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Spacelike Localization of Long-Range Fields
in a Model of Asymptotic Electrodynamics

Andrzej Herdegen and Katarzyna Rejzner

Abstract. A previously proposed algebra of asymptotic fields in quantum
electrodynamics is formulated as a net of algebras localized in regions
which in general have unbounded spacelike extension. Electromagnetic
fields may be localized in ‘symmetrical spacelike cones’, but there are
strong indications this is not possible in the present model for charged
fields, which have tails extending in all space directions. Nevertheless,
products of appropriately ‘dressed’ fermion fields (with compensating
charges) yield bi-localized observables.

1. Introduction

In this paper we continue the investigation of the infrared structure of quan-
tum electrodynamics based on an algebraic model proposed earlier by one of
us (see [1] and papers cited therein; see also [2]). This model is supposed to
describe asymptotic fields in the quantum Maxwell–Dirac system, including
the Gauss’ law constraint (as opposed to the crossed product of free fields).

In a recent paper [3], this model was investigated in respect of the localiza-
tion properties of fields. It was shown that one needs an extension of the local-
ization regions: infrared/charge structure is encoded in unbounded regions. It
was argued that from the point of view of scattering theory, the natural choice
for extended localization regions consists of ‘fattened lightcones’, unions of
intersecting: a future- and a past-lightcone. The test functions of electromag-
netic fields have well-defined asymptotes encoding the information on the long
distance structure.

In the present article we show that the algebra can be localized in any
‘time-slice’ which is fattening under constant inclination towards infinity. In
addition, the localization of electromagnetic field may be restricted to ‘fattened
symmetrical spacelike cones’: the unions of a spacelike cone and its reflection
with respect to a point in its inside. Similar restriction seems to be ruled out,
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even asymptotically, for charged fields. This seems to contradict general wis-
dom on the expected behavior of fields in full electrodynamics, see e.g. the
assumptions on which Buchholz [5] bases his selection criterion of representa-
tions in quantum electrodynamics. Whether this points to some incompleteness
of the model is an open question; see the discussion at the beginning of Sect. 5
below and in Sect. 6. On the other hand, we show that in the present model, in
agreement with the general expectation, one can superpose two appropriately
“dressed” Dirac fields carrying opposite charges to obtain a local observable.

This article should be regarded as a continuation of references [1] and
[3], and we refer the reader to these references for more detail and a wider
background. However, we briefly summarize notation and the formulation of
the model in the next two sections. We obtain spacelike localization of fields
in Sects. 4 and 5, and discuss the results in concluding Sect. 6.

2. Geometrical Preliminaries

The geometry of the spacetime is given by the affine Minkowski space M. If
a reference point O is chosen, then each point P in M is represented by a vec-
tor x in the associated Minkowski vector space M according to P = O + x. We
mostly keep O fixed and use this representation. The Minkowski product is
denoted by a dot, x·y, and we write x2 = x·x. If a Minkowski basis (e0, . . . , e3)
in M is chosen, then we denote x = xaea. We also then use the standard multi-
index notation xα = (x0)α0 . . . (x3)α3 , |α| = α0 + · · · + α3, Dβ = ∂β0

0 . . . ∂β3
3 ,

where ∂a = ∂/∂xa. We associate with the chosen Minkowski basis a Euclidean
metric with unit matrix in that basis, and denote by |x| the norm of x in that
metric. We briefly recall the definitions of test functions spaces used in [3]. Let
φ(x) be a smooth tensor or spinor field (with vector representation of points)
and define for κ ≥ 0, l = 0, 1, . . . the seminorms

‖ϕ‖κ,l = sup(1 + |x|)κ|Dβϕj(x)|, (2.1)

where supremum is taken over x ∈ M , all β such that |β| = l and j running
over the components of the field. Then Sκ is the space of all smooth fields
of a given geometrical type for which all seminorms ‖.‖κ+l,l with fixed κ are
finite. Denote moreover the operators on smooth functions H = x · ∂ and
Hκ = H + κ id. Then the space Sκ

κ+ε consists of all fields which under the
action of Hκ fall into Sκ+ε. Each field ϕ ∈ Sκ

κ+ε has an asymptote

ϕas(x) = lim
R→∞

Rκϕ(Rx). (2.2)

The inversion formulas are

ϕ(x) =

1∫

0

uκ−1[Hκϕ](ux) du, ϕas(x) =

∞∫

0

uκ−1[Hκϕ](ux) du. (2.3)

The subspaces Sκ(Ω),Sκ
κ+ε(Ω) consist of functions supported in Ω. All spaces,

as well as asymptotes, are independent of the choice of an origin and a basis.
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Next, we recall some notation for Lorentz invariant hypersurfaces. We
denote by l vectors on the future lightcone, and we also introduce

Lab = la(∂/∂lb) − lb(∂/∂la),

which is an operator conveniently expressing differentiation on the lightcone.
We denote by d2l the invariant measure on the set of null directions, which is
applicable to functions f(l) homogeneous of degree −2: the integral∫

f(l) d2l =
∫
f(e0 +�l) dΩ(�l), (2.4)

where dΩ(�l) is the solid angle measure in the direction of the unit 3-vector �l,
is independent of the choice of Minkowski basis, and satisfies∫

Labf(l) d2l = 0. (2.5)

We denote by H+ the hyperboloid v2 = 1, v0 > 0. The differentiation within
the hyperboloid is conveniently expressed by the action of the operator δa, and
integration with the use of invariant measure dμ, defined respectively by

δb = va
[
va(∂/∂vb) − vb(∂/∂va)

]
, dμ(v) = 2θ(v0)δ(v2 − 1) d4v.

