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1 Introduction

F-theory [1] provides a convenient way of realizing the SL(2,Z) symmetry of Type IIB

string theory geometrically by relating it to the modular group acting on the complex

structure of a T 2. In particular, the complex structure of this auxiliary two-torus is iden-

tified with the axio-dilaton of the low-energy effective action. For Calabi-Yau manifolds

that are non-trivial T 2-fibrations one thus obtains a geometric description of a Type IIB

background with varying axio-dilaton τ .

Since the axio-dilaton diverges at the position of D7-branes in the Type IIB compact-

ification, τ contains information about the low-energy effective theory and is therefore one
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of the main quantities of interest. τ and especially the locus of its singularities can easily

be obtained if the defining equation of the T 2 is given in Weierstrass form

y2 = x3 + fx+ g . (1.1)

In general, for every torus fibration with a global section a map into this form is guaranteed

to exist. If the fibration does not have a global section, then one can replace the genus-one

curve by its Jacobian, which is then guaranteed to have a section while maintaining the

same discriminant.1 In practice, however, finding this map can be challenging and the

solution to this problem is only known in a few special cases. The simplest of these cases

is the elliptic curve inside P231 whose generic form is given by

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
6 + a6z

6 . (1.2)

Equation (1.2) can be brought into Weierstrass form simply by completing the square and

the cube with respect to y2 and x3. Possibly for this reason, much of the early F-theory

literature focused on such scenarios and constructed Calabi-Yau manifolds inside P231 fibra-

tions over B′, with the T 2 a hypersurface in P231 and the base Bn−1 a complete intersection

in B′. In order to harness the full power of algebraic geometry, one ordinarily considers com-

plete intersections whose defining equations have generic coefficients inside such a space. As

soon as one does so, however, considering only fibers embedded in P231 heavily restricts the

low-energy effective physics of the corresponding F-theory compactifications. In particular,

generic fibers inside P231 do not lead to Abelian gauge factors. In recent years, the original

focus on engineering non-Abelian gauge theories in global F-theory [3–5] has shifted towards

advancing the understanding of their Abelian counterparts. As a consequence, it has be-

come necessary to consider more general fiber embeddings, starting with a blow-up of P231

in [6], extended to more general cases with a single U(1) in [7–10] and finally progressing to

higher-rank U(1)s [11–15] and a treatment of embeddings in all 16 toric surfaces in [16, 17].

Most recently, torus fibers that do not generically have a section, i.e. genus-one curves that

are not elliptic curves, have started to be investigated in [2, 17–22]. Furthermore, progress

has been made in also understanding geometrically massive U(1)s [23, 24].

With the exception of [15], in which purely Abelian U(1)3 models were studied, and [25]

where an SU(5) singularity was resolved using a complete intersection, all of these works

have embedded the elliptic fiber as a hypersurface in a two-dimensional toric variety. For

these cases, computing the Weierstrass form was developed in [26]. However, as shown

in [16], this still imposes a considerable constraint on the resulting F-theory models. Apart

from limiting the toric Mordell-Weil group to rank ≤ 3, the fact that the elliptic curve is

a hypersurface in an ambient variety also restricts the possible resolutions of non-Abelian

singularities. In particular, with respect to SU(5) GUTs, it implies that there exists only

a single antisymmetric matter representation in the spectrum of the low-energy effective

theory. The restriction on the matter content applies of course only to resolved manifolds

— after blowing down, singular models can be constructed as hypersurfaces, as is obvious

1However, the Jacobian might have terminal singularities even if the original fibration was smooth [2].
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from the fact that there exists a transformation to Weierstrass form. The singularity en-

hancements of Calabi-Yau manifolds with two sections were studied systematically in [10].

In this work, we aim to extend the effort of [26] and provide a new method for bringing

a large class of complete intersection fibers into Weierstrass form. This class contains

both models without section and with section(s). As alluded to above, we compute the

Weierstrass form of the associated Jacobian in the cases which do not have a section. We

develop the algorithm in section 3 after giving a short summary of some of the mathematical

background in section 2. In section 4 we then review complete intersections in toric varieties

and, as an application of our algorithm, classify all toric Mordell-Weil groups of the 3134

nef partitions of the 4319 three-dimensional reflexive polytopes. Since the full list of results

is too long to be included in the text of this paper, we have created a website at

http://wwwth.mpp.mpg.de/members/jkeitel/Weierstrass/ (1.3)

with a database of the 3134 nef partitions of three-dimensional reflexive polyhedra, their

Weierstrass forms, toric Mordell-Weil groups and generic non-Abelian singularities. Fi-

nally, in section 5 we showcase several example manifolds that exhibit features not present

for elliptic fibers that are hypersurface. Among these are a manifold with Mordell-Weil

torsion Z4 and an F-theory model with discrete gauge group Z4. Furthermore we demon-

strate that considering complete intersection fibers indeed evades the no-go theorem of [16]

and present the first torically realized SU(5) × U(1)2 model with distinctly charged anti-

symmetric matter representations.

2 Koszul and residues

The one indispensable tool for studying complete intersections is the Koszul complex and

the associated hypercohomology spectral sequence. In the interest of a self-contained pre-

sentation let us quickly review these. Of course we have nothing new to say about these [27],

the cognoscenti are advised to skip to section 3.

The simplest way to think of line bundle valued cohomology groups Hk
(
Pd,O(n)

)
is as holomorphic degree-k differential forms that transform like degree-n homogeneous

polynomials under rescalings of the homogeneous coordinates. More generally, we can

consider multiple homogeneous rescalings which just amounts to a toric variety X and line

bundle L. Then Hk(X,L) are holomorphic degree-k differential forms, transforming like

homogeneous polynomials whose degree of homogeneity determined by the line bundle L.

Ultimately we are interested in a Calabi-Yau submanifold Y ⊂ X cut out by two2 transverse

polynomials p1 = p2 = 0. There are three ways to obtain a degree-k differential form on Y :

1. Restriction of a degree-k form on X,

2. Residue integration of a degree-(k+1) form around a small circle around either p1 = 0

or p2 = 0, and

2The whole discussion of this section generalizes to arbitrary codimension, but for simplicity we restrict

ourselves to codimension two.
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3. Two-fold residue integration around p1 = p2 = 0 of a degree-(k + 2) form.

It is convenient to define the residue operators Resj(ω) = 1
2πi

∮ (pjω)
pj

and split the potential

contributions Ep,q1 to Hp+q(Y,L|Y ) into (−p)-fold residues of q-forms. Note the minus sign

in the definition of p, as the residue operator has differential degree −1. We also have

to be careful with the degree under homogeneous rescalings, as the residue operator Resj
has us multiply by the homogeneous polynomial pj . The polynomial pj defines a divisor

Dj = V (pj) = {pj = 0}, and the cohomology groups of the line bundle O(Dj) precisely

involve differential forms of the same degree of homogeneity as pj . Hence, the residue

operator actually maps

Resj : Hk+1
(
X,L(−Dj)

)
−→ Hk

(
Y,L|Y

)
(2.1)

Putting everything together, the potential contributions to the cohomology for a

3-dimensional toric variety X fill out the tableau

Ep,q1 (L) =

q=3 H3
(
X,L(−D1 −D2)

)
H3
(
X,L(−D1)

)
⊕H3

(
X,L(−D2

)
H3(X,L)

q=2 H2
(
X,L(−D1 −D2)

)
H2
(
X,L(−D1)

)
⊕H2

(
X,L(−D2

)
H2(X,L)

q=1 H1
(
X,L(−D1 −D2)

)
H1
(
X,L(−D1)

)
⊕H1

(
X,L(−D2

)
H1(X,L)

q=0 H0
(
X,L(−D1 −D2)

)
H0
(
X,L(−D1)

)
⊕H0

(
X,L(−D2

)
H0
(
X,L

)
p=−2 p=−1 p=0

⇒ Hp+q(Y,L|Y ). (2.2)

with the map to Hp+q being either Res1 Res2, Res1⊕Res2, or restriction for the three re-

spective columns. That way, the entries along the diagonal can contribute to Hp+q(Y,L|Y ),

but we have no reason to believe that these are all independent.

In particular, the restrictions of two different k-forms α1, α2 may very well be cohomol-

ogous on Y , even if they are not on X. Clearly, this is the case when α1−α2 = dRes(ω) for

some k-form ω. Similarly, two forms on Y that came from different residues might be related

by a double residue. This is implemented by a nilpotent3 differential d1 : Ep,q1 → Ep+1,q
1 .

Only the cohomology with respect to d1 has a chance of contributing to Hp+q(Y,L|Y ). We

arrange the d1-cohomology groups in the E2-tableau

Ep,q2 =
ker
(
d1 : Ep,q1 → Ep+1,q

1

)
img

(
d1 : Ep−1,q

1 → Ep,q1

) . (2.3)

Unfortunately, this is not the end of it and even a d1-cohomology class need not survive

to a non-zero element of Hp+q(Y,L|Y ). This is the case when two different k-forms α1, α2

on X are related via a double residue of a (k + 1)-form, α1 − α2 = dRes1 Res2(ω). This

is implemented by yet another nilpotent differential d2 : Ep,q2 → Ep+2,q−1
2 . Its cohomology

forms the entries of the E3-tableau.

3That d2
1 = 0 requires a suitable sign choice; schematically dp=−2

1 = (p1, p2) and dp=−1
1 =

(−p2
p1

)
.
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In general, a spectral sequence is an infinite sequence of tableaux Ep,qi and differentials

di : Ep,qi → Ep+i,q+1−i
i . In the case of a two-fold complete intersection, this process

stabilizes at E3 = E∞ because all higher differentials are starting or ending outside of the

3× 4 region with the non-zero entries. The diagonals of the E∞ tableau are a filtration of

the cohomology groups Hp+q(Y,L|Y ). In particular, this implies that

dimHk(Y,L|Y ) =
∑
p+q=k

dimEp,q∞ (2.4)

and therefore one can reconstruct the dimension of the line bundle cohomology groups on

the complete intersection from the knowledge of the dimensions of the E∞ tableau entries.

