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Abstract Rodent animal can accomplish self-locating and

path-finding task by forming a cognitive map in the hip-

pocampus representing the environment. In the classical

model of the cognitive map, the system (artificial animal)

needs large amounts of physical exploration to study spa-

tial environment to solve path-finding problems, which

costs too much time and energy. Although Hopfield’s

mental exploration model makes up for the deficiency

mentioned above, the path is still not efficient enough.

Moreover, his model mainly focused on the artificial neural

network, and clear physiological meanings has not been

addressed. In this work, based on the concept of mental

exploration, neural energy coding theory has been applied

to the novel calculation model to solve the path-finding

problem. Energy field is constructed on the basis of the

firing power of place cell clusters, and the energy field

gradient can be used in mental exploration to solve path-

finding problems. The study shows that the new mental

exploration model can efficiently find the optimal path, and

present the learning process with biophysical meaning as

well. We also analyzed the parameters of the model which

affect the path efficiency. This new idea verifies the

importance of place cell and synapse in spatial memory and

proves that energy coding is effective to study cognitive

activities. This may provide the theoretical basis for the

neural dynamics mechanism of spatial memory.

Keywords Cognitive map � Mental exploration � Energy
coding � Energy field � Energy field gradient

Introduction

The concept of the cognitive map proposed by Tolman can

be used to solve the navigation problems in environment

such as self-locating, target-searching and path-finding

(Tolman 1948), which caught wide attention in the field of

neuroscience. He proposed that a cognitive map can be

formed in the brain to represente the change in surrounding

environment duiring the rat moving in the environment

(Tolman 1948), which can be used to solve the spatial

location problem. Place cells in hippocampus are the bio-

logical foundation of cognitive map, and they were first

found by O’Keefe and Nadel (1978) in the hippocampus

with an electrophysiological method. Redish and Touret-

zky (1997) found that the hippocampus possesses ability of

spatial memory associated with spatial navigation in rodent

animal. There are two kinds of neural network models in

the theoretical study of the cognitive map. First is spatial

vector map, representing self-location. Second is goal-ori-

ented vector map, indicating the position of the target (Zhu

et al. 2013). In the model of spatial vector map, the role of

the map is to express the location of the agent in space, and

the agent can be located on the map. Wilson and

McNaughton (1993) recorded the firing pattern of place

cell during the process of spatial exploration in animal

experiments. And Wilson’s research revealed how the

animal’s position in a two-dimensional plane can be

expressed by place cells, which verified the efficiency of

population coding. This theory showed that the position-

coding with concentrated firing is linked through the

interaction between closely connected neurons (Redish

1999). Some other experimental studies further verified

that population coding could be restructured according to

the changes of environment (Muller and Kubie 1987;

Bostock et al. 1991; Gothard et al. 1996). Based on these
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researches, Muller, and his colleagues proposed that the

place cells firing together could form a network, which

made place cells to interact forming a tightly connected

synapse (Muller et al. 1991; Muller et al. 1996). The main

function of cognitive map model concerning the goal-ori-

ented vector map is to navigate between the different

spatial locations. Burgess et al. (1994), Blum and Abbott

(1996), Gerstner and Abbott (1997), Redish and Touretzky

(1998) and Trullier and Meyer (2000) made thorough

researches in this kind of model. The core of their model

was the asymmetric plasticity connection of pyramidal

cells hippocampus, and then Hebbian plasticity learning

algorithm was adapted to the model so as to generate

asymmetric connection. The deficiency of this model was

that it was difficult to generate asymmetric connection in

spatial tasks with multi-targets. Later, Redish et al. com-

bined the two cognitive maps in 1998 to make symmetric

and asymmetric connections coexist. There have been

many promising works about neural coding and the cog-

nitive map in the recent years (Han et al. 2014; Duch and

Dobosz 2011; Strauss et al. 2010; Sato and Yamaguchi

2009; Huyck 2009; Wagatsuma and Yamaguchi 2007).