We note that for a differentiable function f(v) vanishing for v0 → ∞ as
o((v0)−3), we have ∫

(δ − 3v)f(v) dμ(v) = 0. (2.6)

For x inside the future lightcone, one can write x = λv, λ > 0, and then differ-
entiation and integration over the inside of the future lightcone may be written
as

∂/∂xa = va∂λ + (1/λ)δa, (2.7)∫
F (x) d4x =

∫
F (λv)λ3 dλdμ(v). (2.8)

Similarly, for the hyperboloid H− formed by z2 = −1, the differentiation oper-
ator and the integration measure are defined, respectively, by

δb = −za
[
za(∂/∂zb) − zb(∂/∂za)

]
, dν(z) = 2δ(z2 + 1) d4z.

For f(z) vanishing for |�z| → ∞ as o(|�z|−3), there is∫
(δ + 3z)f(z) dν(z) = 0, (2.9)

and for x = λz (λ > 0) running over the outside of the lightcone, the analogues
of (2.7) and (2.8) are

∂/∂xa = −za∂λ + (1/λ)δa, (2.10)∫
F (x) d4x =

∫
F (λz)λ3 dλdν(z). (2.11)
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Finally, we define some spacetime sets used in the article. For γ > 0 and
δ ∈ (0, 1) we shall denote by Rγ,δ the region |x0| ≤ γ + δ|�x| and by Rδ the
region |x0| ≤ δ|�x|. We note that

− x2 ≥ 1 − δ2

1 + δ2
|x|2 for x ∈ Rδ. (2.12)

By a spacelike cone, we shall mean a closed (solid) cone in M such that all
vectors going from the apex to other points of the cone are spacelike. A sym-
metrical spacelike cone will be the union of such cone with its reflection with
respect to its apex, and a fattened symmetrical spacelike cone—the union of
such cone with its reflection with respect to a point inside the cone. An open
version of any of the defined cones will be its interior.

3. The Model

We briefly summarize the model formulated in [1]. The choice of the test func-
tions spaces is slightly modified.

3.1. Electromagnetic Test Functions

Let V (s, l) be a real vector function of a real variable s and a future-pointing
lightlike vector l. We shall understand differentiability of functions Va in the
sense of the action of Lab and ∂s = ∂/∂s, and denote V̇ (s, l) = ∂sV (s, l). Let Vε

be the real vector space of C∞ functions Va(s, l) which satisfy the following
additional conditions:

V (μs, μl) = μ−1V (s, l), μ > 0, (3.1)
l · V (s, l) = 0, (3.2)

|Lb1c1 . . . Lbkck
V̇a(s, l)| ≤ const(t, k)

(t · l)2(1 + |s|/t · l)1+ε
, k ∈ N, (3.3)

V (+∞, l) = −V (−∞, l) ≡ 1
2
ΔV (l), (3.4)

L[abΔVc](l) = 0, (3.5)

where the third condition holds for an arbitrarily chosen unit timelike, future-
pointing vector t; the bounds are then true for any other such vector (with some
other constants). Moreover, with the use of homogeneity (3.1), the bounds are
generalized to

|Lb1c1 . . . Lbkck
∂n

s Va(s, l)| ≤ const(t, n, k)
(t · l)2(1 + |s|/t · l)n+ε

, n, k ∈ N, (3.6)

It follows from the property (3.5) that

laΔVb(l) − lbΔVa(l) = −LabΦV (l), (3.7)

where

ΦV (l) = − 1
4π

∫
l · ΔV (l′)
l · l′ d2l′ (3.8)
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is a smooth homogeneous function. If ΔV (l) = lα(l), then

ΦV (l) = − 1
4π

∫
α(l′) d2l′ = const.