3 Weierstrass form for complete intersections

In this section, we develop an algorithm to bring an elliptic curve defined by a complete

intersection into Weierstrass form. The underlying idea is spelled out in subsection 3.1. In

subsection 3.2 and subsection 3.3 we discuss the relations between the line bundles on the

complete intersection and the line bundles on the ambient space. Using an explicit example,

we show in subsection 3.4 explicitly how to apply our algorithm in practice. Finally, in

subsection 3.6 we manually compute the Weierstrass forms for the only two codimension

two examples to which the algorithm cannot be applied.

3.1 Basic algorithm

We are interested in finding the Weierstrass form of an elliptic curve over a base field that

is not necessarily algebraically closed. In particular, if the base field is the function field

of the base then this includes the case of elliptic fibrations. There are two different ways

of quantifying how complicated the ambient space is: one is going from hypersurfaces to

complete intersections to general subvarieties whose number of defining equations exceeds

their codimension. This is convenient for constructing smooth Calabi-Yau manifolds, since

we can often use genericity of the defining equations to argue that a generic subvariety is

smooth. As far as an embedded elliptic curve is concerned, the choice of an ambient space

leads to a particular choice of line bundle. Usually, not all line bundles on the elliptic curve

are restrictions of line bundles on the ambient space; instead, there will be some integer

d ∈ Z>0 such that only line bundles L with c1(L) ∈ d · Z come from the ambient space.

And this integer, called the degree, is another measure for how complicated the ambient

space is. In the remainder of this section, we will always take L to be a line bundle of

minimal (positive) first Chern class d.

The degree is loosely related with how complicated the embedding is. In the case of

a hypersurface in a two-dimensional toric variety,4 there are 16 different ambient spaces

corresponding to the 16 reflexive polygons. These realize embeddings of degree up to three,

the prototypical examples are [26]:

d = 1: Long Weierstrass form eq. (1.2) in weighted projective space P2[1, 2, 3],

4Or: a toric elliptic fibration whose generic ambient space fiber is one of the 16 reflexive polygons.
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d = 2: Hypersurface in P2[1, 1, 2], and

d = 3: Cubic in P2.

If we further consider elliptic curves as complete intersections of two hypersurface equations

in a three-dimensional toric variety, then there is one additional case:

d = 4: Complete intersection of two quadrics in P3.

The Weierstrass form of the equation (of the Jacobian) can in each case be derived from

the relations between sections of powers of the minimal line bundle L, see [2, 28]. We have

implemented the known formulas [29] in [30].

However, this does not completely solve the problem of transforming the toric equa-

tion(s) into Weierstrass form. A general formula would just depend on the coefficients of

the defining equations. For the sake of being explicit, consider a Calabi-Yau hypersurface.

Clearly, we do not need a separate formula for each ambient space: more constrained hy-

persurface equations are the result of setting certain coefficients to zero, corresponding to

the embedding of smaller dual polytopes into larger polytopes. However, already for the

case of hypersurface elliptic curves of degree d = 2, there are two maximal dual toric poly-

gons [26] (dually, there are two minimal polygons): P2[1, 1, 2] and P1×P1. Correspondingly,

there are two different formulas [26, 31] for the Weierstrass form for a toric hypersurface in

the degree-2 case, without one being a special case of the other. On the plus side, though,

such an equation can always be derived by looking at a particular relation between suitable

sections of the “minimal” line bundle L and some of its powers, and this is the path we

will take in this paper.

3.2 Sections of line bundles

Before we derive equations for the relations between line bundles, we have to discuss how

to work with sections in the toric setting. In the toric hypersurface case, we are familiar

with the long exact sequence of sheaf cohomology when restricting to a divisor (the divisor

being the hypersurface). For a complete intersection Y ⊂ X of two equations, that is,

sections of O(D1) and O(D2), the analogous Koszul resolution of the structure sheaf is

0 −→ OX(−D1 −D2)︸ ︷︷ ︸
R−2

−→ OX(−D1)⊕ OX(−D2)︸ ︷︷ ︸
R−1

−→ OX︸︷︷︸
R0

−→ OY −→ 0. (3.1)

A long exact sequence is just a spectral sequence whose E1 tableau has only two non-zero

adjacent columns. Now, we have three columns q = −2,−1, 0 in the spectral sequence

Ep,q1 = Hq(X,L⊗ Rp) ⇒ Hp+q(X,L⊗ OY ) = Hp+q(Y,L|Y ). (3.2)

The first differential d1 is just the induced map of eq. (3.1) on the sheaf cohomology groups

as familiar from the hypersurface case. However, we now have two new effects to consider:

• There are three sources for sections of the line bundle LY restricted to the complete

intersection, namely⊕
p

Ep,−p1 = H2(X,L⊗ R−2)⊕H1(X,L⊗ R−1)⊕H0(X,L). (3.3)

– 6 –
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Homogeneous coordinate x0 x1 y0 y1 y2

Vertex of ∇


1

0

0



−1

0

0




0

1

0




0

0

1




0

−1

−1


Table 1. The toric variety P1 × P2.

• There is a higher differential d2 : H1(X,L ⊗ R−2) → H0(X,L) that will identify

sections of L beyond the obvious identifications (coming from d1).

The first point is a general problem when studying algebraic varieties as embedded subva-

rieties. The sections of a line bundle L|Y may or may not extend to sections of L over the

whole ambient space X ⊃ Y . If that is not the case, then the choice of ambient space was

an inconvenient one. One should either look for a different ambient space to embed into,

or for a different line bundle on the ambient space whose sections behave more favorably.

As we will see, in all codimension-two complete intersections there is at least one favorable

line bundle, that is, of low enough degree ≤ 4 but with all required sections being induced

from the ambient space, such that we can use it to construct the Weierstrass form.

3.3 The second differential

Consider a nef partition −K = D1+D2 of the anticanonical divisor of the three-dimensional

ambient toric variety into two numerically effective divisors D1 and D2. The complete

intersection elliptic curve Y is defined by two polynomials p1, p2 as

Y = V (p1) ∩ V (p2), p1 ∈ H0(X,D1), p2 ∈ H0(X,D2) , (3.4)

where V (p) denotes the divisor defined by p = 0. A section s of a line bundle L always

defines a section sY of L|Y by restriction, but different sections on X might yield the same

section on Y . Clearly, we can add any section vanishing on Y to s without changing the

restriction. The obvious candidates of sections of L vanishing on Y are the image

d1 : H0
(
X,L⊗ O(−D1)

)
+H0

(
X,L⊗ O(−D2)

) ( p1
p2 )
−−−→ H0(X,L) (3.5)

Hence, the easy identifications just boil down to working with the quotient by the image

of d1.

What this section is concerned about is another identification that we have to perform

on the sections on the ambient space, coming from the d2 differential. To clarify this, we

will look at an explicit example. In fact, the example is very simple. Consider P1 × P2

with the non-product nef partition D1 = O(1, 1), D2 = O(1, 2). We let x0, x1 be the two

homogeneous coordinates on P1 and y0, y1, y2 be the three homogeneous coordinates on

P2. The toric data is also summarized in table 1. A particularly simple choice of equations

that nevertheless defines a smooth complete intersection is

p1 = x0(y0 + y1) + x1y2 ∈ H0(P1 × P2, D1)

p2 = x0y
2
2 + x1y0y1 ∈ H0(P1 × P2, D2).

(3.6)

– 7 –
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We now need to pick a line bundle L on the ambient P1 × P2. The lowest degree choice

would be O(1, 0), which has degree 2. However, it has not enough sections on the ambient

space. For example, we would need all four5 sections of O(1, 0)2|Y = O(2, 0)|Y to define

the z-coordinate in the Weierstrass model, but dimH0(P1 × P2,O(1, 0)) = 3. Hence, we

are led to look at the next-smallest degree line bundle

L = O(0, 1), H0
(
P1 × P2,L

)
= span{y0, y1, y2} (3.7)

It is easy to see that the three sections of L restrict to a basis of three independent

sections of H0(Y,L|Y ) on the complete intersection. We also remind the reader that the

Weierstrass form in the degree-3 case arises as the one relation between the ten cubic

monomials Sym3H0(Y,L|Y ) inside the nine-dimensional H0(Y,L3|Y ). The first tableau of

the spectral sequence eq. (3.2) is

Ep,q1 (L3) = Hq(X,L3 ⊗ Rp) =

q=3 0 0 0

q=2 0 0 0

q=1 C 0 0

q=0 0 0 C10

p=−2 p=−1 p=0

⇒ Hp+q(Y,L3|Y ). (3.8)

Clearly, the relation among the ten sections of H3(P1 × P2,L3) is not coming from d1

because the domain vanishes, see eq. (3.5). Instead, we have to quotient by the image of

d2, which is clearly equivalent to knowing the Weierstrass form of the equation. But we do

not know the Weierstrass form yet! Hence we have to go back to the geometry and use a

different approach to find the relations between the sections.

3.4 An algorithm to compute relations

Instead, we propose to directly compute the relation between the sections on the ambient

space by restricting to all affine coordinate patches. Clearly, two sections are equal if they

are equal in every affine patch. In any given patch we can use a local trivialization to

write the sections as polynomials, and polynomials are equal if and only if their difference

is in the ideal generated by the inhomogenized defining equations. For example, consider

the patch x1 = y2 = 1 in the example of subsection 3.3. As it turns out, we only have to

consider this single patch in this particular example. The inhomogenized defining equations

define the ideal

I = 〈x̂0(ŷ0 + ŷ1) + 1, x̂0 + ŷ0ŷ1〉 = 〈x̂0ŷ
2
1 − x̂2

0 + ŷ1, x̂0ŷ0 + x̂0ŷ1 + 1, ŷ0ŷ1 + x̂0〉, (3.9)

where the second set of generators forms a degrevlex6 Gröbner basis and we have denoted

the inhomogeneous coordinates by hats. The ten cubics generating Sym3H0(Y,L|Y ) are,

in inhomogeneous coordinates,{
ŷ3

0, ŷ
2
0 ŷ1, ŷ0ŷ

2
1, ŷ

3
1, ŷ

2
0, ŷ0ŷ1, ŷ

2
1, ŷ0, ŷ1, 1

}
, (3.10)

5A degree-d line bundle, d > 0, on an elliptic curve Y has of course d sections.
6That is, a degree reverse lexicographic Gröbner basis.
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and their normal form modulo I is{
ŷ3

0, x̂0ŷ1 + 1, −x̂0ŷ1, ŷ
3
1, ŷ

2
0, −x̂0, ŷ

2
1, ŷ0, ŷ1, 1

}
. (3.11)

Hence, the single relation between the ten sections, after restricting them to the complete

intersection and restoring the homogeneous coordinates, is

y2
0y1 + y0y

2
1 − y3

2 = 0 (3.12)

This is now the well-known case of a cubic in three homogeneous variables. Its Weierstrass

form is

Y 2 = X3 + 1
4 , (3.13)

which has discriminant ∆ = 27
16 and j-invariant 0.