And there are also many wonderful pioneering researches

on neural dynamics model which set up a framework for

the theory and application of neural system model (Adeli

and Park 1998; Park and Adeli 1995, 1997; Adeli and

Karim 1997; Senouci and Adeli 2001; Adeli and Kim

2001; Tashakori and Adeli 2002; Ahmadkhanlou and Adeli

2005). However, the deficiency was that it took a large

number of physical explorations to form path vector. This

means to explore spatial environment continually through

the actual movements, which consume time and energy.

Our study can make up the defects, and physical explo-

ration can be improved to mental exploration.

Mental Exploration was firstly proposed by Hopfield

(2010). He adapted plane attractor to the energy function

and substituted the mental exploration in the virtual space

for the heavy process of physical exploration. The main

learning algorithm was to calculate the increase of con-

nection strength among synapses. The accumulation pro-

cess began at the moment a mental position matches a

physical location and terminates at the moment when

special neurons send the signal ‘‘find the target’’. Mental

exploration has some obvious advantages compared to

physical exploration. However, the study proposed by

Hopfield was carried out in the artificial neural network,

without direct physiological significance. Furthermore,

during the process of finding an efficient path to mental

exploration, there is no demand for learning speed and path

efficiency. Other researchers combine spatial vector and

goal-orientation maps to form a path finding mechanism

(Zhu et al. 2013). And this mechanism is applied to mental

exploration. But the efficiency is also not ideal. It takes at

least 15 times to generate a relatively efficient path and the

model is easy to be trapped into a local zone and never gets

out. Furthermore, energy coding method has been gradu-

ally established and studied based on structural neural

network (Wang and Zhang 2006, 2007; Wang et al.

2008, 2009), but how to apply this new method into

functional neural network remains to be discussed. In this

work, based on Hopfield theory, neural energy coding

theory with clear biological significance is adopted (Wang

and Zhang 2006, 2007; Wang et al. 2008, 2009), and the

firing power of place cell is regarded as the breakthrough

point to guide mental exploration. An efficient mental

exploration path can be achieved with this method, which

possesses the function of path optimization.

Path finding and optimization are essentially problems

of neural information coding, which is widely studied and

rapidly developed in the cognitive and computational

neuroscience fields (Sato and Yamaguchi 2009; Wang and

Zhang 2006; Wang et al. 2015; Mohemmed et al. 2012;

Luque et al. 2012; Rossello et al. 2012; Ramanathan et al.

2012; Yamanishi et al. 2012; Fukushima et al. 2007). In

particular, energy coding has drawn increasing attention of

researchers. This coding method is adopted to guide mental

exploration in our study. Energy coding of the cognitive

process was developed based on the studies by Wang and

Zhang (2006, 2007) and Wang et al. (2008, 2009). The core

argument of these studies is that neural information can be

expressed by neural energy. Thus, neural processing can be

contained in the theoretical framework of global neural

coding in the brain (Wang et al. 2015a, b; Wang and Wang

2014). The action potential and energy consumption in the

action potential firing process has exclusive corresponding

relation. It is possible for the neural information processing

to perform research using energy coding (Wang et al.

2015).Neural network is a high-dimensional nonlinear

complex dynamic system composed of large amounts of

neurons, and neural energy can be superimposed, which

provides convenience for modeling and computational

analysis to reduce the cost of study. Nervous energy may

be an effective tool to study the global behavior of brain

activities (Wang et al. 2015; Zheng et al. 2012). In this

work, based on the advantages of energy coding such as

simplicity and globality, mental exploration is guided by

the global neural energy field generated by the firing power

of place cells. Based on these researches, this study dis-

cusses the specific problem of path-finding: a rat can ini-

tiate a random search in a strange environment, and will

finally locate the target. With the increase of the number of

the experiment, the rat can find the target faster, and the

efficiency will be improved. Because place cell would fire

according to a certain order during the experimental pro-

cess, which changes the synaptic connection, the location,

spatial environment and target information of a rat can be
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decoded by the firing pattern of group activities of place

cells. The efficiency of path finding can be improved by

integrating the information in the hippocampus. Based on

the theoretical framework of energy coding, spatial mem-

ory is simulated in this study by constructing a new com-

puting model and routing process. Moreover, mental

exploration proposed by Hopfield is adopted (Hopfield

2010) and physical exploration is improved by mental

exploration, which is endowed with clearer biological

significance, so that a new navigation model with mental

exploration is generated.

