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Abstract

Background: Pervasive introductions of non-native taxa are behind processes of homogenization of various types
affecting the global flora and fauna. Chile’s freshwater ecosystems encompass a diverse and highly endemic fish
fauna that might be sensitive to the introduction of non-native species, an ongoing process that started two
centuries ago, but has to date received little attention. Using historical (native) and present-day (native and
non-native) presence-absence data sets of compositional similarity, our goal was twofold: (1) evaluate patterns of
taxonomic homogenization at various spatial scales and (2) identify clusters of widely versus narrowly distributed
species to assess their relative role in compositional changes. We expect that non-native species with wide
distributions might have a larger influence in taxonomic homogenization than those with narrow distributions.

Results: Chile’s fish assemblages have become increasingly homogenized during the last two centuries when
evaluating changes in compositional similarity among 201 watersheds (65.3 % of total comparisons showed
homogenization) distributed among six defined biotic units. Taxonomic differentiation was significantly more prevalent
than taxonomic homogenization within biotic units. Among biotic units, comparisons between historical and current
compositional similarity were all significantly different. We identified one cluster of non-native fishes that were
distributed across the entire five or six biotic units. This cluster included Brown Trout (Salmo trutta) and Rainbow Trout
(Oncorhynchus mykiss) as the two most representative species. A second cluster we identified included fishes such that
on average spanned only one or two biotic units.

Conclusions: We provide first evidence for an ongoing and large-scale process of taxonomic homogenization among
Chile’s watersheds occurring at various scales. Our findings provide taxonomic and biogeographic baseline information
for management plans and courses of action for conservation of native fishes, many of which are endemic. We also
discuss management guidelines of non-native fishes in Chile. Baseline information of both native and non-native fish
taxa might be applicable to other isolated regions elsewhere.
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Invasive species
Background
The biodiversity of freshwater systems is threatened and
constitute an overriding conservation priority worldwide
(Dudgeon et al. 2006; Johnson et al. 2008; Hopper et al.
2012). Human-mediated introductions of species have
been a key factor leading to diversity losses in these sys-
tems (Clavero and García-Berthou 2006). Fishes are in
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particular among the most documented introduced species
around the world (Rahel 2000) due to aquaculture, recre-
ational fisheries, biological control, and ornamental uses
(Ruiz and Marchant 2004; Vargas et al. 2010; Marr et al.
2010, 2013). Biogeographic and ecological approaches to
quantify changes in fish communities over time have thus
emerged as fundamental means to understanding global as
well as local issues involving non-native fishes and their ef-
fects upon native aquatic biota, and to illuminate conserva-
tion implications as a result (Olden et al. 2008; Marr et al.
2010; Habit et al. 2010).
Long-term ecological consequences of freshwater fish

introductions have focused on the loss of differentiation
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of unrelated communities across regions due to the
current wide spread of some taxa (e.g., Olden et al. 2004,
2006, 2008). Biotic homogenization between communities
represents a major biogeographic and ecological threat for
biodiversity at a regional and global scale (Olden and Poff
2004; Rooney et al., 2004; Olden 2006; Olden and Rooney
2006; Marr et al. 2010, 2013). This phenomenon might in-
clude loss of taxonomic, functional, or genetic differenti-
ation (Olden 2006). Our focus was the magnitude of
taxonomic homogenization (TH), which depends on the
resolution and extent of the spatial scale, in addition to
species richness and turnover (Baiser et al. 2012). On the
contrary, if communities become more different as a result
of introductions of non-native species, taxonomic differen-
tiation (TD) might occur (McKinney, 2004; Olden 2006).
Ultimately, TH represents a form of biodiversity loss and
can result from local species turnover.
Freshwater systems from isolated regions provide ideal