3.5 Kodaira map

We still have considerable freedom in choosing the line bundle L which realizes the Weier-

strass form as the relation between (powers of) its sections. This is nothing but the Kodaira

map. For example, in the degree-3 case the three sections of L just realize the Kodaira

embedding of the elliptic curve Y in P2. For the purpose of finding the Weierstrass form,

we want the degree to be as small as possible, and in particular ≤ 4. However, as we

essentially study the elliptic curve through its Kodaira map, we can only consider line

bundles of positive degree. Otherwise the Kodaira map would shrink Y to a point, which

obviously would not retain any information. Therefore, a good starting point for looking

for line bundles L on the ambient toric variety is the cone in H2(X,Z) of line bundles with

at least one section. This cone is generated by the first Chern classes of divisors V (zi) cut

out by a single homogeneous coordinate. The degree on Y is a linear form

deg(L|Y ) =

∫
X
D1D2 c1(L), (3.14)

so it is just a question of enumerating weighted integer vectors to list them all up to a

certain degree bound.

3.6 Two exceptions

It turns out that there are only two nef partitions (out of 3134) for which the above

algorithm fails, that is, there is no line bundle on the ambient toric variety such that

• The degree deg(L|Y ) ≤ 4, and

• All required7 sections for finding the Weierstrass form are restrictions of sections from

the ambient space.

7For degree-1, we require the sections of L, L2, L3, and L6. For degree-2, we require L, L2, and L4. For

degree-3, we require L and L3. For degree-4, we require L and L2.
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The two exceptions have the PALP nef ids (4, 3) and (29, 2).8 We start with the former,

which is just P1 × P2 with the nef partition D1 = O(2, 1) and D2 = O(0, 2). Again using

[x0 : x1] ∈ P1 and [y0 : y1 : y2] ∈ P2 as homogeneous coordinates, the two defining

polynomials are

p1 =

2∑
i=0

(a00ix
2
0 + a01ix0x1 + a11ix

2
1)yi ,

p2 =

2∑
i,j=0

bijyiyj =
(
y0 y1 y2

)
b00 b10 b20

b01 b11 b21

b02 b12 b22



y0

y1

y2

 .

(3.15)

Projection onto the P1 factor defines a map Y = V (〈p1, p2〉)→ P1. Its pre-image consists of

two points: for fixed [x0 : x1] ∈ P1, the first equation p1 is a line and the second equation p2

is a conic in P2, which necessarily intersect in two points. These two points can degenerate

to a single point with multiplicity two, and they must do so at precisely four pre-images

because a torus is the double cover of P1 branched at four branch points. In other words,

the discriminant δP1 of the double cover Y → P1 is a quartic in the variables x0, x1 with

coefficients involving a’s and b’s but no y’s.

The form of the discriminant is constrained by symmetry; SL(2,C)×SL(3,C) acts nat-

urally on the ambient space. The complete intersection Y is not invariant under this sym-

metry, but its Weierstrass form must be. More formally, we can combine the action on the

homogeneous coordinates with an action on the coefficients such that the combined action

does not change the equations p1, p2. For example, the M3 ∈ SL(3,C)-part of the action is
y0

y1

y2

 7→M3


y0

y1

y2

 ,


aij0

aij1

aij2

 7→M−1
3


aij0

aij1

aij2

 , (bij) 7→ (M−1
3 )T (bij)M

−1
3 . (3.16)

A covariant is a polynomial that does not transform under the combined group action,

obvious examples are p1 and p2. An invariant is a covariant that, furthermore, does not

depend on the homogeneous coordinates, for example det(bij). The discriminant δ1 that

we are looking for must be a covariant of bi-degree (4, 0) in [x0 : x1] and [y0 : y1 : y2].

The tersest way to characterize δ1 completely is as the Θ′-invariant [32, 33] of the

system of two conics (p2
1, p2). That is, ignore the action on the P1 factor for the moment

and consider p2
1 and p2 as two quadratics in [y0 : y1 : y2]. The determinant ∆ of the

coefficient matrix of a quadratic is clearly an invariant of the action on P2, hence so is

every ε-coefficient in the formal expansion9

∆(p2
1 + εp2) = ∆(p2

1) + εΘ(p2
1, p2) + ε2Θ′(p2

1, p2) + ε3∆(p2) (3.17)

We note that δ1(x0, x1) = Θ′(p2
1, p2) is quartic in x0 and x1, quadratic in the coefficients

aijk and quadratic in the coefficients bij . Finally, the equation of a double cover branched

8For an explanation of the notation for the nef ids see subsection 4.2.
9The invariants ∆(p2

1) and Θ(p2
1, p2) vanish because p2

1 is a degenerate conic.
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at the zeroes of δ1 is

Y 2 = δ1(x0, x1), (3.18)

for which we already know how to write the Weierstrass form [29, 30].

It remains to consider the second exceptional case, that is, the one with PALP nef id

(29, 2). Geometrically, it is the product P1 × dP1, that is, a simple blowup10 of the first

case along a curve P1×{pt.}. Moreover, the two divisors defining the nef partition are just

the pull-backs of the two divisors of the first case. In terms of toric geometry, this means

that the dual polytope ∇ contains the dual polytope of P1 × P2. Dually, the polytope

∆ is contained in the polytope of P1 × P2. Hence the formula for bringing the complete

intersection into Weierstrass form is simply a specialization of the formula from the first

case where some coefficients are set to zero.

4 Classifying toric Mordell-Weil groups

We begin this section by reviewing how to construct Calabi-Yau manifolds as complete

intersections in toric varieties. Having laid the general groundwork, we then calculate all

nef partitions of three-dimensional reflexive polytopes and give a short summary of our

results. Next, we recall the concept of toric Mordell-Weil groups as introduced in [16]

and explain how to compute them for a given ambient fiber space. Finally, we determine

the toric Mordell-Weil group for every elliptic fiber embedded in a three-dimensional toric

variety corresponding to a reflexive polytope and comment on our results.

4.1 Complete intersections in toric varieties

As discovered by Batyrev [34, 35], toric geometry provides a convenient way of constructing

Calabi-Yau manifolds embedded in ambient toric varieties either as hypersurfaces or as

complete intersections. Conveniently, Batyrev’s construction is combinatorial: given a

lattice polytope ∆ in a lattice N ' Zn+1, its dual (or polar) polytope is given by

∆◦ := {y ∈M |〈x, y〉 ≥ −1 ∀x ∈ ∆} . (4.1)

Here M is the dual lattice of N . If ∆◦ is again a lattice polytope, then ∆ is called reflexive.

Furthermore, since (∆◦)◦ = ∆, ∆◦ is reflexive if and only if ∆ is reflexive. Next, we take

all lattice points of ∆◦ that are not interior points of a facet11 to construct a fan from a

fine star triangulation of these points with respect to the origin and call the corresponding

toric variety Xn+1. Denote the homogeneous coordinates of Xn+1 by zi and the respective

points of ∆◦ by xi. Consider then the hypersurface Yn inside Xn+1 given by the equation

p =
∑
yj∈∆

aj
∏
i

z
〈yj ,xi〉+1
i . (4.2)

It defines a Calabi-Yau n-fold inside Xn+1 and there exist simple combinatorial formulas

in terms of the data of ∆ and ∆◦ to compute its cohomology dimensions. Furthermore, it

is worth to note that by exchanging ∆ and ∆◦ one obtains the mirror manifold of Yn.

10We use the notation where P2 = dP0.
11That is, a face of codimension one.
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To generalize this approach to complete intersections, one must specify additional

information. In the hypersurface case, the homology class of the divisor defined by the

vanishing of (4.2) must be Poincaré-dual to the cohomology class of the first Chern class of

the ambient space in order for the hypersurface to be Calabi-Yau. If instead the Calabi-Yau

manifold is to be the intersection of several divisors, then their sum must still be dual to

the first Chern class of the ambient space. However, the classes of the individual divisors

are not fixed anymore.

One such way of additionally specifying the classes of the divisors defining the complete

intersection proceeds by giving a nef partition of the reflexive polytope ∆◦. A nef partition

of ∆◦ into r parts is a set of lattices polytopes ∆i and ∇i with i = 1, . . . , r satisfying

∆ = ∆1 + · · ·+ ∆r ∆◦ = 〈∇1, . . . ,∇r〉conv

∇◦ = 〈∆1, . . . ,∆r〉conv ∇ = ∇1 + · · ·+∇r (4.3)

with 〈·, . . . , ·〉conv the convex hull, + Minkowski addition, and

(∇n,∆m) ≥ −δnm , (4.4)

where here we mean this to hold for every pair of points from ∇n and ∆m. Effectively, we

have split the vertices of ∆◦ into r disjoint subsets spanning the polytopes ∇i and made

sure that they fulfill certain additional constraints. Given such a nef partition, we again

define Xn+r to be the ambient variety obtained from ∆◦ as above. Furthermore, the nef

partition specifies the following r equations defining the Calabi-Yau manifold Yn:

pm =
∑

yj∈∆m

am,j

r∏
n=1

∏
xi∈∇n

z
〈yj ,xi〉+δnm
i , m = 1, . . . , r . (4.5)

Note that one can also interpret a nef partition of ∆◦ as a nef partition of ∇◦. In doing

so, one exchanges Yn by its mirror. Let us point out that the ambient space of a mirror

manifold can differ for different nef partitions of the same polytope.

Finally, we remark that there are two special cases of nef partitions. The simplest

one corresponds to direct products. Given nef partitions of two reflexive polytopes ∆(1)◦

and ∆(2)◦, these define a nef partition of the polytope ∆(1) × ∆(2). The corresponding

complete intersection manifold is then a direct product of complete intersections inside the

direct product of the varieties corresponding to ∆(1)◦ and ∆(2)◦. The other special case

corresponds to projections. If a nef partition has one component ∇i that is spanned only by

a single vertex v, then the complete intersection can be reduced to a complete intersection

in a toric variety of one dimension less whose reflexive polytope is obtained by projecting

∆◦ along v.

