (5, 8), (1, 9),
(8, 5), (7, 4), (6, 3), (3, 7), (8, 8), (2, 2)} who each spend wi = 1 unit each morning at their
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Fig. 1 Profit of the firm 2 with increasing quality b

most attractive supplier. Firm 1 is located at x = (3, 3) and firm 2 at y = (7, 7). The instance
is designed such that two pairs of customers are at equal relative distance to the two suppliers,
i.e. t = 8. Investing in quality costs firm 2 β = 1 units. Firm 1 already invested a = 4 units
in its quality. Figure 1 gives the development of Π2 in (10) as function of b according to the
model. The circles correspond to the attracted customers. The firm is not entering the market
if it cannot make nonnegative profit, as demarcated by the dotted line. Notice that following
an increasing value of b, the figure reveals t = 8 peaks that correspond to the increasing
values of r j . The values of b for which Π2 is discontinuous do not depend on β, the value of
the function Π2 itself does. Firm 2 obtains the maximum profit investing b = 4.

The figure illustrates several characteristics. Notice that Π2 is discontinuous and its local
maxima are not necessarily first increasing in b and then decreasing. Second, depending on the
quality set by firm 1 and the locations, firm 2will decide to stay out of the market if the cost of
investing in quality is higher than the gain in market capture: βark(x, y) > mk, k = 1, . . . , t .
Notice that in case of co-location, firm 2 will stay out of the market if β > W

a .

Given the introduced notation, one can write now the optimal behaviour of firm 2 with
respect to quality in an exact way.

Lemma 1 Given the described gamewith r j (x, y) as described by definition 1, let r0(x, y) =
0, m j defined by (8) and m0 = 0. Let locations x, y and quality a be given. The optimum
quality investment for firm 2 is b∗ = ark(x, y) with k = argmax j=0,...,t {m j − βar j (x, y)}.
The corresponding profit is Π2(x, y, a, b∗) = mk − βark(x, y) and market capture is
M(x, y, a, b∗) = mk.

Notice that in case of co-location, we have an all or nothing game, where firm 2 captures
m1 = W setting a = b or stays out of the market with m0 = 0 if a = 0.

The former analysis helps us to proof that there is no Nash equilibrium on the quality level
if both firms have no information on the reaction behavior of the other.

Proposition 1 Given the described game and locations x, y. No Nash equilibrium a, b > 0
exists on the quality level.
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Proof By contradiction, let a, b > 0 be a Nash equilibrium with the firms located at x, y.
Thismeans a is optimal for firm 1 and b is optimal for firm 2. According to lemma 1 for firm 2,
∃k, b = ark(x, y). Now firm 1 by increasing its quality to a+ε for a value 0 < ε <

mk−mk−1
α

increases its profit with mk − mk−1 − αε > 0. This proofs that a is not an optimal quality
for firm 1 and contradicts a, b to be a Nash equilibrium. 	


The proposition shows that according to this model, both suppliers cannot exist at the
same time in the market in a Nash situation. The proof also shows that this is not necessarily
true if a maximum on the quality a is included into the model that is smaller than W

α
, which

is the natural upper bound. Other location-design models like Kücükaydin et al. (2011) and
Saidani et al. (2012) include such limits in order to obtain numerical results.

3.2 Leader behavior and Stackelberg equilibrium

For a Stackelberg equilibrium, the line of the proof already shows what the leader (firm
1) should look for: an ε optimal solution. So, what is the optimal quality a∗(x, y) =
argmaxaΠ1(x, y, a, b∗(x, y, a)) in a leader-follower situation? Let us first consider the co-
location case.

Proposition 2 Given the described game. Let x = y. No solution a, b > 0 exists where both
firms stay in the market, i.e. co-location does not take place.

Proof In the co-location situation, x = y, all distances are the same for the two firms. This
means that the follower gets all according to (4), if b ≥ a and nothing if a > b. The follower
at most wants to invest b = W

β
to have a nonnegative profit. For α < β the leader can set his

investment a = 2W
α+β

> W
β

generating the positive profit Π1 = W − α 2W
α+β

= β−α
α+β

W > 0

taking the follower out of the market. For β ≤ α the follower can invest b = W
β

generating
nonnegative profit Π2 = 0 taking the leader out of the market. 	


If both suppliers are not located at the same position, the leader has to maximize W −
M(x, y, a, b) − αa, where M(x, y, a, b) is defined in Lemma 1. This typically has the
character of minimizing the damage caused by the follower:

min
a

(M(x, y, a, b) + αa) = min
a

(

max
j

{m j − βr j (x, y)a} + αa

)

. (11)

Example 2 We consider the same instance as that of Example 1 with ten customers, where
the leader has an investment cost coefficient of α = 1.2 > β = 1. Figure 2 sketches the
development of Π1 as function of a, where the follower continuously adapts its quality
b∗(x, y, a). The figure illustrates the multi-modal and discontinuous character of the profit
function. Starting at a = 0, the leader does not have any market capture and increasing
quality a leads to negative profit up to the moment that the follower loses three customers
near a = 0.83. We will see where this approximate number comes from. Typically, if the
leader increases its quality, then for certain values of quality a the follower loses one or
several customers. This provides a higher market share for the leader against a higher cost
of investment in quality.