The firing rule of place cell responding to spatial loca-

tion is as follows: when a rat is in the center of place field

represented by the place cell, this place cell will lead to

heavy activity and the firing rate will also be at the highest.

When a rat is away from this center, the activity intensity

of this place cell and its firing rate will both decrease.

Figure 1 is a typical momentary distribution of the firing

rate over a chart (in allocentric coordinates). The animal is

located at the center of the square and is moving to the left

and toward the viewer (Samsonovich and McNaughton

1997). A fixed Gaussian shape of the activity packet is

introduced by Samsonovich and McNaughton (1997). The

spike on top is an effect of the animal moving.

The waveforms of action potential are identical, so the

number of spikes can measure the energy consumption of

place cell. The number of spike number in the unit of time

represents firing rate, reflecting the firing power of place

cell. Based on the physiological fact mentioned above, it is

possible to assume in this paper that the energy consumed

by the isolated specific place cell (firing power) meets the

two-dimensional Gaussian distribution. That is to say,

when the system is located in the center of place field of a

place cell, the firing power of this place cell will be at the

highest. When the system is away from this center, this

place cell declines in accordance with squared exponential

of distance, and the coordinate of the place field center is

regarded as expectation, which meets the two-dimensional

Gaussian distribution. ‘Isolated’ means that without the

influence of synaptic connections from other place cell, the

place cell studied meets the firing law.

The activity of a place cell in the hippocampus corre-

sponds to the spatial location of the animal, and place cells

with different place field can spike with time order

according to the movement of the animal. In accordance

with the rule of ‘connect after simultaneous spike’ (Wang

et al. 2015), such spikes lead to strengthening of the

synaptic between place cells. Then, such strengthening

effect will affect the spike of the subsequent place cell, so

that every place cell can be decoded by phase-shift coding

(Zhu et al. 2013). When a system moves from the place

field of one position to the place field of another, this

forward channel will be strengthened; that is to say that the

path has been learned. When the animal is located on the

path experienced before, the activated (spike with high

energy) place cells can activate the place cells in their

forward path through strengthening synaptic. When a rat

explores maze, place cell firing results in a weighted matrix

in the CA3 region of hippocampus, resulting in distinct

place fields according to Hebbian long-term potentials

(LTPs). LTP is a persistent strengthening of synapses based

on recent patterns of activity. These are patterns of synaptic

activity that produce a long-lasting increase in signal

transmission between neurons. As a result, the strength of

connections between place cells with overlapping areas is

strengthened considerably, distinguishing these from non-

overlapping areas. Then the shift vector generated will

point to the front of the path. If enough paths with LTP are

generated, these shift vectors can reflect the history of

space exploration and a helpful map for further navigation

is provided (Blum and Abbott 1996). In our model, we

generate the synaptic in a way such that if two place cells

spike with high power one after another, the synaptic

connection between them will be strengthened once, sim-

ilarly to the previous study. Meanwhile, exploration and

mental exploration of an animal are always based on the

target navigation, so the place cell expressing the target and

the present place cell would spike with high power

simultaneously, which leads to the synaptic connection

between the place cell and the target cell.

Model and method

Assuming a one-on-one correspondence between the place

field center of a place cell and the node of spatial map after

reticulation, a place cell and its place field center from

reticulation map can represents each other when a proper

reversible linear transformation is adopted. So we can use

place cells to represent actural space to construct a vitural

plane. Assuming there are n locations and n place cells are
Fig. 1 Place cells activity packet on a chart constructed from the

experimental data
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representing them but not in the convienient order. For

example, location Li and Li?1 are neighbours while place

cells pi and pi?1 which represent them are not. Then we can

apply an certain n 9 n permutation matrix (transformation)

to the place cell vector to move pi and pi?1 near each other.