4.2 Nef partitions of 3d lattice polytopes

As a test sample for applying our Weierstrass algorithm we use elliptic curves that are em-

bedded in three-dimensional toric varieties and we therefore spend a moment to construct

the corresponding nef partitions. It is well-known that the number of reflexive polytopes

– 12 –
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Figure 1. Histogram of the number of nef partitions of the 4319 reflexive polytopes in three

dimensions.

of a given dimension is finite, but increases very quickly with the dimension: in two di-

mensions, there are precisely 16 reflexive polygons, in three dimensions there exist 4319

reflexive polytopes [36], and the 473, 800, 776 reflexive polytopes in four dimensions were

determined in [37]. The exact number in five dimensions is unknown, but expected to be

large enough to currently make its computation unfeasible. In the case of the 4319 three-

dimensional polytopes, the nef partitions can be computed using PALP [38] via Sage [30]

within a matter of minutes. One finds that there exist 3134 nef partitions. 16 of these

correspond to direct products embedded in Fi × P1 for the 16 two-dimensional varieties,

and 807 correspond to projections.

Last but not least, let us introduce a nomenclature for denoting the nef partitions

dealt with in the following subsections. Three-dimensional reflexive polytopes already

have a unique id as assigned by the PALP database. This id obeys

#points(P ) < #points(P
′) ⇒ id(P ) < id(P ′) (4.6)

and

#points(P ) = #points(P
′) ∧ #vertices(P ) < #vertices(P

′) ⇒ id(P ) < id(P ′) , (4.7)

that is, the polytopes are ordered by the number of integral points and the number of

vertices. Sage can be used to compute the PALP index of a given reflexive polytope. To

furthermore identify the nef partitions uniquely, we run nef.x via the

ReflexivePolytope.nef partitions() (4.8)
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Figure 2. Histogram of the number of polytopes that have a given number of nef partitions. There

are 3090 reflexive three-dimensional polytopes that do not admit a nef partition. The reflexive

polytope with PALP id 214 has the most nef partitions, namely 21.

method of Sage on a given reflexive polytope in PALP normal form. This output is uniquely

ordered and allows us to assign ids to the different nef partitions. By a nef partition with

id (i, j) we therefore mean the (j + 1)th nef partition of the three-dimensional reflexive

polytope with PALP id i as determined by the nef partitions() method of Sage.

4.3 Toric Mordell-Weil groups

Next, we introduce the concept of toric Mordell-Weil groups of an elliptic fiber. First

however, let us quickly recall a few facts about elliptic curves. An elliptic curve is a genus-

one curve, i.e. a T 2, together with one special marked point that defines the zero point of

the curve. Given such an elliptic curve E(K) over some field K, it is well-known that the set

of points on this elliptic curve with coefficients in K forms a group, called the Mordell-Weil

group MW(E) of the curve. The group action can easily be understood visually: in order

to add two points P and Q, intersect the elliptic curve E with the line passing through

both P and Q. It is guaranteed to have a third intersection with E, which we denote by

R. Construct another line passing through R and the zero point of the elliptic curve. The

third intersection point of this line will be P +Q. While it is straightforward to show that

this does indeed define a valid Abelian group action,12 it is a highly non-trivial fact that

the Mordell-Weil group is finitely generated.

Now we would like to consider fibrations Yn of elliptic curves over base manifolds Bn−1.

Non-trivial fibrations of this kind imply that the complex structure of the elliptic curve

12For special cases, a proof and expressions in coordinate form see for example [28, 39].
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varies from point to point in the base and, equivalently, one can view such a fibration as

an elliptic curve over the field of rational functions on the base manifold. With respect to

this function field the rational points of the elliptic curve correspond to the global sections

fi : Bn−1 → Yn (4.9)

of the fibration. In particular, for a non-singular elliptic fibration one has the relation

h1,1(Yn) = h1,1(Bn−1) + rk MW(Yn) + 1 . (4.10)

Here the +1 is owed to the fact that it takes n+ 1 independent global sections f1, . . . , fn+1

in order to generate a Mordell-Weil group of rank n, since one section must serve as the

zero point, or neutral element, of the elliptic fiber. If one takes f0 as zero section, then

σi := fi − f0 (4.11)

can be used as generators of the Mordell-Weil group.

Given a general elliptic fibration, it is a difficult problem to determine all global sec-

tions, even though their total number can be computed using (4.10) and generalizations

thereof. In particular, there exist examples for which the homology classes of the sections

can be determined, but their precise coordinate expressions cannot [8]. More importantly,

the total Mordell-Weil group generally depends on the entire fibration and can therefore

not be computed independently of the base. Nevertheless, there exists a subgroup of the

Mordell-Weil group, the toric Mordell-Weil group, that indeed depends only on the toric

variety the elliptic fiber is embedded in and can therefore be computed without reference

to a specific base manifold or fibration. Let us therefore explain how the toric Mordell-Weil

group is defined by reviewing the material of [16].

Denote the toric ambient fiber space by W1+c, where c is the codimension of the elliptic

fiber E. Then the homogeneous coordinates zi of W1+c define toric divisors V (zi) given by

the vanishing of a single homogeneous coordinate. If such a divisor intersects the elliptic

curve once, i.e. is satisfies ∫
E
V (zi) = 1 , (4.12)

then this divisor will become a global section of the fibration after fibering W1+c over the

base manifold. We call these divisors the toric global sections and call the subgroup

MWT (E) ⊆ MW(E) (4.13)

the toric Mordell-Weil group. In [16] the toric Mordell-Weil groups of elliptic curves em-

bedded as hypersurfaces inside two-dimensional toric varieties were analyzed. In the next

subsection, we will apply the same analysis using the new algorithm for Weierstrass forms

developed in section 3.

4.4 Results for elliptic curves of codimension two

In the final subsection of this section, we present the main results of our computations.

Before proceeding to the results, let us remark on how to compute the Mordell-Weil group
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laws for a given fibration in practice. While we computed the Weierstrass forms of the

elliptic curves by keeping the coefficients in the complete intersection equations general,

this approach makes little sense for determining the Mordell-Weil group laws. Instead, we

generated a considerable number13 of curves with random complex structure coefficients

in Z. We then computed the explicit coefficients of the points cut out by toric sections,

mapped these to the elliptic curve in Weierstrass form and determined the relations between

them. Special care has to be taken when mapping the points from the original elliptic

curve to the curve in Weierstrass form. As discussed in section 3 our map works through

an intermediate embedding inside P231, P112, P2, or P3. However, the maps from the last

three spaces to Weierstrass form are not injective: they in fact map the elliptic curves

4 : 1, 9 : 1 and 16 : 1, respectively. As a consequence, distinct points on the original curve

may be mapped to the same point of the curve in Weierstrass form and therefore torsion

factors of the Mordell-Weil group may get lost. To make sure that we find the correct

torsion groups, it is therefore crucial to use different embeddings of the same curve in case

that the points on the curve in Weierstrass satisfy non-trivial relations with respect to the

Mordell-Weil group law. While the map from P2 to Weierstrass form may eliminate a Z3

torsion factor, the map from P112 will not, and one can therefore determine the correct

toric Mordell-Weil groups even in the presence of torsion.

The computations were performed using PALP [38], Sage [30] and in particular the

Sage modules for polytopes [40] and toric geometry [41]. Furthermore, we made heavy use

of the Sage interface to Singular [42]. For every nef partition of a reflexive three-dimensional

polytope ∆◦, we computed the following data:

• The two defining equations of the complete intersection with general coefficients ai.

• The Weierstrass coefficients f and g of equation (1.1) in terms of ai.

• The integral points vi of ∆◦ that are promoted to toric sections V (zi) after fibering

the elliptic curve over a base manifold.

• The relations between the Mordell-Weil generators σi after choosing a zero point on

the elliptic curve.

• The resulting toric Mordell-Weil group, including its torsion part.

• The Kodaira types of the non-toric singularities that occur if all ai are generic.

Since the full list of results is too long to be included in the text of this paper, we have

created a website at

http://wwwth.mpp.mpg.de/members/jkeitel/Weierstrass/ (4.14)

with a database of the 3134 nef partitions of three-dimensional reflexive polyhedra. For

each such nef partition, there exists a file of the form RP NEF.txt. Let us illustrate the file

format using the nef partition (2355, 0):

13By considerable, we mean O(100) in order to make sure that we indeed obtain a generic example.
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Summary for nef partition with id (2355, 0).

Defining data of the nef partition:

rays = [z0: (1, 0, 0), z1: (0, 1, 0), z2: (0, 0, 1), z3: (-1, 1, 1),

z4: (2, -1, -1), z5: (1, 0, -1), z6: (1, -1, 0), z7: (-1, 1, 0),

z8: (-1, 0, 1), z9: (-2, 1, 1), z10: (1, -1, -1), z11: (0, 0, -1),

z12: (0, -1, 0), z13: (-1, 0, 0)]

nabla_1 = (0, 1, 2, 3, 4, 5, 6)

nabla_2 = (7, 8, 9, 10, 11, 12, 13)

Toric Mordell-Weil group:

zero = (0, 1, 0)

generators = [s0: (0, 0, 1), s1: (2, -1, -1), s2: (-2, 1, 1),

s3: (0, 0, -1), s4: (0, -1, 0)]

relations = [s0-s3 = (1), s1-s2 = (1), s4 = (1)]

group = Z^2 x Z_2

Complete intersection equations:

p1 = a3*z0*z1*z2*z3*z4*z5*z6 + a2*z1*z3*z5*z7*z9*z11*z13

+ a1*z2*z3*z6*z8*z9*z12*z13 + a0*z4*z5*z6*z10*z11*z12*z13

p2 = a7*z0*z1*z2*z3*z7*z8*z9 + a6*z0*z1*z4*z5*z7*z10*z11

+ a5*z0*z2*z4*z6*z8*z10*z12 + a4*z7*z8*z9*z10*z11*z12*z13

Weierstrass coefficients:

f = [...]

g = [...]