conditions to study TH and TD as they have shaped the
evolution of endemic species, and thus, unique species as-
semblages. Because they are also exposed to the establish-
ment of non-native species, the assessment of the
magnitude of TH between different aquatic systems is im-
perative in favor of conservation of native fishes. The case
of Chile is especially insightful as fish communities span an
extensive latitudinal gradient of watersheds that drain to
the Pacific Ocean (18°S–55°S). Specifically, the Atacama
Desert, the Andean range, and the Pacific Ocean have his-
torically isolated freshwater fishes from Chile that have
evolved within the confines of short rivers with high gradi-
ents and parallel basins and glacial lakes and meadows
(Arratia et al. 1981; Arratia 2002, Vila and Pardo 2006).
Forty four inland native fishes can be found among three
so-called ichthyogeographic provinces composed of four
areas of endemism (Dyer 2000a, b; Habit et al. 2006a).
Eighty one percent of these native fishes are endemic spe-
cies (Vila et al. 2006; Habit et al. 2006a). It has been hy-
pothesized that native fishes from this region of South
America are especially vulnerable to fish introductions
(Arratia 1978), but this hypothesis has never been formally
tested. Chile’s native fishes have ancestral traits such as
small body sizes (Vila et al. 1999; Vila et al. 2006) and
sparse development of locomotion attributes (Zunino et al.
1999); they also exhibit low variation in life histories and
tolerances for habitat degradation as well as narrow geo-
graphical distributions (Habit et al. 2006a). These attributes
are in stark contrast with those from several of the 27 non-
native species documented in the literature (Iriarte et al.
2005; Habit et al. 2006b; Quezada-Romegialli et al. 2009).
These introductions have affected native fishes due to
predation (Ibarra et al. 2011; Arismendi et al. 2012),
interactive segregation (Penaluna et al. 2009), overlap
of microhabitat preferences (Vargas et al. 2010), and
changes in local distributions (Arismendi et al. 2009;
Habit et al. 2010). However, biogeographic changes in fish
composition following introductions remain poorly
documented.
In this study, we assembled a comprehensive presence-

absence database of freshwater fishes in Chile documented
during the last two centuries in order to accomplish two
objectives. Firstly, we conducted an extensive analysis of
changes in TH and TD to establish comparisons within
and among biotic units. Given the high endemism of
freshwater fishes in Chile (Dyer 2000a), we expected a very
unique composition of species assemblages among biotic
units, prior to the non-native species introductions. We
hypothesize that human-mediated fish introductions have
homogenized some natural biogeographic boundaries,
promoting TH of fish diversity. Secondly, we employed a
clustering method to explore groups of widely versus nar-
rowly distributed species to assess their relative role in
compositional changes. Our expectation was that intro-
duced species with wide distributions might have a larger
influence in TH than those with narrow distributions,
which conversely are more likely to drive TD. These pro-
cesses are likely to be driven by similar fish taxa because of
convergent human interests around the globe (e.g., salmo-
nids, cyprinids, and poeciliids: Ruesink 2005; Clavero and
García-Berthou 2006; Marr et al. 2010; Marr et al. 2013).
To our knowledge, this is the first attempt to broadly
evaluate TH in Chile (but see Marr et al. 2010), thus per-
mitting assessments of changes in the freshwater fish fauna
in order to evaluate current implications for conservation
and aid policy-making decisions.
Methods
Study area and biotic units
Chile’s freshwater fishes are distributed among three
ichthyogeographic provinces and five areas of endemism
between 18°S and 55°S in South America (Fig. 1; Dyer
2000a). Areas of endemism seem good candidates for our
study, because (1) their boundaries are likely to become
eroded as a result of taxonomic homogenization and (2)
they represent different levels of habitat heterogeneity or
ecoregions (see Olden et al. 2008 for an example). Our
analyses have been restricted to Chile’s political limits,
although provinces and areas of endemism spread beyond
the country’s border. We designated each area of endem-
ism as one biotic unit: Titicaca (U1, 18°S–23°S), Atacama
(U2, 18°S–22°S), Central (U3, 28°S–33°S), South-Central
(U4, 35°S–39°S), and South (U5, 39°S–42°S). Several
studies have documented the presence of non-native taxa,
especially salmonids, in both U5 and Patagonia province
(e.g., Soto et al. 2006, Arismendi et al. 2009; Habit et al.
2010; Arismendi et al. 2012; Arismendi et al. 2014).
Although Patagonia has not been described as an area of
endemism, we included it as the sixth biotic unit of our



Fig. 1 Areas of endemism Patagonia as six biotic units of fish diversity
in Chile (modified from Arratia 1997 and Dyer 2000a). U1 Titicaca,
U2 Atacama, U3 Central, U4 South-Central, U5 South, U6 Patagonia.
Ichthyogeographic provinces are shown on the right with
different shades
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study (U6, 42°S–55°S). However, when comparing biotic
units, we limited comparisons of U6 with U5.