To study the optimal quality choice for the leader, one should first observe that with increasing
quality a of the leader, the follower will never have more customers. He will also increase
the quality up to a certain level where he should let the customer go to the competitor. That
”certain level”, is exactly the candidate solution for the leader we are interested in.
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Fig. 2 Profit of the leader with increasing quality a; the follower adapts its quality b∗(x, y, a)

Starting ata = 0where the leader does not attract any customer andwhereM(x, y, a, b) =
mt = W , we study when the follower will give up customers with a relative distance higher
than rt−k . The loss in market share is mt − mt−k , but the gain in cost reduction is β(rt −
r(t−k))a. This means that the follower will let these customers go to firm 1 and reduce
investments if a >

mt−mt−k
β(rt−rt−k )

. For increasing a, in the example this happens for k = 3, where
the ratio is .827. So, starting with a follower having q = n customers, the first candidate
optimal choice for the leader should be an epsilon solution:

a = min
k=1,..,q

m p − mq−k

β(rq − r(q−k))
+ ε, (12)

where ε is an arbitrary small positive number. After finding the number of dropped customers
k, one can find more candidates by repeating (12) iteratively setting q := q − k up to the
follower has no more customers left over, q = 0. The latter is the most interesting option for
the leader as long as it provides a positive profit; he can take the follower out of the market.
After generating the candidates for a via (12), one has to evaluate Π1 for them to find the
best quality level for the leader. This procedure is described in Algorithm 1.

Example 3 We consider the Algorithm 1 for same instance as that of Example 1 with ten
customers and investment cost coefficients α = 1.1, β = 1, locations x = (3, 3) and
y = (7, 7). The algorithm generates the threshold values that can be recognized in Fig. 2
being a ∈ {0.8275, 2.6712, 5.1302, 7.2250}. Notice that the threshold values derived by
(12) do not depend on the value of α, but of course the profit does. Although the highest
profit of 2.0 is found at a = 0.8275, the leader has the alternative to take the follower out
of the market at a = 7.22 against a positive profit. According to the rules of the game, he
will do so. In the complete game of the market situation, the follower does not necessarily
enter the market. This example specifically shows that the location y = (7, 7) is not optimal
if firm 1 is located at x = (3, 3).

The analysis does not yield closed analytical expressions due to the typical discrete charac-
ter of the problem.Are the results easily extendible?What happens if already several suppliers
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Algorithm 1 Quality (a∗, b∗)(x, y, P)
Determine ordered distance ratios r j = d j (y)

d j (x)
j = 1, . . . , t

q := t , i := 0
while (q > 0)

i := i + 1
determine ai according to (12)
use the corresponding k to set q := q − k
bi := ai rq (according to Proposition 1

endwhile
if Π1(x, y, ai , bi ) ≥ 0

(a∗, b∗) := (ai , 0)
else

k := argmaxiΠ1(x, y, ai , bi )
(a∗, b∗) := (ak , bk )

exist in the market? The follower simply has to focus on the most attractive competitor for
customer i , who is not necessarily the leader. For the leader, expression (11) becomes less
straightforward, as the other competitors also have to be taken into account.

Concluding, Stackelberg equilibria for the describedmarket situationmayoccur in contrast
to Nash equilibria as shown by Proposition 1 and 2. The latter result on co-location suggests
that the follower can take the leader out of the market if β ≤ α. As the leader knows the
follower is going to locate at the same place, he can never beat the follower and practically
has to leave the market. The follower gets all.

4 Stackelberg location equilibrium for the case α < β

In the former section, we already analysed the situation β ≤ α, i..e. a strong follower firm
(easy access to financing an increase in quality) can prevent a leader to enter into the market
according to the model assumptions. This leaves us with the analysis of the case α < β, i.e.
the leader can increase quality at lower cost. Under which circumstances does a Stackelberg
equilibrium exist where both firms are in the market and where do the firms prefer to locate?

First, as discussed in Proposition 2, co-location (choosing y = x ,) is not of interest to
the follower as the leader can take the follower out of the market by increasing quality in a
cheaper way. Second, the follower is always going to participate in the market. Firm 2 can
at least locate at a customer with the largest demand, if firm 1 is not there. Otherwise, it can
locate at the second largest demand point. To formalise this behaviour it is convenient to
introduce the second largest weight.

Definition 2 Let {wi , i = 1, . . . , n} be a set of weights. The second largest weight w(2) is
w(2) = maxi wi if |argmaxiwi | > 1 else it is w(2) = max({wi , i = 1, . . . , n} \ {maxwi }).

Proposition 3 Given the described game with α < β. The follower is always going to
participate in the market and his optimal profit is at least Π2(x, y∗, a, b∗) ≥ w(2).