Generic non-Abelian singularities:

a7: (0, 0, 2), I_2

a6: (0, 0, 2), I_2

a5: (0, 0, 2), I_2

a4: (0, 0, 2), I_2

a3: (0, 0, 2), I_2

a2: (0, 0, 2), I_2

a1: (0, 0, 2), I_2

a0: (0, 0, 2), I_2

The first block summarizes the toric data defining the nef partition. The first line

defines the variable names zi assigned to the homogeneous variables associated with each

ray of the ambient fan and the second line specifies the nef partition by listing the indices

of the rays spanning ∇1 and ∇2. In this example

∇1 = 〈v0v1v2v3v4v5v6〉conv , ∇2 = 〈v7v8v9v10v11v12v13〉conv . (4.15)
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P1× F1 F2 F3 F4 F5 F6 F7 F8

PALP id (4, 2) (30, 1) (29, 3) (17, 1) (84, 8) (61, 2) (218, 0) (149, 3)

P1× F9 F10 F11 F12 F13 F14 F15 F16

PALP id (194, 5) (113, 0) (283, 0) (356, 3) (453, 0) (505, 0) (509, 0) (768, 1)

Table 2. The PALP ids for the 16 nef partitions that are direct products inside the spaces P1×Fi,

where Fi is a reflexive polygon.

The second paragraph contains information about the toric Mordell-Weil group. This

particular example has six divisors that become (not necessarily independent) sections after

fibering the elliptic curve over a base manifold and the toric Mordell-Weil group generated

by these divisors is Z2 ⊕ Z2. Choosing the divisor corresponding to the ray
(

0 1 0
)T

as

the divisor that cuts out the neutral element on the curve, the remaining five divisors σi,

i = 0, . . . , 4 satisfy three relations. To specify these relations we denote by (i) the generator

of the torsion part times i. Here, this means that the section σ4 generates the Z2 factor

and, up to this torsion part, the pairs of sections σ0 and σ3, and σ1 and σ2, are identified

under the Mordell-Weil group law. Next, the record contains the two complete intersection

equations in order to define the coefficients ai determining the complex structure of the

elliptic curve. The Weierstrass coefficients (omitted here due to their length) are then given

in terms of the ai. Finally, we list the non-Abelian singularities that a such an elliptic curve

with generically chosen ai will have. In this case, there is an additional SU(2)8 gauge group

with branes located along the eight base loci ai = 0 for i = 0, . . . 7.

Statistics of the 3134 elliptic curves of codimension two. Let us give a quick

summary of the results we found. We begin by noting that 16 of the 3134 nef partitions

are direct products. Up to lattice isomorphisms, they are obtained as

∇1 = 〈


1

0

0

 ,


−1

0

0

〉conv , ∇2 = 〈

(
0

vi

)
where vi ∈ Fj〉conv , (4.16)

where Fj is one of the 16 reflexive polygons. Their PALP ids are contained in table 2.

The total ambient space corresponding to the face fan of ∆◦ is P1 × Fj and the complete

intersection factors into a quadratic equation inside P1 and the anticanonical hypersurface

in Fj . Therefore these nef partitions consist of two disjoint elliptic curves, each of which is

described by a hypersurface inside a two-dimensional toric variety. Both of them have the

same complex structure. Clearly, set-ups of this kind do not occur in F-theory compactifi-

cations with fibers defined as hypersurfaces. It would be interesting to study the resulting

low-energy effective theories of such compactifications further, but we reserve this for fu-

ture work. As these spaces appear to make up a class of their own, we will not include

them in our analyses below and instead restrict to the remaining 3118 nef partitions.
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Manifolds Toric sections

294 0

315 1

696 2

575 3

614 4

327 5

217 6

58 7

22 8

Figure 3. Histogram of the number of toric sections for the 3118 nef partitions of three-dimensional

reflexive polytopes that are not direct products.

Manifolds Mordell-Weil rank

453 0

1038 1

987 2

310 3

36 4

Figure 4. Histogram of the toric Mordell-Weil rank for the nef partitions of three-dimensional

reflexive polytopes. The 326 complete intersections that are either a direct product or do not have

a toric section are excluded.

Trivial group Z2 Z3 Z4 Z Z⊕ Z2 Z⊕2 Z⊕2 ⊕ Z2 Z⊕3 Z⊕3 ⊕ Z2 Z⊕4

315 113 24 1 931 107 985 2 309 1 36

Table 3. The full toric Mordell-Weil groups for the elliptic fibers of codimension two. Note that

we have omitted direct products and the genus-one curves that do not have a single toric point.

We list in figure 3 the distribution of the number of toric divisors corresponding to

sections among the complete intersection curves. Note that not all of these divisors will

be independent in homology. In figure 4 we give the distribution of the toric Mordell-Weil

ranks. The highest toric rank that we find is four. Naturally, not all groups of the same

rank are equal, as some have additional torsion factors. In table 3 we give a complete survey

of the toric Mordell-Weil groups for the models that possess at least one toric section. As

one might expect, there are additional toric Mordell-Weil groups when compared with the

elliptic curves that are embedded in toric surfaces. The groups that do not occur for elliptic

curves that are hypersurfaces are

Z4, Z⊕2 ⊕ Z2, Z⊕3 ⊕ Z2, Z⊕4 . (4.17)
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Last, but not least, let us comment on the appearance of generic non-Abelian gauge

groups. As noted in [16] and recently examined in detail in [17], certain fibers can generi-

cally induce non-Abelian singularities. These generic non-Abelian singularities differ from

the ones induced by tops [3, 43]. When a non-Abelian singularity is enforced by a top, the

ambient space of the elliptic fiber becomes reducible over a divisor in the base and as a con-

sequence, the elliptic fiber does, too. In the case of these generic non-Abelian singularities

the ambient space remains irreducible, but the fiber splits into various irreducible pieces.

Such non-Abelian singularities cannot be read off directly from the toric data of the am-

bient space and therefore we called them non-toric non-Abelian singularities in [16]. Note

also that the base locus over which such singularities occur is not defined by the vanishing

of a single homogeneous coordinate, but rather a polynomial in the base coordinates.

Since these non-toric singularities are not directly visible in the defining data of the

ambient space, the exceptional divisors do not belong to rays of a top, but instead to rays

that are part of the fan defining the ambient space of the generic fiber. Since the maximum

number of integral points of a reflexive polytope of given dimension is bounded from above,

the maximum number of non-toric exceptional divisors and therefore the total rank of the

non-toric gauge group is, too. To illustrate this, consider the 16 reflexive polygons. F16
14

is the one with most integral points, namely ten. The nine non-zero points give rise to

seven independent homology classes. One of them corresponds to the neutral element of

the elliptic curve, so the maximum allowed gauge rank is six. In fact, one can show that

the maximal non-toric gauge group is SU(3)3/Z3 [17].

Since three-dimensional reflexive polytopes can contain more integral points than their

two-dimensional analogues (the largest one has 39 integral points), the non-toric gauge

group content is considerably more diverse. Not only can one find non-toric GUT candi-

dates, but there are also fibers that generically exhibit E6, E7, and E8 singularities. In

appendix A we list the non-toric singularities for the 3118 non-product nef partitions.

5 Examples

Having studied the toric Mordell-Weil groups of the elliptic curves of codimension two, the

next natural step would be to classify their tops, i.e. all ways of generating non-Abelian

singularities torically. While the classification of two-dimensional tops was achieved in [44],

three-dimensional tops have so far not been studied. However, as these tops appear to have

a fairly involved structure, we reserve this task for future work. Instead, we present several

interesting examples illustrating features that do not occur for fibers in toric surfaces.

5.1 SU(5) × U(1)2 with different antisymmetric representations

Let us begin with the example that motivated this work in the first place: an SU(5)

GUT model with U(1) factors. As mentioned in the introduction, fully resolved SU(5) F-

theory models with fibers embedded as hypersurfaces suffer from the constraint that their

antisymmetric representations always have the same charge under additional U(1) gauge

factors. For complete intersection fibers, we do not expect this to happen anymore.

14Here we are using the notation of [16], in which F16
∼= P2/Z3.
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v0 v1 v2 v3 v4 v5
1

0

0




0

1

0




0

0

1



−1

0

−1



−1

−1

0




1

1

1


Table 4. Vertices of the three-dimensional reflexive polytope with PALP id 22.

In order to confirm the existence of multiple 10 representations, we are therefore led

to consider a nef partition with non-trivial toric Mordell-Weil group. To be concrete, let

us pick the following nef partition of the polytope given in table 4:

∇1 = 〈v1v2v3v4v5〉conv , ∇2 = 〈v0〉conv . (5.1)

Since ∇2 is one-dimensional, this nef partition is a projection. In particular, this means

that we can directly solve the second equation, plug the result into the first equation and

obtain the Weierstrass form of a hypersurface equation. According to the conventions of

subsection 4.2, this nef partition has the unique id (22, 0). Looking it up in our classification

results, we find that it has three sections, namely the divisors corresponding to the rays

v1, v2, and v5. Let us divisor V (z5) as the neutral element of our elliptic curve. Then

σ1 = V (z0)− V (z5) and σ2 = V (z2)− V (z5) generate a Z⊕ Z group.

Let us now write down the equations that define the complete intersection inside the

three-dimensional toric variety corresponding to the reflexive polytope of table 4. Keep-

ing the coefficients general, the equations of the complete intersection defined by the nef

partition (5.1) are

p1 = ã0z
2
1z

2
2z

3
5 + ã1z

2
1z2z3z

2
5 + ã2z1z

2
2z4z

2
5 + ã3z

2
1z

2
3z5 + ã4z1z2z3z4z5 + ã5z

2
2z

2
4z5 (5.2)

+ ã6z0z1z2z
2
5 + ã7z1z

2
3z4 + ã8z2z3z

2
4 + ã9z0z1z3z5 + ã10z0z2z4z5 + ã11z0z3z4 + ã12z

2
0z5

p2 = b̃0z1z2z5 + b̃1z1z3 + b̃2z2z4 + b̃3z0 . (5.3)

Here one can see that this nef partition is indeed a projection: by solving p2 = 0 for z0 and

inserting the solution in p1 the complete intersection is reduced to a hypersurface inside

the toric variety corresponding to the polytope obtained by projecting along v0. However,

this still suffices for our purposes. Since it is the limited number of triangulations of the

SU(5) tops for a codimension one hypersurface that constrains the 10 charges, we are still

circumventing this constraint here by considering triangulations of the higher-dimensional

variety in which the elliptic curve has codimension two.

