
J Sci Comput (2014) 59:28–52
DOI 10.1007/s10915-013-9749-1

Efficient and Generic Algorithm for Rigorous Integration
Forward in Time of dPDEs: Part I

Jacek Cyranka

Received: 7 January 2013 / Revised: 26 June 2013 / Accepted: 2 July 2013 / Published online: 25 July 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract We propose an efficient and generic algorithm for rigorous integration forward in
time of partial differential equations written in the Fourier basis. By rigorous integration we
mean a procedure which operates on sets and return sets which are guaranteed to contain
the exact solution. The presented algorithm generates, in an efficient way, normalized deriv-
atives which are used by the Lohner algorithm to produce a rigorous bound. The algorithm
has been successfully tested on several partial differential equations (PDEs) including the
Burgers equation, the Kuramoto-Sivashinsky equation, and the Swift-Hohenberg equation.
The problem of rigorous integration in time of partial differential equations is a problem
of large computational complexity and efficient algorithms are required to deal with PDEs
on higher dimensional domains, like the Navier-Stokes equation. Technicalities regarding
the various optimization techniques implemented in the software used in this paper will be
reported elsewhere.

Keywords Dissipative PDE · Rigorous numerics · Automatic differentiation ·
Fast fourier transform · FFT · Interval arithmetic

Mathematics Subject Classification Primary: 65M99, 35B40 · Secondary: 35B41,
65G20, 65M70, 65Y20, 65T50

1 Introduction

The main goal of this paper is to present an efficient algorithm for rigorous integration
of dissipative partial differential equations (dPDEs). By rigorous integration we mean a
process in which a compact and connected set containing the unique solution is propagated
along the time interval. The rigorous integration process guarantees to include the exact
solution in the output set. Whereas in any standard (non-rigorous) integration process a

J. Cyranka (B)
Institute of Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 6,
30-348 Kraków, Poland
e-mail: jacek.cyranka@ii.uj.edu.pl

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81519415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J Sci Comput (2014) 59:28–52 29

point, represented by floating point numbers, is being propagated without indication how
close is the approximated solution to the real one.

Our main objective in the rigorous integration task is to perform computer assisted proofs
of the existence of certain solutions: attractors, periodic orbits, connections between fixed
points etc.

Sometimes, when one is willing to perform a computer assisted proof of the existence of a
particular solution, the integration process can be avoided. Advantage of the methods which
do not perform numerical integration is that the error involved in computing rigorously a
solution using a boundary value setup is more distributed along the whole orbit. Examples
of rigorous computational methods to study PDEs, different than the approach considered
here—i.e. not involving the integration process include [3,9,10,15], and [25].

The main motivation behind this work was to reduce the actual execution time of a sequen-
tial algorithm for rigorous integration of dPDEs. We emphasize that the problem of rigorous
integration of dPDEs is, by its nature, hard to parallelize, therefore any reduction of compu-
tational complexity is highly appreciated.

We have performed several rigorous numerics tests to show that

– the presented algorithm is apparently more efficient than the currently used algorithm
for rigorous numerical integration of dPDEs used e.g. in [7] and [35],

– the presented algorithm produces negligibly worse bounds than the currently used algo-
rithms.

The proposed approach in this paper combines several techniques. In this paper we briefly
present issues arising when dealing with rigorous calculations and present methods which
we used to circumvent the issues. We briefly present techniques used to obtain the algorithm
generality, i.e. to make it easily adaptable to different equations and boundary conditions that
could still be studied using Fourier series. More details and the proofs are presented in [8].

We restrict ourselves to the following problem

u : [0, T) × T → R, f, u0 : T → R,

ut = L(u) + N (u, ux , uxx , . . .) + f,

u(0, x) = u0(x), (1)

where L is a linear elliptic operator (for instance L(u) = νuxx or L(u) = −νuxxxx − uxx),
N (u, ux , uxx , . . .) is a proper polynomial of u and its partial derivatives, f is a constant
in time forcing, T is a maximal time of existence of the solution, T is the one-dimensional
torus.

We restrict N (u, ux , uxx , . . .) to be a proper polynomial, as not any equation (1) is a dPDE.
It is additionally required from (1) to be called a dPDE that the linear part must “dominate”
in some sense the nonlinear part, for the formal definition refer to [35].

The Fourier basis is introduced and the problem of solving (1) is reduced to the problem
of solving the following infinite dimensional dynamical system

dak

dt
= cN

∑

k1,...,kn∈Z

k1+···+kn=k

kr1
1 ak1 kr2

2 ak2 . . . krn
n akn + λkak + fk, k ∈ Z, (2)

where λk are eigenvalues of the elliptic operator, cN , n, and r j depend on N (u, ux , uxx , . . .),

{ak}k∈Z ⊂ C describes the evolution of the Fourier modes. Let us mention few important
equations which fall into the dPDE class: the Burgers equation, the Kuramoto-Sivashinsky
equation, the Ginzburg-Landau equation, the Swift-Hohenberg equation and, last but not
least, the Navier-Stokes equation.

123

30 J Sci Comput (2014) 59:28–52

The system (2) is an infinite dimensional system of ordinary differential equations (ODEs),
and rigorously integrating it on a computer requires special techniques. To the best of our
knowledge, there exist two published theoretical approaches to the rigorous numerics solution
for the non-stationary PDE problem—the method of self-consistent bounds, presented in the
series of papers [32,34–36], and the method presented in [1].

Both of the mentioned methods have been successfully applied to the study of the
Kuramoto-Sivashinsky equation dynamics (KS equation). In fact, the existence of some
time-periodic solutions has been proved. The focus of the previous research on one par-
ticular equation comes from the interest in establishing the first proof of the existence of
spatio-temporal chaotic dynamics in a partial differential equation.

The presented algorithm is a first attempt to provide a generic and robust tool (a computer
software) for the rigorous analysis of any dPDE, not only the KS equation.

Moreover, the proposed algorithm improves the efficiency of the rigorous integration
task, which is of great importance for us, as the attempt to prove the existence of chaotic
dynamics in the KS equation by using our method will require performing a lot of proofs
in parallel. We hope that the presented work will permit computer assisted proofs concern-
ing the dynamics of higher dimensional dPDEs, including the Navier-Stokes equations. We
consider especially interesting 3D Navier-Stokes equations, because for this case even the
fundamental question of the existence and uniqueness of solutions has no definitive answer
yet. It is worth noting that there already exist results in literature about the rigorous numer-
ics for higher dimensional PDEs, see e.g. [13,20], and [22], but in this work the station-
ary problem is considered only, the equations are not being numerically integrated at any
point.

The conclusion that we draw is that the algorithm is a proper approach to the task of the
rigorous integration of higher dimensional dPDEs, including the Navier-Stokes equations,
which we will address in our forthcoming work.

2 Fast Fourier Transform algorithm

Any attempt to integrate in time an equation of the type (2) will require a significant num-
ber of convolution calculations. It is well known that calculation of this type of convolu-
tions is done efficiently by using the Fast Fourier Transform (FFT) algorithm. Fields of
applicability of the FFT are, for instance, numerical solving of partial differential equa-
tions for weather prediction, a signal analysis and image processing in computer graph-
ics. To the best of our knowledge, the FFT algorithm was described for the first time in
the paper [6]. We refer to the papers [29] and [30] for an excellent review. In this case
it is enough to know how to calculate a finite vector field approximately and the appli-
cation is straight-forward. One would think that it is so in the case of rigorous methods
too. In fact, in rigorous methods the situation is much more difficult. We address here
the questions related to the application of the FFT algorithm within a rigorous method
setting, including how the interval FFT algorithm behaves, whether the wrapping effect
(see [33] for the statement of the wrapping effect problem) will be present, how to cal-
culate the higher order time derivatives required by the Taylor method, and what opti-
mizations to perform. We answer all these questions here, we introduce a new tech-
nique of eliminating the aliasing error, and in [8] we present the proofs and details. FFT
was already used to study dPDEs by the rigorous numerics community in [11,12], and
[16,17].

123

J Sci Comput (2014) 59:28–52 31

2.1 Outline of Approach

Notation From now on we assume that N is a positive natural number not to be confused
with the polynomial N (u, ux , uxx , . . .) in (1).

When using a spectral method based on the Fourier series one often has to compute a
considerable amount of convolutions of a finite sequence {uk}N

k=−N

(u ∗ · · · ∗ u)k =
∑

k1+k2+k3+···+kn=k
−N≤ki ≤N

uk1 uk2 . . . ukn , k = −N , . . . , N , (3)

where n is the number of terms in the convolution u ∗ · · · ∗ u.
It is known in the numerical analysis community [5] that computation of (3) could be

considerably accelerated by means of the FFT algorithm. The idea of the approach is based
on the following facts

– the function u(x) = ∑N
k=−N uk exp (ikx) is in the unique way determined by u(2π j/M),

where M ≥ 2N + 1 and j = 0, 1, . . . , M − 1,
– passing from the values at the nodes u(2π j/M), j = 0, . . . , M − 1 to the Fourier

coefficients uk , k = −N , . . . , N and vice-versa is done efficiently by using the FFT
algorithm.