Proof Given a location x and quality choice a of the leader, a feasible solution of the follower
is locating at y = pk where k ∈ argmaxiwi and b = 0. However, if x = pk , the follower
should locate at a demand point with weight w(2). The corresponding profit is Π2 = w(2), as
he attracts the customer without any investment cost. So the follower has no reason to stay
out of the market and will at least gain a value of w(2). 	
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Fig. 3 Profit of the follower as function of location y given x = (3, 3) and the optimal quality (a∗, b∗) as
function of x, y, α = 0.9, β = 1

Consider the profit of the followerΠ2(x, y, a∗(x, y), b∗(x, y, a∗(x, y))) varying his loca-
tion y when x is given. In most of the area, the leader can take the follower out of the market
setting its quality and knowing the reaction of the follower; profit is 0. However, at the demand
points pi , function Π2 has at least a local maximum of wi as long as the leader is not located
there.

Example 4 Consider firm 1 located at x = (3, 3) and β = 1, the ten customers located at
P = {(1, 4), (4, 2), (5, 8), (1, 9), (8, 5), (7, 4), (6, 3), (3, 7), (8, 8), (2, 2)}, wi = 1 ∀i . For
α > β, the profit of firm 2 has clearly a peak of Π2 = 10 for y = x and also local optima at
the customers. These local optima are better visible for the case where the leader has easier
access to investing capital, α < β. For α = 0.9, Figure 3 outlines the profit with a maximum
of Π2 = 1.52 attained near y = (6.34, 3.96). At most of the surface, the follower is not able
to capture demand against a low enough quality (profit is zero) and at the customer locations
he attracts at least the purchase power of one customer wi without any additional cost.

The example illustrates that the optimum location of the follower is not necessarily at
a demand point in contrast to what was found as a property of the equivalent probabilistic
Huff variant of the model in Sáiz et al. (2011). In most of the area, gradient information,
i.e. in which direction does the objective improve, is lacking. Finding the best location can
be done by a heuristic based on a finite number of function evaluations, like a grid search.
Notice that given the solution of the quality level, we are dealing with a problem in only
two-dimensional space. Following a grid search procedure as is done to generate Fig. 3, we
can also get an impression of the location decision for the leader, substituting the level of the
follower decision.

An interesting consequence of Proposition 3 is the following bound on the profit of the
leader.

Corollary 1 Given the described game. If α < β the optimal profit of the leader is bounded
by 0 ≤ Π1(x, y, a, b) ≤ W − w(2). For α ≥ β, the leader stays out of the market.
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Fig. 4 Profit of the leader as function of location x , the optimum follower location y∗ and the optimal quality
(a∗, b∗) as function of x, y∗, α = 0.9, β = 1

Example 5 Consider the case of Example 4. For each location of the leader over a grid
of 10,000 points, the follower decision is evaluated by solving the quantity level and the
best location is taken as an approximation of y∗(x). The resulting profit function for the
leader is depicted in Fig. 4. One can observe very well, that outside the convex hull of the
demand points the leader loses profit, as the follower can locate at a more profitable place.
The optimum profit value is Π1 = 6.57 at a location near x = (3.66, 4.31) if the follower
chooses as demand point y = P7 = (1, 9) gaining a profit of 1. The figure illustrates the
discontinuous character of the objective function.

5 Conclusions and discussion

We analysed a market situation of two firms, firm 1 and firm 2, entering a new market where
customers reveal a deterministic supplier choice being attracted by low distance and high
quality with a game theoretic model. In case of breaking tie, i.e. both firms are as attractive,
the customer chooses firm 2 as the supplier. We investigated the behavior of the supplying
firms with respect to Nash equilibrium, co-location tendency, tendency to locate at customer
locations and strength to take the competitor out of the market.

We found the following results. No Nash equilibria exist for the described situation. Co-
location does not occur, as one of the firms has the ability to take the other out of the market.
If the second firm (firm 2) behaves as a follower, it will always enter the market with more
tendency to locate at a customer location (supplying only that customer) if its abilities to
invest in quality is less strong. When its ability is stronger than that of the leader, it will take
the leader (firm 1) out of the market. The leader (firm 1) does not have the tendency to locate
at a customer.

A specific algorithm has been developed to determine the optimal quality of both firms
for the case the investment cost coefficient of the leader is lower than that of the follower.
The algorithm is based on systematically following the order in which customers are taken
from the competitor depending on the relative distance to both competitors.
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The mathematical location problem when substituting the optimal quality levels is dis-
continuous and derivative information is lacking in most of the area. A heuristic procedure
can be used to generate a good, but not necessarily optimal location for the leader and the
follower.

Natural research questions following from this study is whether the tendency extends to
situations where other suppliers are already in the market. A more mathematical question is
what happens if the investment costs are not taken as linear, but as strictly convex, such that
a firm has less tendency to take a high quality cost to take the competitor out of the market.
The properties found are also less strong if the investment in quality is limited by a bound
that is less than the natural bound that is implicit in the model. The proof of not having a
Nash equilibrium loses its validity for that case.
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