Historical and current presence-absence datasets
An exhaustive bibliographic search was undertaken to
document the historical and current composition of
Chile’s freshwater fishes. Our definition of “fishes” in-
cluded both jawed and jawless taxa. The search yielded
227 articles about native and non-native (established or
invasive) fishes published between 1782 and 2012 for
201 watersheds (Additional file 1: Appendix S1). Histor-
ical records represented the original composition of na-
tive fish assemblages before fish introductions (see
Olden and Rooney 2006). We used a similar approach
to Pool and Olden (2012) where if a native species was
recorded within a watershed in any time period, then it
was also present in all earlier time periods. Thus, native
fishes during any time period represent the historical
composition. We excluded marine fishes that occasionally
occur in freshwater habitats. Current records represented
the present-day composition of fish assemblages, including
both native and non-native species since their first intro-
duction was recorded (see Olden and Rooney 2006). We
assumed that if a non-native species was recorded within a
watershed it remained established in all subsequent years
(Pool and Olden 2012). We built a latitudinal presence-
absence data matrix represented in a binary format (1 =
present, 0 = absent) from a total of 201 watersheds (avail-
able from the authors). We followed the descriptions of
Mack et al. (2000) to distinguish between naturalized and
invasive taxa and the synonymy of taxa.

Homogenization analyses
We assessed whether the taxonomic composition of
fish assemblages is becoming similar (or dissimilar)
over time. We employed pairwise estimates of compos-
itional similarity (CS) between watersheds from histor-
ical (CShis) and current similarities (CScur) in fish
composition using Sørensen’s index (Sørensen 1957),
one of most commonly used indices to infer TH (see
Olden et al. 2008; Leprieur et al. 2008; Marr et al. 2010,
2013). Prior to estimating Sørensen index, presence-
absence data underwent a square root transformation
and a double Wisconsin standardization (Oksanen
et al. 2011). Changes in the similarity of fish compos-
ition were estimated according to ΔCS = CScur − CShis,
where positive values were interpreted as TH and nega-
tive values as TD (Olden et al. 2008; Marr et al. 2010).
We estimated the percentage of comparisons experien-
cing TH, TD, or ΔCS = 0 (i.e., CScur = CShis) by plotting
CScur (y-axis) versus CShis (x-axis) values above or
below a slope representing ΔCS = 0. Average changes in
compositional similarity between historical and current
fish assemblages (ΔCSav) were calculated for the entire
country as well as within and between biotic units. We
also estimated maximum taxonomic homogenization
(Max TH) or differentiation (Max TD) to gauge whether
ΔCSav was possibly influenced by extreme values of CS.
All aforementioned statistics were calculated at various
spatial scales including (1) a global estimation among all
watersheds or across Chile, (2) among watersheds within
each biotic unit, and (3) among watersheds found in dif-
ferent biotic units (i.e., between units).
We tested the hypothesis of no change in fish species

composition between historical and current time pe-
riods within and among biotic units using an analysis of
similarities (ANOSIM). ANOSIM provides a way to
evaluate whether there is a significant difference be-
tween two or more groups of sampling units on a dis-
similarity matrix, in our case, using the Bray-Curtis
index of similarity (Clarke 1993). We also tested
whether TH was more prevalent than TD (or vice versa)
using a Pearson χ2 (chi-square) test under the null hy-
pothesis that TH and TD were equally likely to occur.
Data transformation, estimation of ecological indices,
and hypothesis testing were carried out using the
package vegan (Oksanen et al. 2011) and core functions in
R (R Development Core Team 2015).