Therefore a possibly effective approach of computation of (3) is the following

0. Assume that u(x) = ∑N
j=−N u j exp(i j x).

1. Choose big enough M , see the discussion of the aliasing problem in Sect. 3.1.
2. Let x j := 2π j

M , j = 0, 1, . . . , M − 1. Compute û j = u(x j) using FFT.
3. Compute q̂ j = û j . . . û j for j = 0, 1, . . . , M − 1. Modulo the aliasing error, we have

(u . . . u)(x j) = q̂ j .
4. Using FFT applied to q̂ j we obtain the Fourier coefficients for un given by (3).

2.2 Uniform Matrix Form of the FFT

Definition 1 Let v : R → C be a 2π -periodic function such that v belongs to the subspace
spanned by the functions {exp (−i N x) , . . . , exp (i N x)}, i.e. v(x) = ∑N

k=−N vk exp (ikx).
Then we call

{vk}N
k=−N

the l2(N) coefficients of v. When it is clear from the context we will drop the notation of N ,
and use simply the l2 coefficients of v.

Definition 2 Let v : R → C be a 2π -periodic function such that v belongs to the subspace
spanned by the functions {exp (−i N x) , . . . , exp (i N x)}, i.e. v(x) = ∑N

k=−N vk exp (ikx).
Then we call

v(x j) = v̂ j =
N∑

k=−N

vk exp(ikx j), j = 0, . . . , M − 1

the L2(M) coefficients of v. When it is clear from context we will drop the notation of M ,
and use simply the L2 coefficients of v.

123

32 J Sci Comput (2014) 59:28–52

By l2(N) → L2(M) transform (later on called l2 → L2 transform) we mean simply the
evaluation of

{
û j

}M−1
0 from {uk}N

−N , being in fact the Discrete Fourier Transform

û j =
N∑

k=−N

uk exp(i jk2π/M), j = 0, . . . , M − 1. (4)

From now on we assume M ≥ 2N + 1.
By L2(M) → l2(N) transform (later on called L2 → l2 transform) we mean the compu-

tation of the Fourier coefficients

uk = 1

M

M−1∑

j=0

û j exp(−i jk2π/M), k = −N , . . . , N . (5)

The idea behind the FFT algorithm is that (4) and (5) are unified in a matrix form, and then
the resulting matrices are written as a product of sparse matrices. Let us fix N and M . We
map the l2 coefficients {uk}N

k=−N and the L2 coefficients {û j }M−1
j=0 to M dimensional vectors

z and ẑ in the following way

zk :=
⎧
⎨

⎩

uk, k = 0, . . . , N ,

uk−M , k = M − N , . . . , M − 1,

0, otherwise

ẑ j := û j , j = 0, . . . , M − 1. (6)

Then the matrix form is given by the following Lemma

Lemma 1 (the FFT matrix form) Let M ≥ 2N + 1,

ẑ = WM z, z = WM ẑ, (7)

where WM (j, k) := exp(i jk2π/M), WM (j, k) := 1
M exp(−i jk2π/M).

To evaluate (7) efficiently one does not perform the multiplication by WM , which is a
dense matrix but one factorizes WM into sparse matrices and perform the multiplication by
sparse matrices.

3 Issues arising when the FFT algorithm is used within interval arithmetic framework

In this section we describe what the aliasing error is and we provide techniques that allow to
eliminate it.

We emphasize that the technique presented in this section is apparently more efficient than
the standard one, currently used in the rigorous numerics community, see [11] and references
supplied there. Our approach is based on the technique introduced in [26]. The authors of
[26] introduced new shifted discrete grids in order to eliminate the aliasing error in three
dimensional convolutions arising in the Navier-Stokes equations. As we present here, shifted
discrete grids can be applied to rigorous methods for dPDEs in 1D and apparently yield a
substantial improvement.

3.1 Aliasing Problem

When the convolutions like (3) are calculated using the approach outlined in Sect. 2.1 the
so-called aliasing problem appears.

123

J Sci Comput (2014) 59:28–52 33

Convolution of n terms We set

sk := (u ∗ · · · ∗ u)k =
∑

k1+k2+···+kn=k
−N≤k j ≤N

uk1 uk2 . . . ukn , k = −N , . . . , N .

Consider now the convolution of n terms, u ∗ · · · ∗ u. Then the result of the multiplication
of the L2 coefficients is the following

ŝ j = û j . . . û j .

Observe that
{
ŝ j
}M−1

j=0 are L2-coefficients of the following function

x �→
nN∑

k=−nN

∑

k1+k2+···+kn=k

uk1 uk2 . . . ukn exp(ikx).

L2 → l2 transform of ŝ j gives

s̃k := 1

M

M−1∑

j=0

ŝ j exp(−ik j2π/M) =
∑

a∈Z

−nN≤k+aM≤nN

∑

k1+k2+···+kn=k+aM

uk1 . . . ukn =

∑

k1+k2+···+kn=k

uk1 . . . ukn +
∑

a∈Z\{0}
−nN≤k+aM≤nN

∑

k1+k2+···+kn=k+aM

uk1 . . . ukn .

The term
∑

a∈Z\{0}
−nN≤k+aM≤nN

∑

k1+k2+···+kn=k+aM

uk1 . . . ukn

is the aliasing error. The range of a appearing in the sum of the aliasing error is bounded,
namely if aM > (n + 1)N , then for all k ∈ {−N , . . . , N − 1, N } holds k + aM > nN and
k − aM < −nN .

Definition 3 We call s̃k’s as above the aliased convolutions.

3.2 Standard Technique of Aliasing Error Removal (Padding)

The aliasing error is eliminated simply by choosing the number of grid points M large enough.
This is the approach used in [11] and other related works. The following condition has to be
satisfied in the general case

k + M > nN ∀k ∈ {−N , . . . , N }, and k − M < −nN ∀k ∈ {−N , . . . , N },
we take the worst case condition and obtain

N − M < −nN , −N + M > nN ,

M > (n + 1)N .

Therefore when M > (n + 1)N the aliasing error is not present.

123

34 J Sci Comput (2014) 59:28–52

3.3 Technique Based on Phase Shifts

This technique is designed only for the functions, for which the Fourier coefficients {uk} are
purely real or purely imaginary (for instance real odd or real even functions). To remove the
aliasing error one may also use a phase shift, that is calculate L2 coefficients at the points
belonging to the uniform grid shifted to the right by a constant value �.

Let

û�
j =

N∑

k=−N

uk exp(ik (� + j2π/M)), j = 0, . . . , M − 1,

ŝ�
j = û�

j . . . û�
j .

The particular choice of � = π/(2M) is interesting for our purposes. The following lemma
holds, a proof is provided in [8].

Lemma 2 Let M be the number of the points on the grid. Let u : R → C be
a 2π-periodic function such that u belongs to the subspace spanned by the functions
{exp (−i N x) , . . . , exp (i N x)} and, moreover, it is odd or even.

Assume that M >
(n+1)

2 N, then Re
(

sπ/(2M)
k

)
= sk (for u even or n even) or

Im
(

sπ/(2M)
k

)
= sk (for u odd and n odd), for all −N ≤ k ≤ N.

Now, let us put the presented techniques into the context of the FFT algorithm. Whatever
aliasing elimination technique is used in the FFT approach to calculate convolutions, the
M ≥ 2N + 1 relation has to be in any case satisfied to allow all modes (whose number is
2N + 1) to be mapped by the mapping (6).

To perform this technique approximately (n+1)
2 N log (n+1)

2 N operations are required,
whereas to perform technique from 3.2 approximately (n + 1)N log (n + 1)N .

Although the difference is asymptotically negligible, for the input sizes which are attain-
able in practical applications the number of operations in this technique compared to the
technique from 3.2 is reduced by a significant factor. This is due to a reduction of the aliasing
error influence in this technique—the values in the reduced number of nodes are calculated.

3.4 Overestimates

As we are interested in rigorous computations, therefore all computations have to be per-
formed using the interval arithmetic [24,31]. In our implementation we used the infimum-
supremum representation of intervals. In this subsection we address the question if the rigor-
ous evaluation of the convolutions (3) using the FFT algorithm produces more overestimates
than the direct evaluation. We will refer to the interval FFT algorithm as the rigorous FFT
algorithm.