We also note for later use that for v ∈ H+, there is
∫
v · ΔV (l)
v · l d2l = −

∫
ΦV (l)
(v · l)2 d2l. (3.9)

The spaces Vε form an increasing family for ε ↘ 0, so their union is
a vector space,

V =
⋃
ε>0

Vε. (3.10)

This vector space, when viewed as an Abelian group, allows the following sub-
and quotient groups:

V0
as = {V ∈ V | l ∧ V (s, l) = 0 and ΦV (l) = n(2π/e), n ∈ Z}, (3.11)

L = V/V0
as ; (3.12)

the elements of the latter will be denoted by [V ]. The space V is equipped with
a symplectic form

{V1, V2} =
1
4π

∫
(V̇1 · V2 − V̇2 · V1)(s, l) dsd2l, (3.13)

which is also consistently transferred to L.
For each V ∈ V, the formula

A(x) = − 1
2π

∫
V̇ (x · l, l)d2l (3.14)

gives the Lorentz potential of a free electromagnetic field with well-defined null
asymptotes:

lim
R→∞

RA(x±Rl) = ±V (x · l, l) − 1
2
ΔV (l) (3.15)

and a long-range tail of electric type. This is the class of fields which are pro-
duced in typical scattering processes [4]. For each spacelike x and any fixed a,
the spacelike tail is given by

Aas(x) = lim
R→∞

RA(a+Rx) = − 1
2π

∫
ΔV (l) δ(x · l) d2l = Aas(−x), (3.16)

where δ is the Dirac measure. Let F as
ab be the electromagnetic field of this

asymptotic potential. The condition (3.5) implies that x[aF
as
bc](x) = 0, so this

field is of electric type. If F as = 0, we shall say that the field is infrared-regular,
otherwise it will be called infrared-singular. The symplectic form (3.13) is a
natural extension, to the class considered here, of the usual symplectic form
of free, infrared-regular electromagnetic fields.
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3.2. Matter Test Functions

We denote by S(H+) the space of smooth 4-spinor functions on H+ for which
all seminorms

‖f‖H+
α,β = sup |vαδβf(v)| (3.17)

are finite (with the usual multi-index notation, and supremum over v and
components of the field).

For f ∈ S(H+) the Fourier representation in the form of the formula

ψ(x) =
(m

2π

)3/2
∫
e−imx · v γ · vγ · vf(v) dμ(v) (3.18)

gives a smooth Dirac field, with the timelike asymptote determined by

f(v) = lim
λ→∞

λ3/2iei(mλ+ π/4)γ · vψ(λv). (3.19)

One has the usual scalar product in the space of these fields

(f1, f2) =
∫
f1(v)γ · vf2(v) dμ(v) =

∫

Σ

ψ1γ
aψ2(x) dσa(x), (3.20)

where the second integral is over any Cauchy surface Σ. We denote by K the
Hilbert space completion of S(H+) with respect to this product.

3.3. The Algebra

The ∗-algebra B of the model is generated by elements W ([V ]), [V ] ∈ L, which
for simplicity will also be written as W (V ), elements Ψ(f), f ∈ S(H+), and a
unit E by

W (V1)W (V2) = e− i
2{V1, V2}W (V1 + V2),

(3.21)
W (V )∗ = W (−V ), W (0) = E,

[Ψ(f1),Ψ(f2)]+ = 0, [Ψ(f1),Ψ(f2)∗]+ = (f1, f2)E, (3.22)

W (V )Ψ(f) = Ψ(SΔV f)W (V ), (3.23)

where

(SΔV f)(v) = exp
(

− ie

4π

∫
v · ΔV (l)
v · l d2l

)
f(v). (3.24)

Note that the exponent function in the last formula is a multiplier in S(H+), so
the operator SΔV is a linear automorphism of S(H+). This can be easily seen:
since for t · l = 1 and v ∈ H+ there is |v · l|−1 < |v0|+ |�v|, so | ∫ ΔV a(l)lα

(v·l)|α|+1 d2l | is
polynomially bounded for any multi-index α. Note also that, by the identity
(3.9) and definitions (3.11) and (3.12), there is SΔV2 = SΔV1 for V2 ∈ [V1] ∈ L,
so the algebra is properly defined.

The elements Ψ(f) generate a subalgebra B+ of the CAR type, and the
elements W (V ) – a subalgebra B− of the CCR type. We denote by βV the
automorphisms of B+ defined by

βV (C) = W (V )CW (−V ), (3.25)

forming a group, βV1βV2 = βV1+V2 .
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Regular, translationally covariant, positive energy representations of B
are shown, up to a unitary equivalence, to form a class defined in the following
way. Let πF be the standard positive energy Fock representation of B+ on
HF with the Fock vacuum vector ΩF , and πr be any regular, translationally
covariant, positive energy representation of B− on Hr. Define operators π(A)
on H = HF ⊗ Hr by

π(C) = πF (C) ⊗ idr, C ∈ B+
as,

π(W (V ))[πF (B)ΩF ⊗ ϕ] = πF (βV B)ΩF ⊗ πr(W (V ))ϕ, B ∈ B+
as.

(3.26)

Then π extends to a regular, translationally covariant positive energy repre-
sentation of B. We add one further demand to our selection criterion, that
πr(W (V1)) = πr(W (V2)) whenever l ∧ V1 = l ∧ V2, which is related to the
gauge invariance.

One shows that all representations from the class thus defined determine
the same C∗-norm on B; the completion of B in this norm is the C∗-algebra
F of the model.