Fig. 2 Scatterplot of historical (CShis: x-axis) versus current similarity
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Hierarchical clustering of presence-absence data from
native and non-native fishes
Hierarchical clustering from presence-absence data was
undertaken using the R package gplots. Our rationale
was to gauge the impacts of widely (more likely to gen-
erate TH) versus narrowly distributed taxa (more likely
to generate TD) on temporal changes in compositional
similarity. We used gplots’ function “heatmap.2” and
Ward’s minimum variance as clustering method from
Euclidean distances to build a dendrogram without
reordering watershed information. Keeping watershed
information helped interpreting clusters in a geographic
context (from low to high latitudes). We applied three
internal measures—Dunn’s index, connectivity, and
silhouette width—using the package clValid in R to
validate the most probable number of clusters, which
we varied between two and six. Merits and applications
of these measures have been discussed elsewhere
(Handl et al. 2005).
composition (CScur: y-axis) of Chile’s freshwater fishes between 201
watersheds examined in this study. The diagonal line represents
no temporal change in compositional similarity (ΔCS = 0).
Empty circles above the diagonal line are positive values (ΔCS > 0)
suggesting taxonomic homogenization, whereas filled circles below
the diagonal line are negative (ΔCS < 0) values suggesting
taxonomic differentiation
Results
Historical and current freshwater fish assemblages
The historical dataset of native fishes comprised 7 orders,
11 families, 17 genera, and 44 species of which 82 % were
endemic and 72 % were classified within various categories
of conservation (see Additional file 2: Table S1). Siluri-
forms (25 %), followed by Atheriniforms (20.4 %) and
Osmeriforms (18.2 %), were the most represented orders
of native fishes. The current dataset showed an increment
in the number of orders (10), families (16), genera (33),
and species (69) with a total of 27 non-native species, of
which 19 can be considered invasive and 8 can be consid-
ered naturalized (Additional file 2: Table S1).
Homogenization analyses
Prevalent TH across Chile and among biotic units
We estimated a global CScur = 41.5 % and CShis = 40.3 %
resulting in ΔCSav = 1.24 % and suggesting an overall
TH for Chile’s freshwater fish assemblages. A total of
65.3 % of watersheds in the entire country showed TH,
in contrast with 35.7 % that showed TD (Fig. 2). Most
comparisons among biotic units showed a marked pat-
tern of TH as suggested by Pearson χ2 tests (Table 1),
supporting the result for the entire country. The highest
value of TH was found between Atacama (U2) and
South (U5), whereas comparisons between Central (U4)
and South (U5) were the sole exception as they showed
TD to be more prevalent than TH. The highest propor-
tion of watersheds with no change in CS over time was
found in comparisons between South (U5) and Patago-
nia (U6). Significant differences between historical and
current fish assemblages were found through ANOSIM
across all comparisons (Table 1).
Prevalent TD within biotic units
Within all biotic units, a process of TD was evident
(Table 2). Titicaca (U1) and Atacama (U2) showed
the highest TD, whereas South (U5) showed the low-
est. Patagonia (U6) showed the highest proportion of
watersheds that did not change in CS over time. Results
from the ANOSIM demonstrated significant differences
between historical and current composition of fish assem-
blages within all biotic units, except for Central (U4).
Pearson χ2 tests indicated that TD was significantly more
prevalent than TH for U1, U2, and U4. For the remaining
biotic units, we found no evidence that TD was signifi-
cantly more prevalent than TH.

Hierarchical clustering of presence-absence data from
native and non-native fishes
The dendrogram suggested the presence of two clusters of
fish assemblages (Fig. 3). Clusters were supported by the
highest estimates of Dunn’s index (0.55) and silhouette
width (0.39) and the lowest estimate of connectivity
(11.02), thus, all three measures showed agreement. Clus-
ter I comprised taxa with a narrow geographic distribution,
spanning one or two biotic units. Native fishes included
Pupfishes (genus Orestias), Silversides (genus Odontesthes),
Pencil Catfishes (genus Trichomycterus), and Velvet Cat-
fishes (genus Diplomystes); non-native fishes included
Brook Charr (Salvelinus fontinalis), Lake Whitefish



Table 1 Average (ΔCSav) and net changes in fish compositional similarity (ΔCS %), maximum taxonomic homogenization or
differentiation (Max TH/TD), and percentage of watersheds with no variation in compositional similarity (ΔCS = 0 %) between
watersheds found in different biotic units (i.e., between units). Significant probabilities (p < 0.05) supporting evidence for ΔCS
(ANOSIM) and TH versus TD are in italics