These transformations will consist a permutation group of

order n. This adoption helps to generate a virtual map to

express spatial location more easily with place cell clusters.

When a place cell fire independently, what is the distri-

bution property of the firing power? Based on the consid-

eration of physiological facts (Samsonovich and

McNaughton 1997) and mathematical convenience, there

are two basic hypotheses for the deduce of power distri-

bution: (1) Activity intensity of a place cell with respect for

x axis is independent from that for y axis, vice versa. In

other words, the firing power of a place cell in two

orthogonal direction is independent from each other. (2)

Firing power distribution has rotational symmetry in space,

that is to say, firing power is only dependent on the dis-

tance from center. We take the center of place field as

origin of coordinates. According to hypotheses (1), power

distribution P0(x, y) is as the following form:

P0ðx; yÞ ¼ f ðxÞ � f ðyÞ ð1Þ

Transformed into polar coordinate:

P0ðx; yÞ ¼ P0ðr cos h; r sin hÞ ¼ gðr; hÞ ð2Þ

According to hypotheses (2), P0(x, y) is only the function

of distance, then we have

f ðxÞ � f ðyÞ ¼ P0ðx; yÞ ¼ gðrÞ ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

� �

ð3Þ

Take y = 0, we can get f ðxÞ � f ð0Þ ¼ gðxÞ. Similarly,

f ðyÞ � f ð0Þ ¼ gðyÞ. So

ln
f ðxÞ
f ð0Þ þ ln

f ðyÞ
f ð0Þ ¼ ln

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

� �

f 2ð0Þ ¼ ln
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

� �

f ð0Þ
ð4Þ

Replace ln
f ðxÞ
f ð0Þ by h(x), we will get

hðxÞ ¼ ln
f ðxÞ
f ð0Þ ð5Þ

hðxÞ þ hðyÞ ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

� �

ð6Þ

If the function is smooth (or differentiable), this equation

can be solved. For any integer n, we can get

n2 � hðxÞ ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffi

n2 � x2
p� �

¼ hðn � xÞ ; so hðn � xÞ ¼ n2 � hðxÞ

ð7Þ

Similarly,

hðxÞ ¼ h m � x
m

� �

¼ m2 � h x

m

� �

; so h
x

m

� �

¼ 1

m2
hðxÞ ð8Þ

Then,

h
n

m
x

� �

¼ n2

m2
hðxÞ ð9Þ

This means for any rational number q, we can get

hðq � xÞ ¼ q2 � hðxÞ. Since all rational numbers Q is a

density subset of all real numbers R and the function is

continuous, for any real number r, we will get

hðr � xÞ ¼ r2 � hðxÞ ; so hðxÞ ¼ hðx � 1Þ ¼ hð1Þ � x2 ð10Þ

and,

f ðxÞ ¼ f ð0Þ � exp hð1Þ � x2
� �

; P0ðx; yÞ ¼ f ðxÞ � f ðyÞ
¼ a � exp b � x2 þ y2

� �� �

ð11Þ

In these equations,a ¼ f 2ð0Þ; b ¼ hð1Þ are constant. On the

condition of normalization,
ZZ

R�R

P0ðx; yÞdxdy ¼ 1 ð12Þ

We can get a ¼ � b
p ; b\0, take b ¼ � 1

2r2, then

P0ðx; yÞ ¼
1

2pr2
� exp � x2 þ y2

2r2

	 


; ð13Þ

Finally, we will have the following generalization form,

P0 ¼
1

2pr1r2
exp � 1

2

x� l1ð Þ2

r21
þ y� l2ð Þ2

r22

" #( )

ð14Þ

When a single place cell is fired independently, the fir-

ing power shows two-dimensional Gaussian distribution

with respect to space map. When the place cell is fired due

to the stimulation from excitatory synaptic of another place

cells, the power obtains a certain proportion of increase,

and this proportion depends on the strength of the synaptic

connection. Since all the place cells possess identical

action potential and similar structure and function, their

firing power distributions are identical (with the same peak,

variance and shape, so that they can completely overlap

after translation) except the expectations which represent

place field centers.