4. Spacelike Localization of Electromagnetic Fields

We now want to equip the elements of the algebra with spacetime localiza-
tion properties. We start with the electromagnetic fields, which have direct
observable status. The way to ascribe spacetime properties to them is to rep-
resent the classical test fields A in (3.14) as

A(x) = 4π
∫
D(x− y)J(y) d4y. (4.1)

Here J is a classical conserved test current field, and D(x) = D(0, x), with

D(m,x) =
i

(2π)3

∫
sgn p0δ(p2 −m2)e−ip·x dp. (4.2)

We want the supports of J to be contained between two Cauchy surfaces. This
may be interpreted as a generalized time-slice property.

We shall be concerned with conserved test currents J which are elements
of S3

3+ε(Rγ,δ). Then the asymptote Jas has the support in Rδ. For such currents
the integral in (4.1) is absolutely convergent and determines a corresponding
A. We want to find out whether this potential is of the type given by (3.14).
We start with a useful subsidiary result.

Lemma 1. Let Jas be a homogeneous of degree −3 vector function, smooth
outside the origin, with support in Rδ. The following statements are equiva-
lent.

(i) The continuity equation

∂ · Jas(x) = 0 (4.3)

is satisfied distributionally.
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(ii) Jas satisfies the following conditions on H−

δ · Jas(z) + 3z · Jas(z) = 0, (4.4)∫
z · Jas(z) dν(z) = 0. (4.5)

(iii) Jas is an asymptote of some conserved current J ∈ S3
3+ε(Rγ,δ).

In particular, these conditions are satisfied for Jas of the special form

Jas(x) = xg(x) with

∫
g(z) dν(z) = 0, (4.6)

where g is a scalar function homogeneous of degree −4, smooth outside the
origin.

Proof. The condition (4.4) is equivalent to (4.3) for x outside the origin (use
(2.10)). If it holds, then we have for any test function ϕ∫

Jb
as(x)∂bϕ(x) d4x = lim

ε→0

∫

x2=−ε2

ϕ(x)Jb
as(x) dσb(x)

= ϕ(0)
∫
z · Jas(z) dν(z), (4.7)

which proves the equivalence of (i) and (ii). Let ρ be a smooth function with
support in |x| ≤ γ/

√
2 and such that

∫
ρ(x) d4x = 1. The vector function

Jρ = ρ ∗ Jas (4.8)

is easily shown to be in S3
3+ε(Rγ,δ) with the asymptote Jas, and if (i) is true,

then it satisfies the continuity equation. Conversely, if Jas is the asymptote of
a conserved J ∈ S3

3+ε(Rγ,δ), then it is supported in Rδ and (4.4) is the limit
of the continuity equation ∂ · J(x) = 0 for x2 → −∞. Integrating the latter
equation over the region x2 ≥ −R2 and taking the limit R → ∞ one arrives
at (4.5). The statement concerning (4.6) is easily checked. �

We note for future use that by (2.9) and (4.4) one has for any continu-
ously differentiable function f(z)∫

Jas · δf(z) dν(z) = 0. (4.9)

Theorem 2. Let J ∈ S3
3+ε(Rγ,δ) be a conserved current. Then the function

V̇ (s, l) =
1
s

(V0(s, l) − V0(0, l)) , (4.10)

where

V0(s, l) =
∫
δ(s− x · l)H3J(x) d4x, (4.11)

satisfies conditions (3.1) and (3.2), and J and V generate the same A accord-
ing to (4.1) and (3.14) respectively. If the asymptote of J is odd:

Jas(−x) = −Jas(x), (4.12)
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then V0(0, l) = 0, so V satisfies also (3.3), and it may be then obtained by

V (s, l) = lim
R→∞

V R(s, l), V R(s, l) =
∫

x2≥−R2

δ(s− x · l)J(x) d4x (4.13)

with V R(s, l) uniformly bounded and with

ΔV (l) =
∫
Jas(z)
z · l dν(z) (4.14)

(the integral in the principal value sense). If in addition L[abΔVc](l) = 0, then
V ∈ Vε. This is, in particular, fulfilled for Jas of the type given by (4.6) with
even g(z).

If J1 and J2 are two currents satisfying all the above assumptions, then

{V1, V2} = lim
R→∞

1
2

∫

x2≥−R2

[J1 ·A2 − J2 ·A2](x) d4x. (4.15)

Proof. We first observe that as H3J(x) vanishes as |x|−3−ε in infinity, the
integral (4.11) is absolutely convergent, and relations (3.1) and (3.2) are easily
seen to hold for V0. Moreover, with Xab = xa∂/∂x

b − xb∂/∂x
a, we have

|La1b1 . . . Lakbk
V0(s, l)| =

∣∣∣∣
∫
δ(s− x · l)Xa1b1 . . . Xakbk

H3J(x) d4x

∣∣∣∣
≤ const

∫
δ(s− x · l)(1 + |x|)−3−ε d4x ≤ const

t · l(1 + |s|/t · l)ε
. (4.16)

If A is generated by J , then one finds easily that H1A is generated by
H3J . It is then also easily seen, using the representation

D(x) = −(1/8π2)
∫
δ′(x · l) d2l,

that V̇0 generates H1A by (3.14). But then it follows that A may be obtained
by (3.14) from V̇ defined by (4.10).