We have not found a comprehensive study of the overestimates that arise in the rigorous
FFT algorithm in the existing literature. We have performed numerical tests in order to provide
clear answer to the question if the rigorous evaluation of the convolutions (3) using the FFT
algorithm produces more overestimates compared to the direct evaluation.

In the test presented in this section the function u has been a real-valued and odd function
belonging to the space spanned by a finite number of vectors, randomly picked for each single
test, all uk have been intervals. We have fixed C > 0, s > 0 and required that {uk}N

k=−N
satisfy mid [uk] ∈ [−C/ks, C/ks], in order to mimic regular functions. The diameter (width)
was the same for all uk .

123

J Sci Comput (2014) 59:28–52 35

Table 1 Tests for N = 21, sk := ∑
k1+k2=k uk1 uk2

uk diameter(uk width) Maximum over coordinates of diameters sk (maximal width of sk)

Direct evaluation Algorithm FFT

I padding II phase shift

M = 72 = 4 · 3 · 3 · 2 M = 45 = 5 · 3 · 3

1e−05 1.76984e−05 0.00045232 0.00121946

0.0001 0.000176984 0.0045232 0.0121946

0.001 0.00176984 0.045232 0.121946

0.01 0.0184213 0.46557 1.42349

0.1 0.340996 18.8056 82.8143

1 21.8849 1677.01 7732.67

2 85.7698 6662.83 30808.7

5 529.425 41473.1 192097

Table 2 Tests for N = 21, sk := ∑
k1+k2+k3=k uk1 uk2 uk3

uk diameter (uk width) Maximum over coordinates of diameters sk (maximal width of sk)

Direct eval Algorithm FFT

I padding II phase shift

M = 90 = 5 · 3 · 3 · 2 M = 45 = 5 · 3 · 3

1e−05 6.87813e−05 0.00176142 0.00297904

0.0001 0.000687813 0.0176144 0.0297908

0.001 0.00688878 0.176266 0.298266

0.01 0.0729481 1.88594 3.33923

0.1 1.70614 165.085 430.783

1 406.774 121698 343497

2 2883.3 956535 2.71295e+06

5 42922 1.48829e+07 4.225e+07

In each test we used the techniques presented in Sects. 3.2 and 3.3 in order to eliminate
the aliasing error. We present example results in Tables 1, 2, and 3.

Apparently, the rigorous FFT algorithm produces more overestimates, especially when
sets of large diameter (of order > 1) are used. The considerably larger overestimates produced
by the FFT compared to the direct method are probably due to several matrix-vector mul-
tiplications performed by the FFT algorithm, it is known that matrix-vector multiplications
are the main source of the so-called wrapping effect, for precise statement of the wrapping
effect refer e.g. [23], and [33].

4 A Rigorous dPDE Integrator

To explain what the term rigorous integration mean let us consider the following abstract
Cauchy problem for a system of ordinary differential equations (ODEs)

123

36 J Sci Comput (2014) 59:28–52

Table 3 Tests for N = 21, sk := ∑
k1+k2+k3+k4+k5=k uk1 uk2 uk3 uk4 uk5

uk diameter (uk width) Maximum over coordinates of diameters sk (maximal width of sk)

Direct eval Algorithm FFT

I padding II phase shift

M = 144 = 4 · 4 · 3 · 3 M = 72 = 4 · 3 · 3 · 2

1e−05 7.15846e−05 0.000709162 0.001178

0.0001 0.000715878 0.00709179 0.0117803

0.001 0.00718731 0.0710905 0.118113

0.01 0.752179 10.4391 18.3479

0.1 36.2275 1696.94 2861.64

1 184009 5.98891e+07 8.89027e+07

2 4.63014e+06 1.80823e+09 2.65626e+09

5 3.8902e+08 1.70558e+11 2.48932e+11

{
ẋ(t) = f (x(t)),
x(0) = x0.

(8)

x : [0, T) → R
n , f : R

n → R
n , f ∈ C∞. The goal of a rigorous ODEs solver is to find a

compact and connected set xk ⊂ R
n such that

ϕ(tk, x0) ⊂ xk, (9)

tk ∈ [0, T), x0 ⊂ R
n . By ϕ(tk, x0) we denote the solution of (8) at the time tk with initial

condition x0 ∈ R
n , and therefore ϕ(tk, x0) denotes the set of all the values which are attained

at the time tk by any solution of (8) with the initial condition in x0.

Notation We denote by [x] an interval set [x] ⊂ R
n , [x] = �n

k=1[x−
k , x+

k], [x−
k , x+

k] ⊂
R, −∞ < x−

k ≤ x+
k < ∞, mid ([x]) is the middle of an interval set [x]. There exist a

few algorithms that offer reliable computations of the solution trajectories for ODEs that
are based on interval arithmetic. The approach used in this paper is based on the Lohner
algorithm, introduced in [21], see also [33]. To obtain a rigorous bound for the solution and
avoid at the same time the so-called wrapping effect we calculate a bound for the partial
derivative with respect to the initial conditions. Basically, in the Lohner algorithm (see e.g.
[33]) instead of calculating directly the expression

Φq(h, [x]) + RΦq ([W]) ⊃ ϕ(h, [x]),
the mean value form is used

Φq(h, mid ([x])) + ∂Φq/∂x (h, [x]) (mid ([x]) − [x]) + RΦq ([W]) ⊃ ϕ(h, [x]), (10)

h > 0 is a time step, Φq is a q-th order numerical method (for the purpose of this paper, the
Taylor method) for an equation (8), RΦq is a remainder term calculated using a convex hull
of an enclosure for the solution values in the time interval [0, h], i.e. a set [W] ⊂ R

n such
that ϕ([0, h], [x]) ⊂ [W].

Bounds for the set

ϕ(h, [x]), (11)

123

J Sci Comput (2014) 59:28–52 37

and bounds for the set containing partial derivatives with respect to the initial condition

∂Φq/∂x (h, [x]) (12)

are both obtained by the Taylor method in our approach. To obtain bounds for (12) we will
use a suitably modified Taylor method. Here we do not present in detail the Taylor method
and the Lohner algorithm and we refer the reader to [21,27] and [33].

Obtaining Taylor coefficients of any order Now, we address the question of how to obtain
bounds for the Taylor coefficients of any order efficiently.

The algorithms from [33] used some explicit formulas for the Taylor coefficients of
any order. These explicit formulas were derived for the second degree polynomials only.
This approach was used in the following work considering rigorous dPDE integration, i.e.
[32,34–36]. We found this approach awkward, mainly because of its troublesome implemen-
tation and limited applicability. Apparently, this approach works only for dPDEs with the
non-linear term being a second degree polynomial.

Instead, we found a more suitable to use algorithm which combines the jet transport
and the automatic differentiation techniques. These techniques have already proven to be
extremely useful in many applications including a long-time integration of the solar system
(see [18] and references given therein) or computer assisted proofs for ODEs.

4.1 Automatic Differentiation

Now, we address the question of how to obtain the derivatives with respect to time of a suffi-
ciently smooth function efficiently. Here we present a convenient and yet efficient approach
called the automatic differentiation, see e.g. [14,24]. The automatic differentiation has many
applications beside of our interest. It is a general technique of obtaining recursively a fixed
number of normalized derivatives of a general operation/procedure.

Definition 4 Let n > 0, a : [0, tmax) → R be a sufficiently smooth function, we call

a[n](t) = 1

n!a(n)(t)

its n-th normalized derivative.

Let b, c : [0, tmax) → R be sufficiently smooth functions, assume that a(t) =
G(b(t), c(t)). Using the automatic differentiation the normalized derivatives of a(t) can be
obtained assuming that G is a composition of some basic operations for which the recursive
evaluation formulas are known. Recursive formulas for basic operations (such as multiplica-
tion, exponential, logarithm, trigonometric functions etc.) are easily derived, see for example
[18].

Only particular systems originating from a dPDE with a polynomial non-linearity are in
the scope of this paper. Rules for the addition and the multiplication of two functions are
required only, which will became apparent later on. The scalar multiplication, being trivial,
is not presented here. Assume that b[j], c[j] are known for j = 0, . . . , r then

if a(t) = b(t) + c(t) then a[r](t) = b[r](t) + c[r](t), (13)

if a(t) = b(t) · c(t) then a[r](t) =
r∑

j=0

b[j](t) · c[r− j](t). (14)

123

38 J Sci Comput (2014) 59:28–52

Now let us consider a differential equation

dx

dt
= F(x), x ∈ R

n, F : R
n → R

n . (15)

Given x [0] = x (0) we calculate x [j] for j = 1, . . . , q − 1, by the following recursive formula

x [j+1] = 1

j + 1
(F ◦ x)[j] ,

where (F ◦ x)[j] is the j-th normalized derivative of the right-hand side function of (15)
(F composed with x as a function of t).