After normalization with the maximum firing power, as

we deduced before, the space distribution relative to the

isolated firing power of place cell is described as Eq. (14).

Where P0 is the normalized activity power of a particular

place cell with respect to a certain location before learning.

(l1, l2) represents the coordinate of the place field center

of a place cell, and (x, y) represents the present location of

the system. r1; r2 define the decay rate of firing power

when system is away from place field center, which can be
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determined by experimental data. When system is at (x, y)

without the influence of another place cell synaptic, the

normalization firing power of the place cell whose place

field center is located at (l1, l2) can be calculated from the

equation. The power model is continuous for the spatial

location (x, y). Figure 2 is a schematic illustration of a

multiple chart network (Wagatsuma and Yamaguchi 2007).

The recurrent network of place cells has anatomically

twisted synaptic connections. Blue and red circles,

respectively, denote place cells that are active in environ-

ment A, called chart A, and the cells that are active in

environment B, called chart B. The top figure represents

the anatomical position of cells, and the bottom fig-

ures represent imaginary arrangements of cells that are

aligned according to their place fields in environment A

(blue) and environment B(red). Twisted connections in the

top figure can be straightened in the bottom figures as

neighboring connections among cells. Different colors

means there are different cognitive maps of each environ-

ment. When construct the model, virtual plane which rep-

resents environment should consists of place cells, so a

linear transformation is adopted and the place cell network

structure is rearranged as a lattice. In other words, every

place cell is connected to its four neighbors. There are very

weak symmetric connections before exploration. This is the

initial status of the network. Asymmetric connections are

added to the network during exploration.

If there exists excitatory synaptic connection from

another place cell to the ith cell, then the firing power will

obtain a certain proportion of increase based on the origi-

nal, and this ratio is determined by the strength of synaptic

connection. Normalized power is given by

Pc ¼ 1þ xti þ
X

n

j6¼i

xji

 !

1

2pr1r2
exp � 1

2

x� l1ð Þ2

r21
þ y� l2ð Þ2

r22

" #( )

ð15Þ

k
dxji

dt
¼
Z

1

0

PiðsÞHðsÞPjðt � sÞ þ Piðt � sÞHð�sÞPjðsÞ
� �

ds

ð16Þ

where Pc is the normalized power with respect to a certain

location after learning. xti represents the synaptic con-

nection from the object to the ith place cell, and xji stands

for the synaptic connection from other place cells to the

ith one. As described in Eq. (16), Hebbian learning rule is

adopted to calculate the synaptic connection strength, but

this calculation is in an energy form. Because Pi (t) and Pj
(t) are the power of place cell i and j at moment t. k is a

constant and H (t) is a time window. Assume that the

power is enhanced in a certain proportion so that all

synaptic strength can be summed as a total proportion of

power increase. The meanings of other factors in the

Eq. (15) are consistent with Eq. (14). When rodent animal

is at the position (x, y) on the plane, coordinate z is the

representation of the normalized power of this particular

place cell, and every place cell has a similar power dis-

tribution. At a particular moment, the animal’s location is

determined, so the firing power of every place cell is

determined, too. The centers of place fields are taken as

independent variables, the power of corresponding place

cells as z(function of (x, y)), so that the power of place

cell population becomes a field defined by centers of

place fields. Since the neural energy field introduced here

is only defined on centers of place fields, it is a discrete

field distinguished from continuous mathematical field.

With the absence of synaptic connection, it is obvious that

this field also acquires a Gaussian distribution form. This

is the initial status of the place field without synaptic

connection, which exhibits unimodal Gaussian distribu-

tion before learning, however it will become a multi-

modal place fields with two or more peaks in the explored

environment after learning. More details will be presented

in the ‘Results’ part.