We want to obtain another form of V0. For any R > 0 we have

∂ · {x δ(s− x · l) [J(x) − θ(−x2−R2)Jas(x)
]}

= −s δ′(s− x · l) [J(x) − θ(−x2−R2)Jas(x)
]

+δ(s− x · l)H3J(x) − 2R2δ(s− x · l)δ(x2 +R2)Jas(x). (4.17)

The l.h.s. yields zero when integrated over whole space, so we find

V0(s, l) = s ∂s

∫
δ(s− x · l) [J(x) − θ(−x2−R2)Jas(x)

]
d4x

+
∫
δ
( s
R

− z · l
)
Jas(z) dν(z). (4.18)

Setting here s = 0, we find

V0(0, l) =
∫
δ(z · l)Jas(z) dν(z), (4.19)
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so if Jas is odd, what we assume from now on, there is V0(0, l) = 0, and then
V satisfies the bounds (3.3) (use (4.16)). We note that if V0(0, l) �= 0, then
V̇ (s, l) falls off only as 1/|s| and is outside the class V.

We integrate (4.10) with the use of (4.18), and find

V (s, l) − V (−∞, l) = V R(s, l) +

s/R∫

−∞

1
τ

{∫
δ(τ − z · l)Jas(z) dν(z)

}
dτ

+
∫

x≤−R2

δ(s− x · l)(J − Jas)(x) d4x, (4.20)

with V R as defined in (4.13). The last term vanishes both in the limit R → ∞
as well as |s| → ∞, and V R(s, l) vanishes for |s| → ∞; the uniform bound-
edness of V R(s, l) is also easily seen. We write down the limit versions of
(4.20) for R → ∞ and for s → ∞, respectively (remember that V (+∞, l) =
−V (−∞, l) = 1

2ΔV (l))

V (s, l) +
1
2
ΔV (l) = lim

R→∞
V R(s, l) +

0∫

−∞

1
τ

{∫
δ(τ − z · l)Jas(z) dν(z)

}
dτ,

(4.21)

ΔV (l) =

+∞∫

−∞

1
τ

{∫
δ(τ − z · l)Jas(z) dν(z)

}
dτ = lim

ε→0

∫

|z·l|≥ε

Jas(z)
z · l dν(z).

(4.22)

The last equation gives (4.14). Owing to the oddness of Jas the second term on
the r.h.s. of (4.21) is then 1

2ΔV (l), and we thus obtain (4.13). If (3.5) is satis-
fied, then V ∈ Vε. We note that the differentiation on the cone is transferred
to the differentiation on the hyperboloid:

Lab

∫
Jas(z)
z · l dν(z) =

∫
(zaδb − zbδa)Jas(z)

z · l dν(z), (4.23)

therefore ΔV is smooth, and for Jas = zg(z) the condition (3.5) is satisfied
automatically.

The last point concerns the symplectic form. We have
1
4π

∫
(V̇1 · V R

2 − V̇2 · V R
1 )(s, l) dsd2l

=
1
4π

∫

x2≥−R2

[
V̇1(x · l)J2(x) − V̇2(x · l) · J1(x)

]
d2l d4x

=
1
2

∫

x2≥−R2

(J1 ·A2 − J2 ·A1)(x)d4x (4.24)

due to the representation (3.14). As V R
i (s, l) are uniformly bounded, by the

Lebesgue theorem the l.h.s. has a finite limit {V1, V2} for R → ∞, so also
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the r.h.s. has a finite limit, and one arrives at (4.15). However, we note
that the integrand of the r.h.s. is not absolutely integrable on the whole space.
The mechanism of the convergence in the limit relays on the fact that the
asymptotes of Ji are odd, while those of Ai are even, so their products do not
contribute, if integration is done in the above sense. �

A particular test current Jρ ∈ S3
3+ε(Rγ,δ) with the given asymptote Jas

supported in Rδ was given in (4.8). We want to find its corresponding func-
tion Vρ. We start with the following geometrical observation: for y ∈ Rδ and
|x− y| ≤ γ there is

|θ(x2 +R2) − θ(y2 +R2)| ≤ θ
(−y2 − (R−R1)2

)
θ
(
y2 + (R+R2)2

)
(4.25)

for R ≥ R1, with some γ- and δ-dependent constants R1, R2. This seems rather
intuitive, but we give a formal proof in Appendix. It is then easy to see that
instead of formula (4.13) one can use Vρ = limR→∞ V

′R
ρ with

V
′R
ρ (s, l) =

∫
δ(s− w · l − y · l)ρ(w)θ(y2 +R2)Jas(y) d4w d4y. (4.26)

If we denote

H(s, l) =
∫

sgn(s− x · l)ρ(x) d4x, (4.27)