4.2 Jet Transport

Now, we address the question how to obtain bounds for the partial derivative with respect to the
initial condition (12). The most convenient approach is to modify the automatic differentiation
procedure to make it calculate (11) and (12) simultaneously. This is done by the jet transport
technique.

Definition 5 Let n > 0 be a fixed integer, ǎ ∈ R, a j ∈ R, j = 0, . . . , n − 1. We call a first
degree polynomial of n variables ξ = (ξ0, ξ1, . . . , ξn−1)

a (ξ) := ǎ +
n−1∑

j=0

a jξ j

the first order jet.

An algebra of the first order jets is formed with the addition and multiplication operations
defined as follows

Definition 6 Let n > 0, a(ξ), b(ξ) be first order jets, ξ = (ξ0, . . . , ξn−1) are symbols. We
define the addition + of first order jets as follows

a(ξ) + b(ξ) := ǎ + b̌ +
n−1∑

j=0

(
a j + b j

)
ξ j .

We define the multiplication · of first order jets as follows

a(ξ) · b(ξ) := ǎ · b̌ +
n−1∑

j=0

(
ǎ · b j + b̌ · a j

)
ξ j .

Definition 7 Let f : R
n → R, t ≥ 0 be a time, x0 ∈ R

n be a fixed value, ξ = (ξ0, . . . , ξn−1)

are symbols. We define the following first order jet for the function f

J f (ξ) := f (x0) +
n−1∑

l=0

∂ f

∂xl
(x0) ξl .

The definition above has a straightforward extension to the case when f is vector-valued.
When f is vector-valued, the vector of jets for f is denoted by Jf (ξ) . Using the definition
above we fix t ≥ 0, x0 ∈ R

n , define the first order jets for ϕ(t, x0) and calculate

ϕ[j](t, x0), j = 1, . . . , q − 1

123

J Sci Comput (2014) 59:28–52 39

using the automatic differentiation procedure described in Sect. 4.1, where ϕ(t, x0) is the
smooth solution of (15). Precisely

ϕ[j](t, x0) := 1

j !
∂ jϕ(t, x0)

∂t i
,

(
∂ϕ

∂x

)[j]
(t, x0) := 1

j !
∂ j

∂t i

∂ϕ(t, x0)

∂x
, j = 1, . . . , q − 1.

In what follows in addition to the regular Taylor method (Φq), we are going to use an

extended variant (Φ
jet

q) whose coefficients are
{
Jϕ[0] (ξ) , . . . , Jϕ[q−1] (ξ)

}
.

Φ
jet

q works as follows: the base part of Jϕ[0] (ξ) is set to the value of the current initial
condition and the variational part of Jϕ[0] (ξ) is set to be the identity. The higher order
coefficients are calculated performing the same operations as in the regular method, but on
first order jets instead of scalars, and operations are performed with the rules of the algebra
defined in Definition 6. This allows to solve (15) and the variational equations corresponding
to it simultaneously.

4.3 An Algorithm Combining Automatic Differentiation with FFT

In this section we propose an algorithm for calculating both the solution of systems of ODEs
originating from a dPDE and a matrix of partial derivatives with respect to the initial condition.

We emphasize the fact that the output of the presented algorithm is not enough to integrate
efficiently a given system forward in time. This is not a stand-alone algorithm, nonetheless
the output of the presented algorithm is necessary for any effective rigorous solver based on
the Taylor method. Later we have combined it with the Lohner algorithm [21] in order to
integrate example systems forward in time rigorously and we investigate how the techniques
interplay with each other and what is the quality of the results.

The algorithm has been designed for dPDEs written using the truncated Fourier basis. We
consider the following abstract system

dak

dt
= Nk(a) + λkak = Fk(a), k = −N , . . . , N . (16)

Notation a := {ak}N
k=−N ∈ C

2N+1 is a finite set of Fourier coefficients, Nk(a) is a non-linear
term comprising a convolution (

∑
k1+k2=k ak1 ak2 for instance). Let ϕ([0, h], [x0]) ⊂ C

2N+1

denote all values of the solution within the time interval [0, h], and starting with the initial
condition in [x0] ⊂ C

2N+1.
From now on let ϕ be regular with respect to time solution of (16). Observe that the

coefficients {ak}N
k=−N are complex in this case, and ϕ : [0, tmax) × C

2N+1 → C
2N+1.

First, let us comment on the possible approaches used to deal with the first order jets of
complex functions. First possible approach is based on the following observation

Definition 8 Let {ak}N
k=−N ∈ C

2N+1 satisfy a−k = ak . We define
�Re : C

2N+1 → R
2(N+1) to be the following projection

�Re (a−N , . . . , aN) = (Re (a0) , Im (a0) , . . . , Re (aN) , Im (aN)) .

Observation 1 Any function

(a−N , . . . , aN) �→ f (a−N , . . . , aN) ,

can be translated to a function of real variables

123

40 J Sci Comput (2014) 59:28–52

(Re (a0) , Im (a0) , . . . , Re (aN) , Im (aN)) �→
f̃ (Re (a0) , Im (a0) , . . . , Re (aN) , Im (aN))

in such a way that if a−k = ak then

f (a−N , . . . , aN) = f̃ (�Re (a−N , . . . , aN)) .

By using Observation 1 we are able to translate our system (16) and use real first order jets
in order to calculate the partial derivative with respect to the initial condition of the numerical
method. But then a lot of information about the structure of the system is lost, and we do not
recommend to use this approach.

The approach that we use is the following. Instead we use “complex” first order jets, which
have the following form, let (a−N , . . . , aN) �→ f (a−N , . . . , aN), f : C

2N+1 → C

J f (ξ) := f (x0) +
N∑

l=−N

[
∂ Re(f (x0))

∂ Re(al)
+ i ∂ Im(f (x0))

∂ Re(al)
∂ Re(f (x0))

∂ Im(al)
+ i ∂ Im(f (x0))

∂ Im(al)

]T

ξl . (17)

We claim that using this kind of jets greatly facilitates computations and permits certain
optimizations. This approach is strictly of computational interest. Below we provide a sketch
of a justification of the presented approach.

Let a(ξ) and b(ξ) be arbitrary “complex” first order jets for two complex variables

a(ξ) = č + i ď +
[

c1 + id1

c2 + id2

]T

ξ1 +
[

c3 + id3

c4 + id4

]T

ξ2 ,

b(ξ) = ě + i f̌ +
[

e1 + i f1

e2 + i f2

]T

ξ1 +
[

e3 + i f3

e4 + i f4

]T

ξ2 .

Let us take the corresponding real first order jets c = Re (a), d = Im (a), e = Re (b) and
f = Im (b). The corresponding first order jets are

c(ξ) = č + c1ξ1,1 + c2ξ1,2 + c3ξ2,1 + c4ξ2,2,

d(ξ) = ď + d1ξ1,1 + d2ξ1,2 + d3ξ2,1 + d4ξ2,2,

e(ξ) = ě + e1ξ1,1 + e2ξ1,2 + e3ξ2,1 + e4ξ2,2,

f (ξ) = f̌ + f1ξ1,1 + f2ξ1,2 + f3ξ2,1 + f4ξ2,2.

A simple calculation shows that if

h(ξ) = a(ξ) · b(ξ), and

h1(ξ) = c(ξ) · e(ξ) − d(ξ) · f (ξ),

h2(ξ) = c(ξ) · f (ξ) + e(ξ) · d(ξ),

then the relation h(ξ) = h1(ξ) + ih2(ξ) holds, where ξ j = [
ξ j,1, ξ j,2

]
, j = 1, 2.

Let us comment on what the main ingredients of the described algorithm are. First, the
information about the partial with respect to the initial condition derivative is obtained by
introducing the first order jets in place of ordinary scalar values. Second, the first order jets
are passed through the FFT algorithm in order to minimize the number of operations needed
to calculate the convolutions. Third, in order to allow a fast calculation of the automatic
differentiation convolutions the L2 coefficients of the normalized derivatives are calculated
and stored at each step.

123

J Sci Comput (2014) 59:28–52 41

Notation Let Φ
jet

q denote the extended variant of Φq —the q-th order Taylor method, whose
coefficients are

{
Jϕ[0] (ξ) , . . . , Jϕ[q−1] (ξ)

}
. In order to facilitate the explanation of the fol-

lowing algorithm we are going to use the following auxiliary symbols: a[j] (ξ) := Jϕ[j] (ξ),
N [j] (ξ) denotes the first order jet for j-th normalized derivative of the non-linear part of (16),
N [j] (ξ) := J(N◦a)[j] (ξ) . F [j] (ξ) denotes the first order jet for the j-th normalized derivative

of the right-hand side of (16) F [j] (ξ) := J(F◦a)[j] (ξ), where F ◦ a is the composition of F

with a as a function of t . We indicate the corresponding L2 coefficients with hats â[j] (ξ),
N̂ [j] (ξ) and F̂ [j] (ξ).