The spatial memory and the information of paths

explored by an animal are stored as synaptic connections

between place cells. Changing of the synapses alters the

distribution of the energy field. Notably, two types of

synapses appear in our model. One type of synapse is

generated between adjacent place cells due to their suc-

cessive high power firing. The other is generated because

place cells represent current location and the target fire

simultaneously with high power. Since the target location

is fixed, the influence on place cells from the second type

of synapse could be performed by an energy field whose

center is the target location. Finally, the distribution form

of the energy field on a virtual plane is determined by the

following equations:Fig. 2 Network structure
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Pkðx; yÞ ¼ Pk0ðx; yÞ þ Pktðx; yÞ;

Pk0ðx; yÞ ¼ 1þ
X

n

j 6¼i

xji

 !

1

2pr1r2
exp � 1

2

x� xp
� �2

r21
þ

y� yp
� �2

r22

" #( )

;

Pktðx; yÞ ¼
1

2pr1r2
exp � 1

2

x� xtð Þ2

r21
þ y� ytð Þ2

r22

" #( )

ðk ¼ 1; 2; 3. . .Þ

ð17Þ

Pk means the energy field after the system performs the kth

step. Pk0 is the energy field generated by place cell

population. Meanwhile, synapses connecting ordinary

place cells and target place cell increase the firing

power, and this effect is expressed by Pkt, which will be

summed with the original energy field of Pk0. (x, y)

denote any place field centers on the plane. Moreover,

(xp, yp) and (xt, yt) show the current location of the

system and that of the target respectively. The power at

(x, y) can be calculated with these equations when

spatial position (x, y) is given. (x, y) can only be taken

to be center coordinates of place field because of the

discreteness of the energy field. To summarize, place

cells represent spatial locations, and have firing power

themselves, so these firing power could be considered as

a field distributed in space. The distribution form of this

field is influenced by synaptic connections among the

place cells. The gradient of this energy field can be used

to guide the mental exploration on virtual plane which is

also represented by place cells. Then the path-finding

and path-optimizing task would be accomplished by

altering field gradient through changing synaptic con-

nections. When the system finishes kth step at a certain

position, the direction of next step will be determined by

the direction vector n~kþ1.

n~kþ1 ¼
~n~kþ1 þ n~rand

~n~kþ1 þ n~randj j
~n~kþ1 ¼ gradPk xk0; yk0ð Þ

¼ oPk

ox
i~þ oPk

oy
j~

 �

ðx;yÞ¼ xk0;yk0ð Þ
�

�

ð18Þ

In this equation, n~kþ1 is the normalized direction vector of

next step, whose main part is ~n~kþ1, which is determined by

current energy field gradient. Gradient is calculated with

discrete method because the energy field is discrete. n~rand is

a random vector to simulate disturbance, whose direction

changes randomly. The direction of n~rand is uniformly

distributed from 0 to 2p. A particular neuron will be nee-

ded to end mental exploration by firing spikes after target is

found (Hopfield 2010). In this model, exploration will be

terminated when the distance between target position and

real-time position of exploration is shorter than a certain

distance, which is called crucial distance.

According to this model, we use Matlab (R2013a) for

simulation. The path-finding process is performed in a

square region of space. 225 (15 9 15) place cells are set

during simulation. Target location is set to (10, 10), and

system (model rat) enter this unexplored space through (1,

1) to execute the path-finding task with step length of 1

(Zhu et al. 2013). Meanwhile, crucial distance is set to be

the length of 2 steps.

Results

The path-finding process has two stages. The first one is

learning in which the system (artificial animal) initiate a

random search in the new environment. The goal is to get

the whole layout of the environment, and the position of

the target, then construct the place cells into a complete

virtual plane. The second one is path-finding based on the

energy field gradient. In this stage, the system guided step

by step by the energy field gradient conduct mental

exploration in the virtual plane and try to find an efficient

path in a shortest possible time to navigate for the later

physical exploration.

Ten times of continuous operation results are shown in

Fig. 3 It displayed the trajectories in virtual plane during

the path-finding process. The larger blue star represents the

target position to be explored, and the smaller red star

represent the position of each step. The blue thread con-

necting them shows the motion trajectory. Figure 3a shows

the first path-finding. In this case, target is unknown, and

energy field is unconstructed, so the navigation vector is

determined only by the random part. This is called com-

pletely random path-finding. Completely random path-

finding will cover almost the whole environment, and the

shorter the crucial distance is set, the more likely this path-

finding will cover a larger space. However, the number of

steps will increase as well. Once the first path-finding

locates the target, the corresponding place cell representing

this point will be activated. The later mental exploration

will be navigated by energy field gradient.