Next, we tune the ãi and b̃i such as to enforce an SU(5) singularity along the divisor

e0 = 0 in the base manifold. Then we resolve that singularity introducing exceptional

divisors ei, i = 1, . . . , 4 and find that the coefficients ãi and b̃i take the form

ã0 = a0 · e3
0e1e

2
2e

2
4 ã1 = a1 · e2

0e1e2e4 ã2 = a2 · e2
0e1e

2
2e4

ã3 = a3 · e0e1 ã4 = a4 · e0e1e2 ã5 = a5 · e0e1e
2
2

ã6 = a6 · e0e4 ã7 = a7 · e0e
2
1e2e3 ã8 = a8 · e0e

2
1e

2
2e3
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e0 e1 e2 e3 e4
0

0

0

w0




−1

−1

−1

w0




−1

−1

0

w0




0

−1

−1

w0




1

0

0

w0


Table 5. Torically, the blowup of (5.4) corresponds to introducing the top defined here, where w0

is a ray of the fan of the base. The GUT brane will then be located on the divisor corresponding to

w0. Note that here we and in (5.4) we are denoting the rays and the corresponding homogeneous

variables by the same letters ei.

ã9 = a9 · e0e1e3e4 ã10 = a10 ã11 = a11 · e1e3

ã12 = a12 · e0e1e
2
3e

2
4 (5.4)

and

b̃0 = b0 · e0e2e4 b̃1 = b1 b̃2 = b2 · e2 b̃3 = b3 · e3e4 . (5.5)

Here ai and bi are polynomials in the base variables that depend on ei only through the

combination w0 ≡ e0e1e2e3e4. The toric data corresponding to this blowup are given in

table 5.

As a power series in w0, the Weierstrass coefficients read

f = − 1

48

(
a4

10 · b41 + 4 · a2
10 · b21 · c1 · w0 + c2 · w2

0

)
+O(w3

0) (5.6)

g =
1

864

(
a6

10 · b61 + 6 · a4
10 · b41 · c1 · w0 + 3b21 · a2

10 · c3 · w2
0 + c4 · w3

0

)
+O(w4

0) , (5.7)

where the ci are irreducible polynomials in ai and bi. This implies that the discriminant

∆ = 4f3 + 27g2 takes the form

∆ =
1

16

(
a4

10 · b41 · a11 · b2 · b3 · c5 · c6 · c7 · w5
0 + a2

10 · b21 · c8 · w6
0 + c9 · w7

0

)
+O(w8

0) (5.8)

with

c5 = a10a12b
2
1 − a9a10b1b3 + a6a11b1b3 + a3a10b

2
3 (5.9)

c6 = −a8a10b
2
1 + a5a11b

2
1 + a7a10b1b2 − a4a11b1b2 + a3a11b

2
2 (5.10)

c7 = a3a
2
10b

2
0 + a4a6a10b0b1 − a1a

2
10b0b1 + a5a

2
6b

2
1 − a2a6a10b

2
1 + a0a

2
10b

2
1

− 2a3a6a10b0b2 − a4a
2
6b1b2 + a1a6a10b1b2 + a3a

2
6b

2
2 . (5.11)

From the vanishing orders of the f , g and ∆ we observe that there are seven distinct matter

curves and list them in table 6.

While the appearance of two different 10 curves and six distinct 5 curves is promising,

it is crucial to check which of these curves are actually realized in a generic fibration of
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Name Equation Singularity type SU(5) representation

T1 a10 ∩ w0 SO(10) 10

T2 b1 ∩ w0 SO(10) 10

F1 a11 ∩ w0 SU(7) 5

F2 b2 ∩ w0 SU(7) 5

F3 c5 ∩ w0 SU(7) 5

F4 c6 ∩ w0 SU(7) 5

F5 c7 ∩ w0 SU(7) 5

F6 b3 ∩ w0 SU(7) 5

Table 6. The matter curves for the top of table 5.

Singularity type Coupling Multiplicity

SU(7) 5(4,3) × 5(1,2) 54

SU(7) 5(−1,3) × 5(1,2) 39

SU(7) 5(−1,3) × 5(−4,−3) 36

SU(7) 5(−6,−7) × 5(1,2) 27

SU(7) 5(−6,−7) × 5(−4,−3) 12

SU(7) 5(−6,−7) × 5(1,−3) 9

SU(7) 5(−6,−2) × 5(1,2) 9

SU(7) 5(−6,−2) × 5(−4,−3) 6

SU(7) F5(−6,−2) × 5(1,−3) 6

SU(7) 5(−6,−7) × 5(6,2) 3

SO(12) 10(−3,−1) × 5(4,3) × 5(−1,−2) 15

SO(12) 10(2,4) × 5(−1,−2) × 5(−1,−2) 3

SO(12) 10(2,4) × 5(−6,−2) × 5(4,3) 3

E6 10(3,1) × 10(3,1) × 5(−6,−2) 3

E6 10(3,1) × 10(−2,−4) × 5(−1,3) 3

Table 7. All couplings involving multiple non-Abelian matter representations in the example of

eq. (5.13). Note that there are additional non-minimal singularities that do not list here.
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this top over a base manifold. Next, we therefore fiber this space over a P3. Doing so can

be achieved by embedding the rays of table 4 into Z6 according to

vi 7→ ui ≡ (vi, 0, 0, 0), i = 1, . . . , 5 , (5.12)

adding the blowup rays from table 5 with w0 = (1, 0, 0) and adding the remaining 3 base

rays:

u7 = (0, 0, 0,−1,−1,−1) , u8 = (n1, n2, n3, 0, 1, 0) , u9 = (0, 0, 0, 0, 0, 1) . (5.13)

Here the ni are integers encoding the fibration of the fiber over the base. More specifically,

the ni determine which line bundles the fiber coordinates are sections of. For our purposes,

we choose (n1, n2, n3) = (−1, 0, 0). After using PALP to compute all nef partitions of the

resulting polytope, we pick the one with

∇1 = 〈u1, u2, u3, u4, u5, u6, u7, u8, e0, e1, e2〉conv , ∇2 = 〈u0, e3, e4〉conv . (5.14)

It has Hodge numbers h1,1 = 8, h2,1 = 0, and h3,1 = 141. For this specific choice of fibration,

both b0 and b3 are constants. Consequently, the curve F6 is not realized. However, all

other curves exist and in particular, there are two different antisymmetric representations.

Using the Chern-Simons matching as in [9, 45, 46], we find that the realized curves have

the following charges under the two U(1)s:

T1 : 10(3,1) , T2 : 10(−2,−4) (5.15)

F1 : 5(−6,−7) , F2 : 5(−6,−2) , F3 : 5(−1,3) , F4 : 5(4,3) , F5 : 5(−1,−2) (5.16)

We also find the following singlet states:

1(5,0) , 1(0,5) , 1(5,5) , 1(5,10) , 1(10,5) , 1(10,10) . (5.17)

Finally, we compute the Yukawa couplings for the given example and find the ones listed

in table 7.

In summary, we have managed to construct a fully explicit F-theory model with gauge

group SU(5)×U(1)2, in which the torically realized SU(5) singularity gives rise to a gauge

theory with two different 10 representations. Clearly the example studied here is not

intended to be used as a full-fledged GUT model. In more realistic models several issues

would need to be addressed, such as the fact that there exist non-minimal singularities at

points in the base manifold whose resolution leads to a non-flat fibration. Furthermore,

the topology of the GUT divisor is too simple in order to allow hypercharge flux with

the desired properties. In principle, both these points can be addressed by choosing the

fibration more carefully than we did following equation (5.13).
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v0 v1 v2 v3
−1

−1

−1




0

0

1




0

1

0




1

0

0


Table 8. Vertices of the reflexive polytope corresponding to P3. Since it has the least integral

points of all reflexive polytopes in three dimensions, it has PALP id 0.

5.2 SU(5) and a discrete symmetry

The second example we consider is a nef partition of the polytope with the least integral

points, that is the one corresponding to P3. Its polytope is of course well-known, but for

completeness we list it in table 8. All toric divisors V (zi) inside P3 lie in the same homology

class and therefore it can only have two nef partitions: the one corresponding to a partition

of 3 + 1 vertices and the nef partition corresponding to a partition of 2 + 2 vertices. The

first is again a projection and to have some variety, we therefore focus on the latter. That

is, we take our nef partition to be

∇1 = 〈v0, v3〉conv , ∇2 = 〈v1, v2〉conv . (5.18)

This implies automatically that all toric divisors intersect a generic complete intersection

of this type in four points:

V (zi) ∩ E =

∫
E

[V (zi)] =

∫
P3

[2H] · [2H] · [H] = 4 . (5.19)

A generic fibration with this fiber will therefore not have a section. As noted in the

introduction, F-theory models without section have recently received quite some attention,

see [2, 17–21]. However, in these models the Calabi-Yau manifolds always had 2- or 3-

sections leading to Z2 or Z3 discrete gauge symmetries, respectively. As the biquadric in

P3 has a 4-section, we expect to find a discrete Z4 gauge group. In the following we will

try to collect some further evidence for this.

To do, let us take the same approach as with the previous example and write down

the defining equations of the complete intersection. They read

p1 = ã0z
2
0 + ã1z0z1 + ã2z

2
1 + ã3z0z2 + ã4z1z2 + ã5z

2
2 + ã6z0z3 + ã7z1z3 + ã8z2z3 + ã9z

2
3

p2 = b̃0z
2
0 + b̃1z0z1 + b̃2z

2
1 + b̃3z0z2 + b̃4z1z2 + b̃5z

2
2 + b̃6z0z3 + b̃7z1z3 + b̃8z2z3 + b̃9z

2
3 .

(5.20)

Note that such biquadrics have been studied before in [47] and, with the restriction to the

triple blowup of P3, in [15]. Since this nef partition is not a projection, one cannot bring

this complete intersection into Weierstrass form by solving one of the equations for one

variable and substituting the result into the other equation.