Pairwise comparison ΔCSav ΔCS % Max TH/TD ΔCS = 0 (%) ANOSIM Pearson χ2

TH TD R p value p value

U1-U2 1.8 54.3 45.7 34.0/−31.2 0 0.31 0.001 TH: 0.012

U1-U3 2.1 61.3 38.7 27.0/−19.0 0 0.34 0.013 TH: 0.030

U1-U4 1.4 57.2 42.8 23.0/−26.3 0 0.43 0.001 TH: 0.018

U1-U5 1.9 53.8 46.2 21.7/−34.3 0 0.39 0.034 TH: 0.021

U2-U3 2.4 87.9 12.1 57.0/−18.0 0 0.32 0.001 TH: 0.020

U2-U4 1.7 74.2 25.8 25.0/−21.0 0 0.41 0.001 TH: 0.010

U2-U5 4.3 68.0 31.4 22.0/−26.0 1 0.53 <0.001 TH: 0.010

U3-U4 2.9 63.4 35.1 28.0/−23.8 19 0.40 0.001 TH: 0.026

U3-U5 −2.5 45.0 54.9 3.0/−35.2 1 0.50 <0.001 TD: 0.320

U4-U5 −4.2 22.5 77.5 37.0/−19.9 44 0.45 0.001 TD: 0.001

U5-U6 1.3 53.2 46.8 36.0/−33.3 49 0.35 <0.001 TH: 0.519

U1 Titicaca, U2 Atacama, U3 Central, U4 South-Central, U5 South, U6 Patagonia
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(Coregonus clupeaformis), Chum Salmon (Oncorhynchus
keta), and the Uruguay Tetra (Cheirodon interruptus).
Exceptions were the non-native Mosquitofishes Gambusia
holbrooki and G. affinis, which spanned five units and na-
tive Silversides Odontesthes mauleanum and O. brevianalis
that spanned four units. Cluster II comprised taxa with a
wide geographic distribution that spanned four to six biotic
units. Native fishes included Puyes (Galaxias maculatus
and G. platei), Creole Perch (Percichtys trucha), and
Pouched Lamprey (Geotria australis). Non-native
fishes included several species of Pacific Salmon (genus
Oncorhynchus) such as Coho (O. kisutch), Chinook
(O. tshawytscha), and Rainbow Trout (O. mykiss). Rainbow
Trout showed presence in all six biotic units as did the
European Brown Trout (Salmo trutta).

Discussion
Our findings unraveled a large-scale process of TH that
has significantly changed the structure of Chile’s historical
Table 2 Average (ΔCSav) and net changes in fish compositional simila
differentiation (Max TH/TD), and percentage of watersheds with no va
within biotic units (U1-U6). Significant probabilities (p < 0.05) supportin

Biotic unit ΔCSav ΔCS (%) Max TH/Max TD

TH TD

U1 −13 32.1 66.0 14.3/−23.3

U2 −18 26.3 71.4 12.4/−25.0

U3 −6 22.4 73.9 23.0/−31.5

U4 −7 16.1 83.0 14.0/−31.7

U5 −1.5 40.4 57.0 37.3/−40.7

U6 −0.6 42.9 49.9 27.3/−39.5

U1 Titicaca, U2 Atacama, U3 Central, U4 South-Central, U5 South, U6 Patagonia
fish assemblages over the past century. This process has
been pervasive among biotic units, with the comparison
between Central (U3) and South (U5) as the sole excep-
tion, and it might be invariably linked to widely distributed
non-native species. Distributions for some of these span
all six biotic units as well as many others that are distrib-
uted among four or five biotic units. Our results are con-
sistent with many other studies that show the loss of
uniqueness in regions worldwide after fish species intro-
ductions (Olden et al. 2008, Leprieur et al. 2008, Marr
et al. 2010, 2013). Conversely, TD has been the dominant
process within biotic units, and many non-native taxa
with narrow geographic distributions might be the cause
for this process. Parallel assessments in regions with
similar climates have been crucial to improve our un-
derstanding of drivers of biological invasions (e.g.,
plants: Pauchard et al. 2004; fishes: Marr et al. 2010,
2013; but see Baiser et al. 2012). Marr et al. (2010)
compared five Mediterranean climate regions of the
rity (ΔCS %), maximum taxonomic homogenization or
riation in compositional similarity (ΔCS = 0) between watersheds
g evidence for ΔCS (ANOSIM) and TH versus TD are in italics