Algorithm 1 Outline of an algorithm for efficient and rigorous calculation of one step of
Φ

jet
q , dedicated for any system of the type (16).
Input

– the Galerkin projection dimension N > 0,
– number of points used by FFT, such that the aliasing problem is avoided (see Sect. 3.1)

M ≥ 2N + 1,
– an interval set of initial conditions [x0] ⊂ C

2N+1,
– time step h > 0,
– order of the Taylor method q > 0.

Output

– bounds for the normalized derivatives
{(

a[j]
−N (ξ) , . . . , a[j]

N (ξ)
)}q

j=1
, the coefficients of

Φ
jet

q (h, [x0]),
– vector of first order jets Φ

jet
q (h, [x0]).

begin

1. Initialize calculations for Φ
jet

q . The base part of the jets
(

a[0]
−N (ξ) , . . . , a[0]

N (ξ)
)

is

set to be equal to the provided initial condition [x0]. The variational part of the jets(
a[0]
−N (ξ) , . . . , a[0]

N (ξ)
)

is set to be the identity, i.e.

∂ Re
(
ϕ

[0]
k

)

∂ Re (al)
:=

{
1 , f or k = l
0 otherwise.

,
∂ Im

(
ϕ

[0]
k

)

∂ Im (al)
:=

⎧
⎨

⎩

1 , f or k = l,
−1 , f or k = −l,
0 otherwise.

,

∂ Re
(
ϕ

[0]
k

)

∂ Im (al)
,
∂ Im

(
ϕ

[0]
k

)

∂ Re (al)
:= 0.

2. l2 → L2 transform
(

a[0]
−N (ξ) , . . . , a[0]

N (ξ)
)

to obtain
(

â[0]
0 (ξ) , . . . , â[0]

M (ξ)
)

for j = 0, . . . , q − 1

(a) calculate
(

N̂ [j]
0 (ξ) , . . . , N̂ [j]

M (ξ)
)

using the L2 coefficients calculated in the previous
steps{(

â[0]
0 (ξ) , . . . , â[0]

M (ξ)
)

, . . . ,
(

â[j]
0 (ξ) , . . . , â[j]

M (ξ)
)}

,

(b) calculate
(
N [j]

−N (ξ) , . . . , N [j]
N (ξ)

)
by L2 → l2 transforming

(
N̂ [j]

0 (ξ) , . . . , N̂ [j]
M (ξ)

)
,

(c) add the linear contribution(
F [j]

−N (ξ) , . . . , F [j]
N (ξ)

)
:=

(
N [j]

−N (ξ) , . . . , N [j]
N (ξ)

)
+
(
λ−N a[j]

−N (ξ) , . . . , λN a[j]
N (ξ)

)
,

123

42 J Sci Comput (2014) 59:28–52

(d) set(
a[j+1]
−N (ξ) , . . . , a[j+1]

N (ξ)
)

:= 1
j+1

(
F [j]

−N (ξ) , . . . , F [j]
N (ξ)

)
,

(e) calculate and store
(

â[j+1]
0 (ξ) , . . . , â[j+1]

M (ξ)
)

by l2 → L2 transforming
(

a[j+1]
−N (ξ),

. . . , a[j+1]
N (ξ)

)
,

end for

3. calculate the value of Φ
jet

q (h, [x0]) using the coefficients from the previous step and
Horner’s rule.

end

Remark 1 Let us relate the output results of Algorithm 1 to the mean value form formulation
(10). The matrix composed of the variational part of the vector of first order jets Φ

jet
q (h, [x0])

is the factor ∂Φq/∂x (h, [x]) in (10). The other terms in (10), i.e. Φq(h, mid ([x])), RΦq ([W])
are obtained by two separate Taylor methods, as different initial conditions has to be used.
The vectors Φq(h, mid ([x])), and RΦq ([W]) are evaluated using scalar values, not first order
jets, and when N is large the cost of calculating them is negligible compared to the cost of
calculating Φ

jet
q (h, [x0]).

Now we would like to comment on Step (a) of the “for” loop in Algorithm 1, because that
is where savings are introduced by the FFT algorithm.

The improvement of introducing the FFT algorithm into the standard procedure is as
follows—at the given order j instead of calculating the double convolutions

∑

k1+k2+···+kn=k

∑

j1+ j2+···+ jn= j

a[j1]
k1

(ξ) a[j2]
k2

(ξ) · · · a[jn]
kn

(ξ), k = −N , . . . , N (18)

directly, the following operations, comprising steps 2a, 2b and 2e of Algorithm 1 or equiv-
alently comprising steps (a), (b) and (e) of Algorithm 1 are used, compare with the outline
presented in Sect. 2.1:

– one l2 → L2 transform, and one L2 → l2 transform,
– calculation of

∑

j1+ j2+···+ jn= j

â[j1]
k (ξ) â[j2]

k (ξ) . . . â[jn]
k (ξ), k = 0, . . . , M. (19)

Observe that in the FFT variant the loop over k is not present at all.
We discuss in [8] several optimizations that can be introduced into this algorithm.

5 Rigorous Numerics Tests

Below we present a report from various tests we performed with the developed methods and
algorithms. We emphasize that by tests we mean rigorous numerics tests. The purpose of the
developed methods and algorithms are the computer assisted proofs for dPDEs. In the tests
either a finite truncation (a Galerkin projection) or the full infinite system (giving a differential
inclusion) were considered. In order to integrate in time the full infinite dimensional system
of ODEs (2) we split it into two parts

{ dx
dt = PN F(x + y),
dy
dt = QN F(x + y),

(20)

123

J Sci Comput (2014) 59:28–52 43

where F(x + y) is the right-hand side of (2), X N = C
2N+1, YN ⊂ C

∞, x ∈ X N , y ∈
YN , PN is the projection onto X N , QN = I d − PN . We assume the embedding X N
{x−N , . . . , x0, . . . , xN } ≡ {0, . . . , 0, x−N , . . . , x0, . . . , xN , 0, . . . , 0} ∈ C

∞, and use the
same symbol to denote both of the elements of the finite dimensional space and the infinite
dimensional space. We bound the solutions of (2) by considering the following differential
inclusion

dx

dt
(t) ∈ PN (F(x(t))) + δ, (21)

where δ ⊂ X N describes the influence of y onto PN F(x + y). The Lohner-type algorithm for
rigorous integration in time of differential inclusions was originally provided in [19]. In this
algorithm the solutions of a Cauchy problem associated with (21) are bounded, and then the
influence of the perturbation δ is a-posteriori added. In order to calculate δ the FFT algorithm
may also be used.

We specified what system was being integrated for each test separately by stating a
“Galerkin projection” or a “differential inclusion” respectively. We used the implementa-
tion of the part of the Lohner algorithm regarding the Lohner representation of the sets from
the CAPD library [4].

In this section we present results from all the tests performed in the form of tables.
Whenever a diameter of a finite or an infinite dimensional set is provided in a table, the
meaning of this number is in fact the maximum over coordinates of all diameters. The labels
“Direct approach” “FFT approach” and “FadBad++” appearing in the tables indicate
different implementations of the Taylor method that were used. “Direct approach” indicates
that the normalized derivatives were obtained directly (18), whereas “FFT approach” indicates
that the normalized derivatives were obtained by the FFT approach presented previously. To
remove the aliasing error technique the “II technique based on phase shifts” was used, unless
otherwise stated. “FadBad++” indicates that the normalized derivatives were obtained by
using the FadBad++ software library for automatic differentiation [2], without using the FFT
at any point. The vector field, which was input to the FadBad++ library was optimized, by
using Observation 1 and all possible symmetries. The part of the Lohner algorithm regarding
the Lohner representation of the sets was the same for both. For a thorough description of
the Lohner algorithm and the issues related to the wrapping effect and representation of sets
refer to [33]. The meaning of the symbol M depends on the context; in [35] and [7] it is used
to denote the dimension of the so-called finite tail, when the full infinite dimensional system
is considered, whereas in this paper it is used to denote the number of points of the discrete
grid used by the FFT. To avoid ambiguities in this section, we denote the number of points
of the discrete grid used by the FFT by MF FT .

5.1 Burgers Equation Fixed Point Test (Galerkin Projection)

When periodic boundary conditions are used and the forcing function is not present, the
Burgers equation exhibits a globally attracting fixed point at zero. This is proved by the
energy exponential decay, see [7].

With this test we address the question of what are, for the overall Lohner algorithm, the
consequences of considerable overestimates produced by the FFT approach (see the results
from Sect. 3.4). This question is difficult to answer without performing actual calculations
due to the sophisticated nature of the Lohner type rigorous integrator.