Next, we tune the ãi and b̃i such as to enforce an SU(5) singularity along the divisor

e0 = 0 in the base manifold. Then we resolve this singularity by introducing exceptional
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e0 e1 e2 e3 e4
0

0

0

w0




−1

−1

−1

w0




−1

−1

0

w0




0

−1

0

w0




0

−1

−1

w0


Table 9. As before, the blowup of equations (5.21) and (5.22) corresponds to introducing the top

defined here, where w0 is a ray of the fan of the base. The GUT brane will then be located on the

divisor corresponding to w0. We again denote rays and corresponding homogeneous variables by

the same letters.

divisors ei, i = 1, . . . , 4 as specified torically in terms of the top of table 9. We find that

the coefficients ãi and b̃i take the form

ã0 = a0 · e2
1e

2
2e3e4 ã1 = a1 · e1e

2
2e3 ã2 = a2 · e0e1e

3
2e

2
3

ã3 = a3 · e1e2 ã4 = a4 · e0e1e
2
2e3 ã5 = a5 · e0e1e2

ã6 = a6 · e1e2e3e4 ã7 = a7 · e2e3 ã8 = a8

ã9 = a9 · e3e4 (5.21)

and

b̃0 = b0 · e1e4 b̃1 = b1 b̃2 = b2 · e0e2e3

b̃3 = b3 · e0e1e4 b̃4 = b4 · e0 b̃5 = b5 · e2
0e1e4

b̃6 = b6 · e0e1e3e
2
4 b̃7 = b7 · e0e3e4 b̃8 = b8 · e2

0e1e3e
2
4

b̃9 = b9 · e2
0e1e

2
3e

3
4 . (5.22)

Here ai and bi are polynomials in the base variables that depend on ei only through the

combination w0 ≡ e0e1e2e3e4. As a power series in w0, the Weierstrass coefficients read

f = − 1

768

(
a4

8 · b41 + 2 · a2
8 · b21 · c1 · w0 + c2 · w2

0

)
+O(w3

0) (5.23)

g =
1

55296

(
a6

8 · b61 − 3 · a4
8 · b41 · c1 · w0 + a2

8 · b21 · c3 · w2
0 + c4 · w3

0

)
+O(w4

0) , (5.24)

where the ci are irreducible polynomials in ai and bi. Then the discriminant is

∆ =
1

216

(
a4

8 · b41 · c5 · c6 · c7 · c8 · w5
0 + a2

8 · b21 · c9 · v6
0 + c10 · w7

0

)
+O(w8

0) (5.25)

with

c5 = −b1b3b4 + b0b
2
4 + b21b5 (5.26)

c6 = a3a7a8b0 − a1a
2
8b0 − a3a6a8b1 + a0a

2
8b1 + a2

3a9b1 (5.27)

c7 = −a5a
2
7b1 + a4a7a8b1 − a2a

2
8b1 − a3a7a8b2 + a1a

2
8b2 + a3a

2
7b4 − a1a7a8b4 (5.28)

c8 = −a2
9b1b3b4 + a2

9b0b
2
4 + a2

9b
2
1b5 + a8a9b1b4b6 + a8a9b1b3b7 − 2a8a9b0b4b7

− a2
8b1b6b7 + a2

8b0b
2
7 − a8a9b

2
1b8 + a2

8b
2
1b9 . (5.29)
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Name Equation Singularity type SU(5) representation

T1 a8 ∩ w0 SO(10) 10

T2 b1 ∩ w0 SO(10) 10

F1 c5 ∩ w0 SU(7) 5

F2 c6 ∩ w0 SU(7) 5

F3 c7 ∩ w0 SU(7) 5

F4 c8 ∩ w0 SU(7) 5

Table 10. The matter curves in the example with the elliptic fiber embedded as a biquadric in P3.

Singularity type Coupling Multiplicity

SU(7) F1 × F2 30

SU(7) F1 × F3 42

SU(7) F1 × F4 36

SU(7) F2 × F3 33

SU(7) F2 × F4 40

SU(7) F3 × F4 56

SO(12) T1 × F1 × F4 6

SO(12) T1 × F2 × F2 1

SO(12) T1 × F3 × F3 2

SO(12) T2 × F1 × F1 6

SO(12) T2 × F2 × F3 9

SO(12) T2 × F4 × F4 9

E6 T1 × T1 × F3 3

E6 T1 × T2 × F2 3

E6 T2 × T2 × F3 12

Table 11. All couplings involving multiple non-Abelian matter representations in the example with

the elliptic fiber embedded in P3. Note that there are additional non-minimal singularities that do

not list here.

We observe that there are six distinct matter curves and list them in table 10. This by

itself is another piece of evidence that there exists in fact an order 4 discrete symmetry.

Arguing along the lines of [20, 21], it is this symmetry that helps to distinguish the four

5 representations that would otherwise have identical quantum numbers in the low-energy

effective action.

As before, we can make this more concrete by constructing an explicit example. To

do so, we use the same embedding into Z6 as in equation (5.13), but this time we set

– 27 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
5

(n1, n2, n3) = (0, 0, 1) and denote the rays obtained by embedding the base divisors wi,

i = 1, 2, 3 by u5, u6, and u7. The resulting six-dimensional lattice polytope has 33 nef

partitions. Of these, let us pick the nef partition

∇1 = 〈u0, u3, u5, e1, e2, e3, e4〉conv , ∇2 = 〈u1, u2, e0, u6, u7〉conv , (5.30)

which has the Hodge numbers h1,1 = 6, h2,1 = 0, and h3,1 = 110. For this explicit example,

we find that all the curves listed in table 10 are in fact realized geometrically. In table 11 we

furthermore list the Yukawa points involving multiple non-Abelian representations. Since

Yukawa couplings must be invariant under gauge symmetries, the couplings that do not

involve singlets allow us to determine the Z4 charges of the six matter curves. Let us

denote the neutral element of Z4 by 0 and call the generator e. Then we have that the two

couplings involving only T1 and F3 imply

2 ·QZ4(T1) +QZ4(F3) = 0 , 2 ·QZ4(F3) = T1 (5.31)

which immediately leads to

QZ4(T1) = QZ4(F3) = 0 . (5.32)

The remaining couplings then imply that

QZ4(F2) = QZ4(T2) = 2e . (5.33)

Last but not least, we have QZ4(F1/4) ∈ {e, 3e}. However, e and 3e are the only order

4 elements of Z4 and we could just as well take e′ = 3e as the generator of Z4. As a

consequence, one can simply choose that

QZ4(F1) = e , QZ4(F4) = 3e . (5.34)

With these charge assignments one finds that singlets with all allowed Z4 charges must be

present in order to make all the couplings of table 11 invariant.

Put in a nutshell, we find that one can easily realize F-theory models with a non-

Abelian gauge group accompanied solely by an additional discrete symmetry of order 4. A

convenient way of doing so proceeds by embedding the elliptic fiber as a biquadric inside P3.

There are numerous ways of extending the treatment here, such as connecting this model

to others in terms of Higgsings and conifold transitions in the circle-compactified theories.

5.3 Example with Mordell-Weil torsion Z4

As a final example, let us take a quick look at a model with Mordell-Weil torsion Z4. This

torsion group does not exist generically for codimension one elliptic fibers [16, 17, 48] and

even in codimension two there is only a single example as can be seen from table 3.

Mordell-Weil torsion was studied extensively in [48] and it was found that it impacts

the global structure of the non-Abelian gauge group. Given a singularity of type An−1,

the universal covering group is SU(n), which, without Mordell-Weil torsion, constitutes the

gauge group of the F-theory model. In the presence of a non-trivial Mordell-Weil torsion

group Zk this changes: the non-Abelian gauge group becomes SU(n)/Zk. By construction
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v0 v1 v2 v3 v4 v5 v6 v7
1

0

0




0

1

0




1

−1

0



−1

0

0




0

1

2



−1

0

−2



−1

−2

−2




2

1

2


Table 12. Vertices of the three-dimensional reflexive polytope with PALP id 3415.

v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18
0

−1

−1




1

0

1



−1

−1

−1




0

0

1



−1

−1

−2




0

0

0




1

1

2




0

0

−1




1

1

1



−1

0

−1




0

1

1


Table 13. Integral points of the reflexive polytope with PALP id 3415 that are neither vertices

nor the origin. In order to fully resolve every fibration of the nef partition (5.36) one must use all

of these points as rays of the toric fan.

the universal covering group has a trivial first fundamental group, and therefore the effect

of non-trivial Mordell-Weil torsion is that the non-Abelian gauge group of the low-energy

effective theory is no longer simply connected:

π1(SU(n)/Zk) = Zk . (5.35)

In the examples studied in [48] Mordell-Weil torsion groups Z2 and Z3 always came ac-

companied by gauge groups of type SU(2n) and SU(3n), respectively. Since SU(n) has a

Zn center generated by the identity matrix times e
2πi
n , one can mod out Zk by eliminating

the center (or a subgroup thereof) of SU(k · n).

The corresponding reflexive polytope has PALP id 3415 and we list its defining data

in table 12. It has a single nef partition, namely

∇1 = 〈v0, v3, v5, v6〉conv , ∇2 = 〈v1, v2, v4, v7〉conv . (5.36)

In order to write down the most general complete intersection corresponding to this nef

partition, we must use every integral point of the polytope defined in table 12 apart from

the origin. The additional eleven points are listed in table 13.

After resolution, the complete intersection defined by (5.36) is defined by the following

two polynomials:

p1 = a0z0z3z5z6z8z10z12z15z17 + a1z
2
0z

2
7z8z9z14z15z16 + a2z

2
3z

2
4z10z11z14z17z18

p2 = b0z
2
1z

2
5z12z15z16z17z18 + b1z

2
2z

2
6z8z9z10z11z12 + b2z1z2z4z7z9z11z14z16z18 . (5.37)

This time we are not interested in engineering additional singularities, but rather in con-

firming that models with this fiber contain the SU(4) gauge factors that we expect to exist.