V R
as (s, l) =

∫
δ(s− x · l)θ(x2 +R2)Jas(x) d4x, (4.28)

then we have

V
′R
ρ (s, l) =

1
2

∫
Ḣ(s− τ, l)V R

as (τ, l) dτ. (4.29)

Using in the following first step (2.11) and the homogeneity of Jas(x), and in
the second step oddness of Jas(x), we find

V R
as (τ, l) =

∫
θ
( τ

z · l
)
θ
(
R− τ

z · l
) Jas(z)

|z · l| dν(z)

=
1
2

sgn(τ)
∫

|z·l|≥ |τ|
R

Jas(z)
z · l dν(z). (4.30)

Thus for R → ∞ the absolute value of (4.29) remains bounded, and one finds

Vρ(s, l) = H(s, l)
1
2
ΔV (l), (4.31)

with ΔV (l) given by (4.14). Note that H(±∞, l) = ±1.
Assume now that ΔV (l) satisfies (3.5) and is therefore determined up to

a gauge by ΦV (l).

Proposition 3. For ΔV (l) given by (4.14) there is

ΦV (l) =
∫
z · Jas(z) log |z · l|dν(z). (4.32)
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Proof. We observe that the formula (3.8) defines in fact a continuous, homo-
geneous function ΦV (x) for x in the closed future lightcone. For x inside the
cone, and with v = x/

√
x2, one finds

ΦV (x) = −
∫

v · Jas(z)√
(v · z)2 + 1

log
[√

(v · z)2 + 1 + v · z
]

dν(z), (4.33)

where we used the following formula valid for v2 = 1, v0 > 0 and z2 = −1:∫
d2l

v · l z · l =
4π√

(v · z)2 + 1
log
[√

(v · z)2 + 1 + v · z
]
. (4.34)

We observe that δ(z)
a (v ·z) = va+v ·z za, which allows us to write the integrand

in (4.33) as
1
2
Jas(z) · δ

(
log
[√

(v · z)2 + 1 + v · z
])2

+z · Jas(z)

[
1 − |v · z|√

(v · z)2 + 1

]
log
[√

(v · z)2 + 1 + |v · z|
]

−z · Jas(z) log
1
2

[√
(x · z)2 + x2 + |x · z|

]
+ z · Jas(z) log

1
2

√
x2, (4.35)

where we used the fact that ξ log
[√

ξ2 + 1 + ξ
]

= |ξ| log
[√

ξ2 + 1 + |ξ|
]
. The

first and the last terms give no contribution to the integral (use (4.9) and
(4.5) respectively). We consider the other terms in the limit x → l. In this
limit |v · z| tends to +∞ almost everywhere, and the second term remains
bounded by const|z · Jas(z)| and tends to zero almost everywhere, so the con-
tribution to the integral vanishes in this limit. Finally, the third term gives the
thesis. �

The above result has an interesting consequence.

Proposition 4. Let J ∈ S3
3+ε(Rγ,δ) be a conserved current with an odd asymp-

tote Jas and the corresponding function V (s, l). Let L[abΔVc](l) = 0, so that
V ∈ Vε.

Then there exists a current J ′ of the same type, but whose asymptote is
of the particular form J ′

as(z) = zg(z), such that the corresponding function
V ′(s, l) satisfies

l ∧ (V ′−V )(s, l) = 0 and ΦV ′(l) = ΦV (l). (4.36)

Thus, in particular, V ′(s, l) − V (s, l) ∈ V0
as and [V ′] = [V ] ∈ L.

Proof. We set J ′ = J + ρ ∗ (J ′
as −Jas), where J ′

as is homogeneous of degree −3
and on the unit hyperboloid given by J ′

as(z) = −z z ·Jas(z), which then indeed
is the asymptote of J ′. Then by (4.31) there is

(V ′−V )(s, l) = H(s, l)
1
2
(ΔV ′−ΔV )(l) (4.37)

and by Proposition 3: ΦV ′(l) = ΦV (l). Therefore l∧ (ΔV ′−ΔV )(l) = 0, which
completes the proof. �
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The net result of the present section to this point is the identification of
a class of currents giving rise to test elements [V ] ∈ L of our electromagnetic
Weyl algebra. Now we want to show that the whole group L is covered in this
way, and even more, that the class may be still narrowed. We start with an
auxiliary result.