123

44 J Sci Comput (2014) 59:28–52

Fig. 1 The setting for the
Burgers equation

The setting is

ut + u · ux − νuxx = 0, (22a)

u(x, 0) = u0(x), x ∈ R, (22b)

u(x, t) = u(x + 2kπ, t), x ∈ R, t ∈ [0, T), k ∈ Z. (22c)

The uniform zero-centred box (with the fixed point at the centre) was rigorously integrated
forward in time on the fixed time interval with a fixed time step. The diameter of the initial
box was the parameter of the tests (Fig. 1).

In Table 4 we present a report from the performed tests. The diameter of the result, which
was, in fact, the diameter of the set at the time 10 (10, 000 constant time steps of length 0.001
were executed), was measured. Due to the fact that the fixed point is attracting, the initial
box is expected to decrease in diameter. We were in particular interested in the difference
between the quality of the FFT approach result, and the direct approach result. The results
presented in Sect. 3.4 predict much better quality of the direct approach result.

The parameters that were used for the tests were ν = 0.1, order of the Taylor method was
6, constant time-step h = 0.001, N = 19, MF FT = 40.

Total running time
FadBad++ FFT approach

1849 sec 424 sec
(23)

See (23) for the comparison of the program running time.

5.2 Kuramoto-Sivashinsky Equation Attracting Periodic Orbit Test

The setting is

ut = −νuxxxx − uxx + (u2)x , (24a)

u(x, 0) = u0(x), x ∈ R, (24b)

u(x, t) = −u(−x, t), u(x, t) = u(x + 2kπ, t), x ∈ R, t ∈ [0, T), k ∈ Z. (24c)

We picked one of the periodic orbits proved to exist in [35] (the attracting periodic orbit
for ν = 0.032). We took a box around an initial condition from [35] for this periodic orbit,
and then the box was rigorously propagated forward in time using two implementations of
the Lohner algorithm. In the tests the equations were integrated until the time of the full
revolution of orbit was reached, which is approximately 0.4091. The results of these tests are
contained in Tables 5 and 6.

I test—efficiency (Galerkin projection) All of the techniques presented previously in this
part of the article can be replaced by applying some of the available software libraries for

123

J Sci Comput (2014) 59:28–52 45

Table 4 Fixed point for Burgers equation test results

Initial condition diam. Set at the end diam.

direct approach FFT approach

0 1e − 08 9.04837e − 09 9.04838e − 09

1 1e − 07 9.04838e − 08 9.0484e − 08

2 1e − 06 9.0484e − 07 9.04867e − 07

3 1e − 05 9.04862e − 06 9.05131e − 06

4 0.0001 9.05088e − 05 9.0789e − 05

5 0.001 0.000907367 0.000958336

6 0.01 0.00932532 0.00932849a

aIn this test a blow-up of the set was experienced for the FFT approach. By a blow-up we mean that the
rigorous bounds escaped the range of the representable numbers. Such bounds are then represented in the
software by the unbounded interval ([−∞,∞]). As soon as the unbounded interval appears in the calculation
process, further calculations are meaningless. We found a simple method circumventing this problem at a little
additional computational cost. To avoid the blow-up problem, the first order normalized derivative must be
calculated by using the direct approach, nonetheless the higher order derivatives can be obtained by using the
FFT approach. The cost of calculating the first order normalized derivative is negligible for the overall cost of
calculating the normalized derivatives up to a reasonable fixed order

Table 5 Total running time of programs propagating a box along an orbit for the KS equation (an attracting
periodic orbit for ν = 0.032)

Parameters used Total running time

Galerkin
proj. dim.

MF FT Time step Taylor m. ord. FadBad++ FFT approach

1 23 48 10−4 5 139 s 107 s

2 23 48 10−4 8 297 s 175 s

3 23 48 10−4 10 438 s 229 s

4 28 60 5−5 5 496 s 343 s

5 34 72 2−5 5 2147 s 1295 s

The machine used was Linux 32-bit Intel Core i5-2430M CPU @ 2.40 GHz x 4

automatic differentiation, for instance Fad-Bad++ [2]. The purpose of this test was to check
if the presented approach will eventually be useful in calculating a rigorous bounds of the
Poincaré map, which are needed e.g. to verify the Brouwer fixed point theorem assumptions.
With these tests we would like to provide an argument that we did not perform redundant
work developing this approach. The Lohner algorithm implementation based upon the FFT
approach allowed to obtain bounds of the same order, and at the same time this bounds were
obtained faster.

With this test we compared the efficiency of the Lohner algorithm implementation based
upon the presented FFT approach with the implementation based on the direct approach
implemented using the external software library for automatic differentiation FadBad++ [2]
(the approach used to perform the computer assisted proof presented in [7]).

A Galerkin projection of the infinite dimensional system was considered in these tests in
order to isolate this part of the overall algorithm to which the developed techniques contribute.

The initial condition was taken from [35], the diameter of the initial condition was 8e−05
in each direction. Parameters used for this test were as follows ν = 0.032, order of the

123

46 J Sci Comput (2014) 59:28–52

Table 6 Diameter (max over coordinates) of boxes obtained by programs propagating a box along orbit for
KS equation (an attracting periodic orbit for ν = 0.032)

Initial condition diam. Set at the end diam.

Direct approach FFT approach

0 1e − 08 7.7879e − 05 0.00012947

1 1e − 07 9.55487e − 05 0.000134767

2 1e − 06 0.000174207 0.00025008

3 1e − 05 0.000231317 0.00309667

4 0.0001 0.00134516 0.00221152a

The full infinite dimensional system was considered (differential inclusion)
aIn this test a blow-up of the set was experienced for the FFT approach. By a blow-up we mean that the
rigorous bounds escaped the range of the representable numbers. Such bounds are then represented in the
software by the unbounded interval ([−∞,∞]). As soon as the unbounded interval appears in the calculation
process, further calculations are meaningless. We found a simple method circumventing this problem at a little
additional computational cost. To avoid the blow-up problem, the first order normalized derivative must be
calculated by using the direct approach, nonetheless the higher order derivatives can be obtained by using the
FFT approach. The cost of calculating the first order normalized derivative is negligible for the overall cost of
calculating the normalized derivatives up to a reasonable fixed order

Taylor method was 5, constant time-step h = 0.00015, N = 23 (all the same as in [35]),
MF FT = 48.

Observe that the time step had to be adjusted for each test, because of the stiffness problem
exhibited by the Kuramoto-Sivashinsky equation. The results of this test are contained in
Table 5.

II test—overestimates (differential inclusion) The diameter of the propagated set was mea-
sured after the full revolution along the orbit. The full rigorous integrator (the Lohner algo-
rithm for differential inclusions) of the infinite dimensional system was used in this test.

Parameters used for this test were as follows ν = 0.032, order of the Taylor method was
5, constant time-step h = 0.00015, N = 23, M = 92 (the dimension of the finite tail, for
the exact meaning of this number refer to [35] or [7]), MF FT = 48. The results of this test
are contained in Table 6.

5.3 Kuramoto-Sivashinsky Equation Unstable Periodic Orbit Test (Differential Inclusion)

The same setting as in Sect. 5.2.
We picked one of the unstable periodic orbits proved to exist in [35] (the unstable periodic

orbit for ν = 0.02991). This orbit is on the apparently chaotic attractor. We took a box
around an initial condition from [35] for this periodic orbit, and then the box was rigorously
propagated forward in time using two implementations of the Lohner algorithm. In the tests
the equations were integrated until the time of the full revolution of the orbit was reached,
which is approximately 0.4490232. The results of these tests are contained in Table 7.

The diameter of the propagated set was measured after the full revolution along the orbit.
The full rigorous integrator (the Lohner algorithm for differential inclusions) of the infinite
dimensional system was used in this test.

Parameters used for this test were as follows ν = 0.02991, order of the Taylor method
was 5, constant time-step h = 0.00015, N = 25, M = 75 (the dimension of the finite tail,
for the exact meaning of this number refer to [35] or [7]), MF FT = 64.

123

J Sci Comput (2014) 59:28–52 47

Table 7 Diameter (max over coordinates) of boxes obtained by programs propagating a box along orbit for
KS equation (an unstable periodic orbit for ν = 0.02991)

Initial condition diam. Set at the end diam.