ΔCS = 0 (%) ANOSIM Pearson χ2

R p-value p-value

2 0.245 <0.001 TD: 0.010

2 0.343 <0.001 TD: 0.030

4 0.527 <0.001 TD: 0.090

1 0.176 0.176 TD: 0.001

3 0.380 <0.001 TD: 0.150

7 0.228 0.001 TD: 0.080



Fig. 3 Dendrogram of Chile’s current freshwater fish taxa (x-axis) presence (black area) and absence data (light-grey area) distributed among six
biotic units ordered from north to south (y-axis: U1 Titicaca, U2 Atacama, U3 Central, U4 South-Central, U5 South, U6 Patagonia). Two clusters (I y II) can
be identified that are separated by a white vertical line. Native and alien (non-native) taxa have been suffixed with “N” and “A,” respectively
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world, including central Chile (32°S–40°S); they found
that TH was prevalent with a ΔCSav = 8.4 %, and
this is higher than our estimate for comparisons in-
volving watersheds in Central (U3) and South-Central
(U4) (ΔCSav = 2.9 %). Clearly, scale (level of reso-
lution or grain and geographic coverage) has an im-
pact on assessments of TH as well as differential
species richness and turnover (see McKinney 2004;
Olden, 2006; Baiser et al. 2012). Because we docu-
ment no local extinctions, species turnover seems
less likely to have a significant impact, suggesting a
difference in the level of resolution might be the best
explanation for differences between Marr et al. (2010) and
this study.

Which species and processes may influence TH in
freshwaters of Chile?
Not all non-native fishes have contributed to TH of Chile’s
fish fauna as evidenced by our hierarchical clustering
analyses. So-called naturalized species with narrow
geographic distributions are likely to contribute to TD
within and between biotic units rather than TH, which is
seemingly driven by invasive species widely distributed
across watersheds. All three dimensions—the invader,
biotic interactions, and human—have been recognized
as crucial to understand the complexity of invasions
(Arismendi et al. 2014), even though their importance
are still the subject of much debate (Hayes and Barry
2008; Martin et al. 2009; Sol et al. 2012). Parallel
patterns and processes of invasions among Chile’s
watersheds and regions around the world might help
evaluate the importance of such dimensions. Indeed,
similarities between invasive taxa in Chile and many
regions around the world are astounding; they include
salmonids, cyprinids, and poeciliids (Ruesink, 2005;
Clavero and García-Berthou 2006; Marr et al. 2010;
Pool and Olden 2012). These are discussed below in
separate paragraphs.
Salmonids are among the most widely introduced

fishes worldwide (Crawford and Muir 2008); Rainbow
Trout has been introduced in 87 countries and Brown
Trout has been introduced in 40 countries (Kitano 2004).
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Introduction of salmonids in Chile has occurred since
the late 1800s motivated by the establishment of rec-
reational fisheries, with stocking efforts as common
practice since 1960 until the present (Basulto 2003;
Arismendi and Nahuelhual 2007; Arismendi et al.
2014). During the last three decades, both recreational
fishing and salmon farming have experienced an explosive
growth, especially in the southern portion of the coun-
try spanning South (U5) and Patagonia (U6) units
(Basulto 2003; Gajardo and Laikre 2003; Arismendi
et al. 2009, Buschmann et al. 2009; Arismendi et al.
2014). However, both Rainbow Trout and Brown
Trout are also abundant at northern latitudes as far
as Atacama (U2), which likely explains the highest
estimates of TH found in our study when we com-
pared U2 and U5. Collectively, propagule pressure,
species traits (e.g., demography, migratory life history,
phenotypic plasticity, and physiological tolerance), and
low environmental resistance have concomitantly
contributed to the current dominance of free-living
salmonids and their invasion success in Chile (Soto et al.
2006; Arismendi et al. 2014). Yet, environmental and
landscape attributes such as temperature, connectivity
between lakes, and hydrological position have been
documented to restrict the viability and current
abundance of both native fishes and salmonids in
Patagonia (U6: Soto et al. 2006; Habit et al. 2012;
Correa and Hendry 2012).
Other human activities that have likely facilitated inva-