To this end we compute the discriminant of the elliptic curve and find

f = − 1

48
·
(
16a2

1a
2
2b

2
0b

2
1 − 16a2

0a1a2b0b1b
2
2 + a4

0b
4
2

)
(5.38)
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g =
1

864
·
(
8a1a2b0b1 − a2

0b
2
2

)
·
(
8a2

1a
2
2b

2
0b

2
1 + 16a2

0a1a2b0b1b
2
2 − a4

0b
4
2

)
(5.39)

∆ = − 1

16
· a2

0 · b22 · a4
1 · a4

2 · b40 · b41 ·
(
−16a1a2b0b1 + a2

0b
2
2

)
. (5.40)

From the vanishing orders we see that there are two I2 and four I4 singularities. Since

9g

2f

∣∣∣
a1=0

=
9g

2f

∣∣∣
a2=0

=
9g

2f

∣∣∣
b1=0

=
9g

2f

∣∣∣
b2=0

= −1

4
a2

0b
2
3 (5.41)

the I4 singularities are of split type (see [49] or appendix A) and we therefore see that there

is indeed a non-toric SU(2)2×SU(4)4/Z4 gauge group. One can mod out the Z4 torsion by

identifying it with the diagonal subgroup of the center Z⊕4
4 of the SU(4) gauge group part.

It is interesting to see that up to a lattice isomorphism the reflexive polytope ∇◦

associated to the nef partition (5.36) is precisely the polytope with PALP id 0. Under the

same lattice isomorphism, the ∆i of (5.36) are mapped to the ∇i of (5.18) and we therefore

see that the fiber considered in this subsection is mirror-dual to the fiber of subsection 5.2.

In particular, it appears that under this duality the discrete gauge group part is mapped to

the torsion part of the Mordell-Weil group and vice versa. The same behavior was observed

in [17] for hypersurface fibers and it is intriguing to speculate about a possible physical

reason underlying this observation.

Finally, let us note that it would be interesting to study explicit realizations of such

fibrations. While this is possible in principle, the large number of involved points might

make it technically challenging to find a triangulation that gives rise to an appropriate

toric fan of the ambient variety. In the recent work [50] it was used that the relevant

triangulations are star triangulations with respect to the origin in order to speed up the

calculation. It would exciting to incorporate such an algorithm in the Sage software package

and apply it to these spaces.

6 Conclusions

In this paper we proposed a new algorithm to bring a large class of elliptic curves as

well as the Jacobians of genus-one curves into Weierstrass form. The essential step of this

algorithm is to obtain an appropriate line bundle whose sections can be used as coordinates

for an embedding into either P231, P112, P2, or P3. While it is not always possible to identify

such a line bundle, the class for which this can be achieved is much larger than the class

of models that one has so far been able to bring into Weierstrass form. To illustrate this

fact, we computed the Weierstrass forms of all nef partitions of three-dimensional reflexive

polytopes that do not correspond to product spaces, which allowed us to compute the toric

Mordell-Weil group of all 3134 complete intersection curves of codimension two. Compared

to the analogous analysis for hypersurfaces [16], we find additional groups, such as a free

Abelian group of rank four or the pure torsion group Z4. Additionally, we computed the

non-toric non-Abelian gauge groups and again found a considerably larger variety of than

those that were encountered in [17] for hypersurface fibers.

In section 5 we proceeded by selecting three particular examples that exhibit features

that are ruled out for hypersurface fibers. These are torically realized SU(5) models whose
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antisymmetric representations have different charges under the additional Abelian factors,

models with a discrete Z4 symmetry and, finally, F-theory models with a Z4 torsion factor.

For the first two types we give an explicit toric realization with non-Abelian gauge group

SU(5) and determine the matter curves that are present as well as the Yukawa couplings

that the non-Abelian representations are involved in.

There are numerous exciting ways in which this work could be extended in the future.

On the one hand, there are systematic questions that one could address, such as a classifi-

cation of higher-dimensional tops encoding the toric gauge groups or the construction of all

fibrations with a given top. For hypersurfaces these questions have already been answered

in [44] and [16], respectively, but it would be interesting to see how these result generalize

to higher codimensions. On the other hand, one could use the methods developed here in

order to construct explicit scenarios for studying new physical effects. Section 5 dealt with

some potentially interesting set-ups, but naturally there exist many more. Viewed more

generally, one could hope that access to a large number of fiber types might allow one to

make observations about the landscape of F-theory models [51–54]. In [17] such observa-

tions were made based on the results for the 16 hypersurface fibers and, for instance, a

network of Higgsing transitions was found. Given the much larger number of models stud-

ied here might allow to find even deeper relations between seemingly different fiber types.
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A List of non-toric non-Abelian gauge groups

In this appendix we list the non-toric non-Abelian gauge groups that are present if the co-

efficients ai defining the complete intersection are chosen generically. In order to determine

these singularities we computed the Weierstrass forms of the genus-one curves and factor-

ized f , g and ∆. The vanishing degrees along an irreducible factor then determine the singu-

larity over the vanishing locus of that factor. We quote table 14 from [49] for a dictionary to

translate the vanishing degrees into the Kodaira type. Since the total number of singulari-

ties we find is very large, we have split up our results into tables 15, 16, 17 and 18. Note that

we do not include the disconnected spaces corresponding to direct product nef partitions.
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ordΣ(f) ordΣ(g) ordΣ(∆) Eq. of monodromy cover g(Σ)

I2 0 0 2 — su(2)

Im, m ≥ 3 0 0 m ψ2 + (9g/2f)|z=0 sp(
[
m
2

]
) or su(m)

I∗0 ≥ 2 ≥ 3 6 ψ3 + (f/z2)|z=0 · ψ + (g/z3)|z=0 g2 or so(7) or so(8)

I∗2n−5, n ≥ 3 2 3 2n+ 1 ψ2 + 1
4
(∆/z2n+1)(2zf/9g)3|z=0 so(4n−3) or so(4n−2)

I∗2n−4, n ≥ 3 2 3 2n+ 2 ψ2 + (∆/z2n+2)(2zf/9g)2|z=0 so(4n−1) or so(4n)

IV ∗ ≥ 3 4 8 ψ2 − (g/z4)|z=0 f4 or e6

III∗ 3 ≥ 5 9 — e7

II∗ ≥ 4 5 10 — e8

Table 14. Kodaira-Tate classification of singular fibers, monodromy covers, and gauge algebras,

taken from [49]. The column with the gauge algebras is to be understood as follows: assume that

the defining equation of the monodromy cover splits into n irreducible pieces. Then the resulting

gauge algebra is the nth algebra listed in the last column.

Generic non-toric Kodaira singularities Occurences

No singularity 88

IV ∗ 3

IV ∗ × I2 8

IV ∗ × I2 × I3 9

IV ∗ × I2
2 4

IV ∗ × I2
2 × I3 4

IV ∗ × I3
2 × I3 1

IV ∗ × I3
3 1

IV ∗ × I4
3 1

III∗ × I2 2

III∗ × I2 × I3 4

III∗ × I2
2 1

III∗ × I2
2 × I4 1

III∗ × I3
2 × I4 1

II∗ × I2 × I3 1

Table 15. List of generic non-toric E- and F4-type Kodaira singularities and the number of times

they occur.
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Generic non-toric Kodaira singularities Occurences

I∗0 39

I∗0 × I2 47

I∗0 × I2 × I3 15

I∗0 × I2 × I2
3 4

I∗0 × I2
2 27

I∗0 × I2
2 × I3 17

I∗0 × I2
2 × I4 5

I∗0 × I2
2 × I2

4 4

I∗0 × I3
2 15

I∗0 × I3
2 × I4 4

I∗0 × I4
2 2

I∗0 × I4
2 × I4 3

I∗0 × I5
2 2

I∗1 9

I∗1 × I2 20

I∗1 × I2 × I3 9

I∗1 × I2
2 13

I∗1 × I2
2 × I3 8

I∗1 × I2
2 × I2

3 2

I∗1 × I3
2 4

I∗1 × I3
2 × I3 2

I∗2 × I2 3

I∗2 × I2 × I3 7

I∗2 × I2
2 5

I∗2 × I2
2 × I4 2

I∗2 × I3
2 × I4 2

I∗2 × I4
2 1

I∗2 × I5
2 1

I∗3 × I2 × I3 2

I∗3 × I2
2 × I3 1

I∗4 × I2
2 × I4 1

Table 16. List of generic non-toric G2 and SO-type Kodaira singularities and the number of times

they occur.
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Generic non-toric Kodaira singularities Occurences

I2 263

I2 × I3 141

I2 × I3 × I4 41

I2 × I3 × I5 12

I2 × I3 × I6 32

I2 × I3 × I7 6

I2 × I2
3 41

I2 × I2
3 × I4 15

I2 × I3
3 13

I2 × I4 136

I2 × I2
4 4

I2 × I4
4 1

I2 × I5 26

I2 × I6 6

I2
2 326

I2
2 × I3 170

I2
2 × I3 × I4 69

I2
2 × I3 × I5 14

I2
2 × I3 × I6 12

I2
2 × I3 × I7 4

I2
2 × I3 × I8 2

I2
2 × I2

3 54

I2
2 × I2

3 × I4 15

I2
2 × I2

3 × I5 6

I2
2 × I3

3 3

I2
2 × I3

3 × I4 2

I2
2 × I4 134

I2
2 × I4 × I6 6

I2
2 × I4 × I8 8

I2
2 × I2

4 27

I2
2 × I3

4 12

I2
2 × I4

4 1

I2
2 × I5 28

I2
2 × I6 22

I2
2 × I7 2

Table 17. List of generic non-toric Sp and SU -type Kodaira singularities and the number of times

they occur, part I.
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Generic non-toric Kodaira singularities Occurences

I3
2 260

I3
2 × I3 121

I3
2 × I3 × I4 24

I3
2 × I3 × I5 4

I3
2 × I3 × I6 4

I3
2 × I2

3 16

I3
2 × I4 85

I3
2 × I4 × I6 6

I3
2 × I2

4 10

I3
2 × I5 10

I4
2 133

I4
2 × I3 30

I4
2 × I3 × I4 2

I4
2 × I2

3 4

I4
2 × I4 29

I4
2 × I2

4 10

I4
2 × I5 2

I4
2 × I6 4

I4
2 × I8 2

I5
2 32

I5
2 × I4 22

I5
2 × I6 4

I6
2 14

I6
2 × I4 2

I7
2 1

I8
2 1

I3 93

I2
3 2

I3
3 4

I3
3 × I6 4

I3
3 × I9 2

I4
3 6

I4
3 × I6 4

I5
3 2

I4 95

I4
4 1

I5 12

I6 2

Table 18. List of generic non-toric Sp and SU -type Kodaira singularities and the number of times

they occur, part II.
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