Direct approach FFT approach

0 1e − 08 0.000172909 0.000218735

1 1e − 07 0.000215746 0.000247145

2 1e − 06 0.000352979 0.000558827

3 1e − 05 0.00051132 0.00801811

4 0.0001 0.00406078 0.0049136a

The orbit is on the apparently chaotic attractor. The full infinite dimensional system was considered (differential
inclusion)
aIn this test a blow-up of the set was experienced for the FFT approach. By a blow-up we mean that the
rigorous bounds escaped the range of the representable numbers. Such bounds are then represented in the
software by the unbounded interval ([−∞,∞]). As soon as the unbounded interval appears in the calculation
process, further calculations are meaningless. We found a simple method circumventing this problem at a little
additional computational cost. To avoid the blow-up problem, the first order normalized derivative must be
calculated by using the direct approach, nonetheless the higher order derivatives can be obtained by using the
FFT approach. The cost of calculating the first order normalized derivative is negligible for the overall cost of
calculating the normalized derivatives up to a reasonable fixed order

5.4 Swift-Hohenberg Equation a Connection Between Fixed Points Test (Differential
Inclusion)

The setting is

ut =
(

ν −
(

1 + ∂2

∂x2

)2
)

u − u3, (25a)

u(x, 0) = u0(x), x ∈ R, (25b)

u(x, t) = u(−x, t), u(x, t) = u(x + 2kπ, t), x ∈ R, t ∈ [0, T), k ∈ Z. (25c)

Looking at the eigenvalues of the linear part of (25)

λk = ν − (1 − k2)2,

it is immediately verified that zero is an unstable fixed point for (25a), for a sufficiently large
ν. Apparently, there are also other fixed points, which are attracting.

Overestimates (differential inclusion) As the initial condition, we took a small interval set
of functions close to zero, i.e.

u0 = 2 · (10−10 + [−10−11, 10−11]) + 2 · (10−10 + [−10−11, 10−11]) cos x .

This set of functions had been rigorously integrated until it was caught in the basin of attraction
of an attracting fixed point for (25a). The process of integration of the set was stopped as
soon as the set was attracted by and centred at an attracting fixed point location (Fig. 2).

The order of the Taylor method used for the tests was 5. The results of this test are contained
in Table 8.

Numerical data from all the tests presented in this section is available on-line [28].

123

48 J Sci Comput (2014) 59:28–52

Fig. 2 The setting for the
Swift-Hohenberg equation

Table 8 Diameter (max over coordinates) of boxes obtained by programs propagating a box along connection
between fixed points for SH equation

Parameters used Set at end diam.

ν Number
of steps

Time step N The finite
tail dim.

Direct approach FFT approach

0 25 15 000 0.0001 11 33 2.31318e − 05 4.62783e − 05a

1 50 10 000 0.0001 11 33 1.28577e − 06 3.19921e − 05a

2(a) 65 6 000 0.0001 12 50 0.000153006 0.00365307b

2(b) 65 6 000 0.0001 12 50 0.000153006 0.00339236c

aIn this test a blow-up of the set was experienced for the FFT approach. By a blow-up we mean that the
rigorous bounds escaped the range of the representable numbers. Such bounds are then represented in the
software by the unbounded interval ([−∞,∞]). As soon as the unbounded interval appears in the calculation
process, further calculations are meaningless. We found a simple method circumventing this problem at a little
additional computational cost. To avoid the blow-up problem, the first order normalized derivative must be
calculated by using the direct approach, nonetheless the higher order derivatives can be obtained by using the
FFT approach. The cost of calculating the first order normalized derivative is negligible for the overall cost of
calculating the normalized derivatives up to a reasonable fixed order
bThis is the same test as in 2(b). In this test a blow-up was experienced. It was possible to eliminate it by
using the technique described in foot note a like in other cases, but with proper choice of M—the number of
discrete points used by FFT (in this case for M = 32 the blow-up was eliminated, whereas for M = 30 the
blow-up was still experienced)
cThis is the same test as in 2(a). In this test a blow-up was experienced. It was eliminated when further
the padding technique was used instead of the phase-shift aliasing error elimination technique regardless the
choice of M—the number of discrete points used by FFT

6 Complexity

In this section we analyse the complexity of the direct approach and the FFT approach, which
were compared in numerical tests presented in Sect. 5.

First, we compare the asymptotic complexity of one step (generating the coefficients and
evaluating the polynomial) of the extended Taylor method of the order q (Φ jet

q). Coefficients

of Φ
jet

q are the first order jets of a vector valued function. Second, we compare the actual
number of elementary operations required to perform one step in both of the approaches. We
calculated the actual number of operations, motivated by the fact that asymptotic complexity
provides only a rough information about the magnitude of inputs that can be handled by
using the current computing power, and we have been interested explicitly how much faster
we can calculate.

123

J Sci Comput (2014) 59:28–52 49

Fig. 3 The number of interval multiplications (divided by 106) required to perform one step of Φ
jet

q in the
Burgers equation setting (22) with periodic boundary conditions

We use the well known fact that the FFT algorithm’s asymptotic complexity is O(n log n),
where n is the size of the input. The asymptotic number of operations required to perform
one step of Φ

jet
q using the FFT approach is

FFT′s on jets︷ ︸︸ ︷
c1q N M log M +

multiplications of the L2 coefficients (jets) in FFT′s︷ ︸︸ ︷
c2q(q + 1)M N , (26)

whereas the complexity of one step of Φ
jet

q using the direct approach is

“double” convolution on jets︷ ︸︸ ︷
c3q(q + 1)N 3, (27)

where c1, c2, c3 > 0 are constants, and M is a number depending linearly on N , such that
M ≥ 2N + 1, see Sect. 3.1. The term N M log M in (26) in place of M log M seems strange
at the first sight, but it is due to the fact that the input and the output for all the FFT’s
are vectors of first order jets. The number of elementary operations required to perform
an arithmetic operation on first order jet depends linearly on N , as one loop is required—
compare Definition 6. For the meaning of “the FFT approach” and “the direct approach”
refer to Sect. 5.

To confirm (26) and (27) empirically we counted the exact number of interval multiplica-
tions and interval additions, which are performed by the computer program during one step
of Φ

jet
q in the Burgers equation setting (22). The results are presented in Fig. 3. Observe that

the calculations are performed within the interval arithmetic framework. An interval arith-
metic operation is considerably more costly than the corresponding ordinary floating-point
arithmetic operation, e.g. to perform an interval multiplication usually four floating-point
multiplications and two rounding mode switchings are required. Overall tests indicate that
the execution time of an interval arithmetic operation is approximately of the order ten times
the time of the corresponding floating-point arithmetic operation.

We also counted the number of interval additions and multiplications for the other two
settings, i.e. (24) and (25). But the corresponding figures are similar in spirit to Fig. 3, so we

123

50 J Sci Comput (2014) 59:28–52

Table 9 Exact number of elementary operations on complex numbers required to calculate the j-th coefficient

of Φ
jet

q , which is one step of the “for” loop in Algorithm 1

Approach Additions Multiplications

FFT
[
2Mp + M

(
� j

2 � − 1
)]

(4N + 3) M� j
2 �(8N + 5)+

+M� j
2 �(4N + 2) (Mp + M + 2N + 1)(4N + 3)

direct
[(

3
2 N 2 − N + 2

⌊
N
2

⌋)
(4N + 3) +

[(
3
2 N 2 − N + 2

⌊
N
2

⌋)
(8N + 5)

]
j+(

3
2 N 2 − N + 2

⌊
N
2

⌋)
(4N + 2)

]
j − 2N (4N + 3) 2 (2N + 1) (4N + 3)

The calculations were performed in the Burgers equation setting (22), p is a number such that M = 2p

do not present them here and refer the interested reader to the corresponding numerical data
[28].

In order to get an idea about the magnitude of constants c1, c2, c3 in (26) and (27) we
provided in [8] the exact number of elementary operations on complex numbers required
to calculate the j-th coefficient of Φ

jet
q . The calculations were performed in the Burgers

equation setting (22), and assuming that M = 2p . We present the results in Table 9.

7 Conclusion

We would like to present some concluding remarks from the results presented above.
The diameters of the sets obtained in the performed tests (Tables 4, 6, and 8) indicate that,

surprisingly, the Lohner algorithm seems to be immune to the considerable overestimates
produced by the FFT approach. Consequently, we are convinced that the Lohner algorithm
based on the developed here FFT approach can be successfully applied to the problem of
rigorous integration of higher dimensional PDEs, including the Navier-Stokes equations.
And the presented algorithm perfectly suits performing proofs of an existence of solution on
a fixed time interval, for instance when one needs to establish existence of a Poincaré map
only.

The different test cases have demonstrated that the software based on the developed
techniques has improved the efficiency of the rigorous integration task, without severe quality
drop.

All the test cases were successfully finished when the new approach was used (no interval
blow-ups were experienced), and there was not any considerable quality drop (measured
by diameter of the propagated interval sets). We consider this a significant achievement in
the context of eventual computer assisted proofs for higher dimensional PDEs. The task of
rigorous integration of a higher dimensional PDEs like the Navier-Stokes equation, which is
our goal, will require a large amount of computing time. Any reduction of the time spent on
computations is of great importance here, because this could allow some phenomena to be
actually proven.