sions and promoting TH are the use of non-native spe-
cies for biological control and the artificial alteration of
habitat components (see Marchetti et al. 2001; Alcaraz
et al. 2005; Olden et al. 2006). First, species such as
Gambusia holbrooki, Cyprinus carpio, Cnesterodon
decenmaculatus, and Ctenopharyngodon idella were
initially introduced for biological control (Ruiz and
Marchant 2004; Iriarte et al. 2005; De los Ríos 2010).
Mosquitofish (G. holbrooki) have spread throughout the
country from Atacama (U2) to Patagonia (U6), while
Carp (C. carpio) range from Central (U3) to South (U5).
Second, invasive Carp dominate most tributaries of the
Bio-Bío River and coastal eutrophic lakes in the South-
Central (U4) unit, which have been intensively affected
by cellulose waste discharges (see Parra et al. 2003; Habit
et al. 2006b). Similarly, Olden et al. (2008) found that
habitat alteration by human settlements, infrastructure,
and land use are chief factors explaining the degree of
TH of fish assemblages between Australian watersheds.
In the particular case of Chile, further research is
needed to gauge the relative importance of these
factors driving different processes of TH between
regions, so we can predict effects of existing invasive
species and prevent future invasions (Clavero and
García-Berthou 2006).
Implications for conservation of native fishes and
strategies for management of non-native species
One of the chief implications of our results is the impact
of TH in a large and isolated region of South America
containing 44 native species, of which 81 % are endemic
(Vila et al. 1999). The species responsible appear to be
non-native and invasive fishes that have caused a loss of
taxonomic regional distinctiveness and a reduction in
the variability of fish communities (e.g., Olden et al.
2004, Olden 2006, Clavero and García-Berthou 2006).
Although we have yet to document native extinctions,
there is overwhelming evidence on the negative eco-
logical impacts of salmonids on Chile’s native fishes
(Vargas et al. 2010; Correa and Hendry 2012; Arismendi
et al. 2012; Arismendi et al. 2009; Habit et al. 2012;
Habit et al. 2010). During the last decades, there has
been a shift from an enthusiastic promotion of species
introductions to a more conscientious view of native fish
fauna and its conservation value. The first attempt to
protect freshwater fauna came from the regulation of rec-
reational fishing, but this regulation only targeted intro-
duced trout and salmon species (see Soto et al. 2006;
Arismendi and Nahuelhual 2007). Later, the identification
and protection of public lands has contributed to discour-
aging new introductions, particularly in those protected
areas, as overseen by the National Plan for Biodiversity
Conservation and the creation of the National System of
Wild Areas Protected by the State (Sistema Nacional de
Áreas Silvestres Protegidas por el Estado, SNASPE) in
1984. This system covers less than 20 % of watersheds
contemplated in our study but includes most aquatic sys-
tems of Titicaca (U1) and Atacama (U2) units. This is en-
couraging because Atacama (U2) is an area with high
endemism (Dyer, 2000a) that shows the highest estimates
of TH and shares most invasive fishes with other units
that stretch as far south as South (U5) and Patagonia
(U6). SNASPE exerts special protection of native fishes in-
directly by promoting the recreational fishery of salmo-
nids. The potential for the use of these watersheds to
establish hatcheries of salmonids in the future will in-
crease the risk of fish escapements (Sepulveda et al. 2013)
that in turn will promote the expansion of existing
aquaculture-related fish introductions.
The introduction of salmonids has resulted in arguably