As can be seen in Fig. 3, number of steps of mental

exploration shows a declining trend overall. In this case,

hundreds of steps are conducted to locate the target during

the first random path-finding. Then after nine times of

learning and optimization based on energy field gradient, a

dozen of steps will suffice for mental exploration to find the

target. The learning trend of path finding can be seen

visually from statistical chart of step number (Fig. 4),

where horizontal and vertical coordinates represent number

of path findings and number of steps respectively.

Optimization procedure is guided by the energy field

gradient as soon as the target is found by completely ran-
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dom path finding process. According to the model pro-

posed in this paper, the form of the energy field is deter-

mined by target location, the topological structure of place

cells with synaptic connection and synaptic strength. The

energy field gradient is determined by these factors as well.

As a result, any position explored by the system, will

correspond to a specific energy field distribution, which

will possess a certain gradient. This gradient, guiding the

direction of next step of mental exploration, is the main

part of the navigation vector (the other part is the random

disturbance term). An example of the energy field and

gradient navigation vector is presented in Fig. 5. This is the

case before the 6th step in the 6th path-finding. Figure 5a, b

depict the energy field before the 6th step of mental

exploration from a different angle (rotated). Green line on

the x–y plane represents the trajectory of step 6. Figure 5c,

d are gradient vector maps of the upper energy field.

Gradient at each point is depicted by the blue arrow

(without normalization). The right diagram is the local

amplification of the left one. The red line is the normalized

gradient of current position of the system. This normalized

gradient is the navigation vector for next step of explo-

ration. The meaning of the green line is consistent with the

upper diagrams. Due to the presence of random noise, there

is a certain degree of difference between navigation vector

and actual motion trajectory. In some cases, these two

vectors may be more different, which results from a rela-

tively stronger random vector.

Another example of 6th step in 10th path-finding is

shown in Fig. 6. The meanings of all lines are same as in

Fig. 5. There are hardly any differences between naviga-

tion vector and actual motion trajectory because, as mental

exploration repeats, gradient navigation vector enhances

and noise decays.

Discussion

In traditional models, animals were required to undergo

significant amounts of physical exploration to learn a new

space, ranging from several minutes to many hours. Using

mental exploration technique, a stationary simulation of
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animal exploration results in the formation of a represen-

tative virtual plane in the hippocampal CA3 region, thus

simulating the process of real area exploration over the

course of only a few seconds. Because of the rapid and

responsive process involved, the mental exploration model

may fulfill particular cognitive functions related to goal

finding and path determination in practical settings (Zhu

et al. 2013). On an abstract level, imagining or planning a

path are all mental exploration. When circumstances per-

mit its use, mental exploration can be faster, more energy-

efficient, and safer than physical exploration for spatial

problem-solving. Mental exploration can be separate from

the original spatial knowledge generated by real

exploration.
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In this model, we proposed several factors that are

crucial to the optimization procedure such as the increase

of synaptic strength Dxij and standard variance r1; r2. Dxij

is determined by the learning rule in Eq. (16), while the

differential is taken as a discrete form during the calcula-

tion. To detect the influence of parameter variations, we

execute the model using different standard variances.

These variances are set at r1 ¼ r2 ¼ 3:52 in one case and

r1 ¼ r2 ¼ 4:00 in another. During the path finding pro-

cess, the trajectories and steps are recorded in these two

cases for comparison. Results are demonstrated as below in

Figs. 7 and 8. These two figures show trajectory records of

path finding process while standard variances are set to

3.52 and 4.00 respectively. There is no significant differ-

ence in the incipient few experiments between these two

cases. However, the smaller-variance-case seems to have

an optimization limit and is more likely to detour in the last

few experiments. The larger-variance-case shows no such

limit and tends to generate a better path. Statistics of path

finding steps of these two cases in Fig. 9 demonstrate this

result from another perspective. As we can see from

Figs. 7i, j and 8i, j, the last few experimental results of the

lager-variance-case are better than the smaller one. Fewer

steps are taken in the final path of the larger variance case.