Different equations and different boundary conditions were used in each of the presented
tests (the Burgers equation with a pure periodic boundary conditions, the KS equation with
a periodic-odd boundary conditions and the SH equation with a periodic-even boundary
conditions) in order to demonstrate that the developed software is generic and robust. The
software can be applied for many problems involving dPDEs.

The goal of achieving both generic and efficient software for rigorous integration of dPDEs
has been achieved to some extent. It is a difficult task in general. We have been able to achieve

123

J Sci Comput (2014) 59:28–52 51

this for periodic boundary conditions in 1D. Still, such software had not existed, and all the
results published so far (e.g. [1,35]) have focused on a particular case of the Kuramoto-
Sivashinsky equation, and the software used there was hard-coded for the KS equation with
periodic-odd boundary conditions.

The tests discussed in previous section are in principle repeatable, files with data from the
presented proofs and all the source code used are available on-line [28].

Acknowledgments Research has been supported by National Science Centre Grant DEC-2011/01/N/ST6/
00995.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.

References

1. Arioli, G., Koch, H.: Integration of dissipative partial differential equations: a case study. SIAM J. Appl.
Dyn. Syst. 9, 1119–1133 (2010)

2. Bendtsen, C., Stauning, O.: FADBAD, a Flexible C++ Package for Automatic Differentiation. Technical
University of Denmark, Department of Mathematical Modelling, Copenhagen (1996)

3. Breuer, B., McKenna, P.J., Plum, M.: Multiple solutions for a semilinear boundary value problem: a
computational multiplicity proof. J. Differ. Equ. 195, 243–269 (2003)

4. CAPD—computer assisted proofs in dynamics, a package for rigorous numeric, http://capd.ii.uj.edu.pl
5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Fundamentals in Single

Domains. Springer, Berlin (2006)
6. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Math.

Comp. 19, 297–301 (1965)
7. Cyranka, J.: Existence of Globally Attracting Fixed Points of Viscous Burgers Equation with Constant

Forcing. A Computer Assisted Proof, preprint, 2011, available on-line http://www.ii.uj.edu.pl/~cyranka
8. Cyranka, J.: Efficient Algorithms for Rigorous Integration Forward in Time of dPDEs. Existence of

Globally Attracting Fixed Points of Viscous Burgers Equation with Constant Forcing, a Computer Assisted
Proof, PhD dissertation, Jagiellonian University, Cracow, 2013, available on-line http://www.ii.uj.edu.pl/
~cyranka

9. Day, S., Hiraoka, Y., Mischaikow, K., Ogawa, T.: Rigorous numerics for global dynamics: a study of
Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst. 4, 1–31 (2005)

10. Day, S., Lessard, J.P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer.
Anal. 45, 1398–1424 (2007)

11. Gameiro, M., Lessard, J.P., Mischaikow, K.: Validated continuation over large parameter ranges for
equilibria of PDEs. Math. Comput. Simul. 79, 1368–1382 (2008)

12. Gameiro, M., Lessard, J.P.: Analytic estimates and rigorous continuation for equilibria of higher-
dimensional PDEs. J. Differ. Equ. 249, 2237–2268 (2010)

13. Gameiro, M., Lessard, J.P.: Rigorous computation of smooth branches of equilibria for the three dimen-
sional Cahn-Hilliard equation. Numer. Math. 117, 753–778 (2011)

14. Griewank, A.: Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation, Frontiers
in Applied Mathematics, vol. 19. SIAM, Philadelphia (2000)

15. Heywood, J.G., Nagata, W., Xie, W.: A numerically based existence theorem for the Navier-Stokes
equations. J. Math. Fluid. Mech. 1, 5–23 (1999)

16. Hiraoka, Y., Ogawa, T.: Rigorous numerics for localized patterns to the quintic Swift-Hohenberg equation,
Japan. J. Ind. Appl. Math. 22, 57–75 (2005)

17. Hiraoka, Y., Ogawa, T.: An efficient estimate based on FFT in topological verification method. J. Comput.
Appl. Math. 199, 238–244 (2007)

18. Jorba, Á., Zou, M.: A software package for the numerical integration of ODEs by means of high-order
Taylor methods. Exp. Math. 14, 99–117 (2005)

19. Kapela, T., Zgliczyński, P.: A Lohner-type algorithm for control systems and ordinary differential inclu-
sions. Discret. Cont. Dyn. Sys. B 11, 365–385 (2009)

20. Kim, M., Nakao, M.T., Watanabe, Y., Nishida, T.: A numerical verification method of bifurcating solutions
for 3-dimensional Rayleigh-Bénard problems. Numer. Math. 111, 389–406 (2009)

123

http://capd.ii.uj.edu.pl
http://www.ii.uj.edu.pl/~cyranka
http://www.ii.uj.edu.pl/~cyranka
http://www.ii.uj.edu.pl/~cyranka

52 J Sci Comput (2014) 59:28–52

21. Lohner, R.J.: Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value
problems. In: Cash, J.R., Gladwell, I. (eds.) Computational Ordinary Differential Equations. Clarendon
Press, Oxford (1992)

22. Maier-Paape, S., Miller, U., Mischaikow, K., Wanner, T.: Rigorous numerics for the Cahn-Hilliard equa-
tion on the unit square. Rev. Mat. Complut. 21, 351–426 (2008)

23. Moore, R.E.: Interval Analysis. Prentice-Hall, New Jersey (1966)
24. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
25. Nakao, M.T.: Numerical verification methods for solutions of ordinary and partial differential equations.

Numer. Funct. Anal. Optim. 22, 321–356 (2001)
26. Orszag, S.A., Patterson, G.S.: Spectral calculations of isotropic turbulence: efficient removal of aliasing

interactions. Phys. Fluids 14, 2538–2541 (1971)
27. Simó, C.: Taylor Method for the Integration of ODE. Lectures given at the LTI07 Advanced School on

Long Time Integrations, available online http://www.maia.ub.es/dsg/2007/
28. Software package and the data from tests, http://www.ii.uj.edu.pl/~cyranka/FFT
29. Temperton, C.: Self-sorting mixed-radix fast fourier transforms. J. Comput. Phys. 52, 1–23 (1983)
30. Temperton, C.: Fast mixed-radix real fourier transforms. J. Comput. Phys. 52, 340–350 (1983)
31. Warmus, M.: Calculus of Approximations. Bull. de l’Académie Polonaise des Sciences Cl. III 4, 253–259

(1956)
32. Zgliczyński, P.: Attracting fixed points for the Kuramoto-Sivashinsky equation—a computer assisted

proof. SIAM J. Appl. Dyn. Syst. 1, 215–288 (2002)
33. Zgliczyński, P.: C1-Lohner algorithm. Found. Comput. Math. 2, 429–465 (2002)
34. Zgliczyński, P.: Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the

Kuramoto-Sivashinsky PDE—a computer assisted proof. Found. Comput. Math. 4, 157–185 (2004)
35. Zgliczyński, P.: Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration

of dissipative PDEs. Topol. Methods Nonlinear Anal. 36, 197–262 (2010)
36. Zgliczyński, P., Mischaikow, K.: Rigorous numerics for partial differential equations: the Kuramoto-

Sivashinsky equation. Found. Comput. Math. 1, 255–288 (2001)

123

http://www.maia.ub.es/dsg/2007/
http://www.ii.uj.edu.pl/~cyranka/FFT

	Efficient and Generic Algorithm for Rigorous Integration Forward in Time of dPDEs: Part I
	Abstract
	1 Introduction
	2 Fast Fourier Transform algorithm
	2.1 Outline of Approach
	2.2 Uniform Matrix Form of the FFT

	3 Issues arising when the FFT algorithm is used within interval arithmetic framework
	3.1 Aliasing Problem
	3.2 Standard Technique of Aliasing Error Removal (Padding)
	3.3 Technique Based on Phase Shifts
	3.4 Overestimates

	4 A Rigorous dPDE Integrator
	4.1 Automatic Differentiation
	4.2 Jet Transport
	4.3 An Algorithm Combining Automatic Differentiation with FFT

	5 Rigorous Numerics Tests
	5.1 Burgers Equation Fixed Point Test (Galerkin Projection)
	5.2 Kuramoto-Sivashinsky Equation Attracting Periodic Orbit Test
	5.3 Kuramoto-Sivashinsky Equation Unstable Periodic Orbit Test (Differential Inclusion)
	5.4 Swift-Hohenberg Equation a Connection Between Fixed Points Test (Differential Inclusion)

	6 Complexity
	7 Conclusion
	Acknowledgments
	References