Lemma 5. Let a smooth function W (s, l) be homogeneous of degree n−
2,W (μs, μl) = μn−2W (s, l)(μ > 0), and satisfy the falloff conditions

|Lb1c1 . . . Lbkck
W (s, l)| ≤ const(k)

(t · l)n−2

(1 + |s|/t · l)ε
, k ∈ N. (4.38)

Denote W (k)(s, l) = ∂k
sW (s, l) and set

K(x) = − 1
2π

∫
W (n)(x · l, l) d2l. (4.39)

Then for each fixed δ ∈ (0, 1) one has in the region Rδ the bounds

|K(a+ x)| ≤ const(δ) (1 + |x|)−n−ε. (4.40)

Proof. It is sufficient to show this for a = 0, as the properties of W are con-
served under translations. For n = 0 and x ∈ Rδ, we have

|K(x)| ≤ const

1∫

−1

du
(1 + ||x0| + |�x|u|)ε ≤ const(δ) (1 + |x|)−ε,

We proceed by induction with respect to n. If we denote

x̃(t, l) = (t · l)−1x+ (t · l)−2t · x l,
then we have the identity

Lab

[
tax̃bW (n−1)(x · l, l)

]

= x2W (n)(x · l, l) +
[
tax̃bL′

ab +
x · l

(t · l)2
]
W (n−1)(x · l, l), (4.41)

where L′
abW

(n−1)(x ·l, l) = LabW
(n−1)(s, l)|s=x·l. The integral of the l.h.s. over

l vanishes, so by induction we have

|K(x)| ≤ min
{

const, const(δ)
|x|
|x2| (1 + |x|)−n+1−ε

}

≤ const(δ)(1 + |x|)−n−ε. (4.42)

�
We can now prove our main result of this subsection.

Theorem 6. Let A be given by the formula (3.14) with V ∈ Vε, and chose an
arbitrary set of the type Rγ,δ. Then:

(i) There exists V ′ ∈ Vε such that [V ′] = [V ] and the corresponding poten-
tial A′ may be represented as a radiation potential of a test current
J ′ ∈ S3

3+ε(Rγ,δ) with the asymptote of the form J ′
as(x) = xρ(x), with

ρ(−x) = ρ(x), supported in Rδ.
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(ii) The test current J ′ may be represented as a sum of currents with the
same properties, but in addition each of the currents is supported in a
fattened symmetrical spacelike cone contained in Rγ,δ. For each cover of
the set Rγ,δ with such cones there is a corresponding split of J ′.

Proof. For a given A and V , we define

Ca(x) = − 1
2π

∫
V a(x · l, l)

t · l d2l, Bab = Catb − Cbta. (4.43)

Then �Bab(x) = 0 and Aa(x) = ∂bB
ab(x). Moreover, with the use of the

above lemma one finds easily that for x ∈ Rδ, there is

|DαH0C(a+ x)| ≤ const(a, δ, α)(1 + |x|)−|α|−ε. (4.44)

Let now F be a smooth function on the spacetime which for |x| ≥ γ, for
some γ > 0, satisfies:

(i) F (μx) = F (x) for all μ ≥ 1 (homogeneity),
(ii) F (−x) = −F (x),
(iii) F (x) = 1/2 for x0 ≥ δ|�x| for some δ ∈ (0, 1).

Note that the supports of derivatives of F are contained in Rγ,δ. We
claim that

Bab(x) = 4π
∫
D(x− y)ϕab(y) d4y, (4.45)

where ϕab(y) = �(F (y)Bab(y)). Indeed, the support of ϕ is contained in Rγ,δ,
and for x in the future of Rγ,δ the r.h.s. may be written as

4π
∫
Dret(x− y)�

(
[F (y) +

1
2
]Bab(y)

)
d4y,

which yields the l.h.s. upon integration by parts. But both sides satisfy the
wave equation, so the equality holds everywhere.

The fall-off properties (4.44) now easily imply that ϕ ∈ S2
2+ε. More-

over, the support of ϕ is contained in Rγ,δ and that of the asymptote ϕas in
Rδ, and the asymptote is even: ϕas(−x) = ϕas(x). The potential A has now
the representation (4.1) with the test current Ja = ∂bϕ

ab, which is an ele-
ment of S3

3+ε, has similar support properties as ϕ, and its asymptote is odd:
Jas(−x) = −Jas(x). Thus J satisfies all the assumptions of the Proposition 4.
The current J ′ defined in the proof of this proposition may be written in the
present case as J ′ = J ′

reg + J ′
sing with

J
′a
reg = ∂bϕ

ab
reg, ϕreg = ϕ− ρ ∗ ϕas, (4.46)

J ′
sing = ρ ∗ J ′

as, J ′
as(x) = x

(
xc∂bϕ

cb
as(x)

x2

)
. (4.47)

This completes the proof of (i).
To show (ii), we apply the above construction toRγ′,δ′ with γ′ < γ, δ′ < δ,

and note that the two parts J ′
reg and J ′

sing may be considered separately. For
the first part we note a rather obvious fact: for each cover of Rγ′,δ′ with open
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fattened symmetrical spacelike cones contained in Rγ,δ there exist a decompo-
sition of unity on Rγ′,δ′ with smooth functions fk supported in the respective
fattened symmetrical cones, taking values in 〈0, 1〉 and with bounded all deriv-
atives. The currents J

′a
reg,k = ∂b(fkϕ

ab
reg) satisfy the thesis. For the second part

we note that the intersection of H− with Rδ′ may be covered by arbitrarily
small symmetrical patches, which are open as subsets of H− and are contained
in Rδ. For each such cover there exists a corresponding decomposition of unity
on Rδ′ ∩ H− with smooth, even functions gk(z) supported in the respective
patches, taking values in 〈0, 1〉 and with bounded derivatives. We extend these
functions by homogeneity and define