If a certain part of the environment is searched many times,

the synapse strength of place cells representing this area

will be extremely large, since the Hebbian learning rule we

adopted is not convergent. This will cause the path to

concentrate in a single region and form a so-called ‘‘siege

phenomenon’’. This defect is probably the reason that the

optimization of smaller-variance-case in the last few

experiments is not so ideal. Fortunately, a relatively larger

variance will solve this problem as is shown in Fig. 8.

Larger variance means stronger synapse between target and

current place cells and this property may balance the strong

local synapse strength and results in generating more effi-

cient navigation vectors. In addition, larger variance means

that the attenuation of firing power caused by distance

growth from place field center will slow down, which leads

to more energy consumption. More efficient mental path

means more energy cost; this seems quite reasonable for an

animal. Of course, there is an alternative which is to

improve the synaptic learning rule in this model. The

synapse strength should be convergent as the experiment

repeats, so the increase in synaptic strength Dxij will be

smaller in the later experiments, then the total synaptic

change
P

Dxij will convergent. This can be a topic for

future studies.

Comparing with former work (Zhu et al. 2013), the

searching efficiency has been improved significantly in our

model. The repeating trials are fewer and final path is

shorter. Figure 10a is shows the fifteenth path in Zhu et al.
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(2013), which is an ‘‘S’’ shaped trajectory. Clearly it is not

efficient enough. Figure 10b is the tenth path generated by

our model. Unlike Fig. 10a, it is almost a straight line and

repeating trials decrease 33 %.

Conclusion

When the target to be explored is far away from the current

position during the process of path-finding in spatial

location field executed by rodent animal, the activity

intensity of the place cell will gradually change with the

distance. The farther distance leads to the lower activity

intensity. In this work, based on such biology facts the

power attenuation law of place cell is quantitatively

described by Gauss distribution as widely existing in nat-

ure, and the spatial distributions of power of all place cells

at the same time are regarded as an energy field. After

constructing the energy field, we studied the feature of the

gradient in this field. In combination with mental explo-

ration proposed by Hopfield, energy field gradient is

adopted for mental exploration, and the gradient acted as

navigation vector, which greatly improves the efficiency of

mental exploration. The results show that ten times of

mental exploration lead to an optimal path. Compared with

the published researches (Zhu et al. 2013), the method of

neural energy field gradient may solve the path-finding

problems and greatly improve the efficiency of mental

exploration.

Our study, from the view of energy coding method,

proves that synaptic plasticity plays an important role in

spatial memory and mental exploration. And it also proves

that adopting the global energy coding theory to mental

exploration shows great advantages in path-finding prob-

lems. The results in our paper show that the synaptic

connections between place cells have a decisive influence

on the distribution of the energy field, so as to affect the

gradient of the energy field gradient- navigation vector.

However, the change of navigation vector affects the path-

finding of mental exploration. Specifically, the repeat of the

old path and the generation of the new path correspond to

the certain firing patterns of place cells, which changes the
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synaptic connection strength in turn. Thus, energy field

changes constantly under the impact of cycle feedback, so

as to provide an optimal path for mental exploration

through navigation. This means synaptic connection can

serve as a bridge to build a bidirectional connection

between energy field distribution and the path of mental
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exploration, one object can be studied to describe the other

effectively. Then we analyzed the model we proposed and

found an interesting property, which is that larger variance

of the energy field will generate a better path. This finding

may indicate a potential improvement for future studies.

This work can also be regarded as the optimization of

mental exploration concept with energy coding theory.

While the original one is based on artificial neural network

and has no biological meaning. Our results prove that it is

effective to study path-finding problems with mental

exploration based on energy coding theory, which has

many potential applications in various research fields of

artificial intelligence.
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