the most complex management strategy of non-native
freshwater fishes. Due to their social and economic import-
ance as game species, eradication is unlikely to occur.
However, an alternative such as co-existence (reviewed by
Arismendi et al. 2014) may require a drastic reduction of
propagule pressure and their negative impacts (Simberloff
2009). Mitigation of escapes from farms may be one of
these measures (Sepulveda et al. 2013), and one of the
pressing issues is that escape events are often under re-
ported (Buschmann et al. 2009; Sepúlveda et al. 2009).
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While escapes of Atlantic Salmon are the highest in num-
ber, because it is the most farmed salmonid species in
Chile, they may be quickly removed by fishers or fail to es-
tablish in the wild, possibly due to multiple generations of
domestication selection (Soto et al. 2001). Escapes of Rain-
bow Trout may be more damaging, and have longer last-
ing consequences to the environment as they can establish
self-sustaining populations in the wild more rapidly, than
any other salmonid (Sepulveda et al. 2013). Some initia-
tives to prevent the escape of salmonids from aquaculture
facilities in South (U5) and Patagonia (U6) have recently
ocurred including the Environmental Regulation for
Aquaculture (Regulación Ambiental para la Acuicultura,
RAMA) during 2001 and the self-regulation from the
salmon farming industry through the Integrated
Management System of Salmon Chile (Sistema Integrado
de Gestión de Salmon Chile, SIGES) in 2003. An incipient
and yet not significant process of TH affecting South
(U5) and Patagonia (U6) units therefore represents a
unique opportunity to implement efficient manage-
ment measures aimed at slowing down the rate of
this process.
Caveats and limitations
Our study has limitations that commonly affect biogeog-
raphy studies combining information from literature re-
view and quantitative approaches from community
ecology. These might include, but are not limited to, the
occurrence of false negative detections, taxonomic dis-
crepancies, the selection of specific ecological indices, and
issues related to the poor knowledge about fish distribu-
tions prior to species introductions. Regarding the first
limitation, we made our best effort to include both the pri-
mary and grey literature, which resulted in 227 documents
(Additional file 1: Appendix S1), even though there is a
possibility for some introduced species to be undetected.
It also remains possible that individuals from many non-
native species that were introduced to Chile’s watersheds
fail in their establishment (reviewed by Arismendi et al.
2014). This could be the case for Sockeye (Oncorhynchus
nerka), Chum (O. keta), and Pink salmon (O. gorbusha).
Despite a well-documented history of introductions, their
establishment remains contentious (Arismendi et al.
2014). Regarding taxonomic discrepancies, we included
two species of mosquitofishes (Gambusia hoolbroki and
G. affinis), but Ruiz and Marchant (2004) suggest that
there is only one species, G. hoolbroki. We thus welcome
further taxonomic and phylogenetic assessments to valid-
ate this issue. Indeed, recent phylogeographic studies of
native Orestias, Basilichthys, Hatcheria, Trichomycterus,
and Aplochiton have provided molecular evidence for
increasing or decreasing the number of taxa, and such
evidence is incorporated in our analyses to the extent
of our knowledge (e.g., Vila 2006; Unmack et al. 2009;
Quezada-Romegialli et al. 2010; Vila et al. 2011; Véliz et al.
2012; Alò et al. 2013). Regarding our choice of Sørensen’s
index, this has been sometimes criticized as it may fail to
distinguish the effects of species turnover and species rich-
ness on beta diversity (Baselga 2010, Carvalho et al. 2012,
Baisier et al. 2012). However, with little or no evidence for
local extinctions of native Chile’s fishes, the role of species
turnover remains questionable to explain changes in beta
diversity among watersheds. Lastly, the exact fish compos-
ition of most basins included here is unknown before fish
introductions, but this issue is commonly found elsewhere
(e.g., Olden and Rooney 2006; Marr et al. 2010). Thus,
the decision about defining time periods (historical and
current) is based on best judgement supported by an
exhaustive review of 227 documents.

Conclusions
Following two centuries of human-mediated introduction
of fishes to Chile, to our knowledge, this is the first at-
tempt to provide a comprehensive and broad examin-
ation of TH, even though TD was also evident at
smaller spatial scales, such as within biotic units. We
show that species introductions and invasions have al-
tered historical fish assemblages and affected the
uniqueness of isolated and endemic freshwater fish di-
versity. Our results provide taxonomic and biogeog-
raphy baseline information for conservation of native
species and management of non-native taxa. Finally, we
also have shown that not only have salmonids led TH in
Chile but also other groups of species, such as mosquito-
fishes (genus Gambusia), and this is also well documented
for other climatically similar regions of the world. Effective
management recommendations have to include watershed-
specific management alternatives given the isolated nature
of the biogeography of native fishes. It is also imperative to
acknowledge the diversity of biotic units and their differen-
tial composition of introduced species. A consideration of
a full range of alternatives such as prevention, control,
eradication, and restoration will allow a better understand-
ing of the role of multiple interacting stressors during the
invasion process (Arismendi et al. 2014). Management of
species introductions should additionally include the trade-
off between valuable fisheries and aquaculture operations
and the conservation and persistence of native species
from freshwater ecosystems.
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