J ′
sing,k = ρ ∗ J ′

as,k, J ′
as,k(x) = x

(
xc∂bϕ

cb
as,k(x)
x2

)
, ϕab

as,k = gkϕ
ab
as . (4.48)

The asymptotes J ′
as,k are odd and satisfy∫

z · J ′
as,k(z) dν(z) =

∫
δb
(
zcϕ

cb
as,k(z)

)
dν(z) = 0 (4.49)

by (2.9), so J ′
sing,k are conserved currents by (4.5). Their sum yields J ′

sing,
which ends the proof. �

5. Localization of Dirac Fields and Observables

Fields carrying charge do not represent observables. Even more, in full electro-
dynamics they undergo local gauge transformations, thus to form an observ-
able with the use of them one has to compensate not only the global,
but also local gauge scaling. If Ψ(x) and A(x) represent ‘local quantum
spacetime fields’, then a way to achieve this is to give a precise mean-
ing (by smearing, renormalization etc.) to the heuristically formed quanti-
ties Ψ(x) exp

(−ie ∫ y

x
A(z)dz

)
Ψ(y). Localization of this quantity, if it can be

defined, should be determined by spacetime points x and y and the integration
path between them.

Single fields creating or annihilating a physical charged particle, on the
other hand, interpolate between different representations of observables. How-
ever, because of the Gauss law they cannot be local. Staying at the adopted
heuristic level, the best that one can do is to cut the above quantity in two
and obtain exp

(−ie ∫ y

∞A(z)dz
)
Ψ(y), where the path goes to spacelike infin-

ity. The expectation then would be that the effect of this operation is invisible
in the region spacelike to the localization of the integration path.

The above naive picture has its more refined counterpart in the algebraic
analysis of the superselection sectors in quantum electrodynamics made by
Buchholz [5]. The idea behind the selection criterion adopted in this analysis
is that by an appropriate choice of the ‘radiation cloud’ superimposed on a
charged state one can concentrate at a given time the electric flux at spacelike
infinity in an arbitrarily chosen patch on the 2-sphere in the infinity of 3-space.
The causal influence of the presence of the charge in this state may be thus
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made to vanish in the causal complement of some spacelike cone in Minkowski
space.

We shall now investigate this question in the model defined here. Our
algebra is an algebra of fields, not only observables, thus we formulate the
problem in their terms. We shall ask whether, in representations defined in
Sect. 3.3, by composing the charged field π(Ψ(f)) with some radiation cloud
and a subsequent rescaling (to push the cloud to spacelike infinity), one can
obtain a modified field restricted to a fattened symmetrical spacelike cone. The
infrared tails are symmetric in the class of fields considered in the model, thus
the replacement of spacelike cones by fattened symmetrical spacelike cones is
unavoidable.

We shall see that the answer to this question is negative for a rather gen-
eral construction reflecting in an obvious way the above idea. This seems to
disagree also with expectations based on perturbative calculations in QED.
The ‘perturbative axiomatic’ construction of the physical state space by
Steinmann [6] may be seen as the strongest indication in this direction. We
postpone the discussion of this point to the concluding section.

On the other hand, the same construction will allow us to construct local
observables formed as products of ‘dressed’ Dirac fields and their adjoints.

5.1. Spacelike Test Functions

To ascribe localization to elements Ψ(f), we first have to interpret test func-
tions in spacetime terms; this will be done in this subsection. However, this
will not give the full answer to the question because of noncommutativity
with observables W (V ). We treat then the addition of the clouds in further
subsections.

The first step is achieved, in analogy to the electromagnetic case, by
representing the classical test field ψ in (3.18) as

ψ(x) =
1
i

∫
S(m,x− y)χ(y) d4y, (5.1)

where χ is a classical test 4-spinor field and S(m,x) = (iγ · ∂ + m)D(m,x).
We want the support χ to be contained between two Cauchy surfaces.

It is easy to show that the Fourier representation of S(m,x) may be
written as

S(m,x) = i
(m

2π

)3
∫
e−imx · v γ · vγ · v dμ(v) (5.2)

and then the Fourier connection between f(v) and χ(x) in the integral repre-
sentations of the Dirac field ψ given respectively by (3.18) and (5.1) takes the
form

f(v) =
(m

2π

)3/2
∫
eimv · x γ · vχ(x) d4x. (5.3)

It is clear that if χ ∈ S(M), the Schwartz functions space, then f ∈ S(H+).
For the converse statement we note first the following analogue of the ‘regular
wave packet’ property.
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Proposition 7. If f ∈ S(H+), then for each δ ∈ (0, 1) the Dirac field ψ formed
by (3.18) satisfies in the region Rδ the bounds

|Dβψ(x)| ≤ const(δ, |β|, n)(1 + |x|)−n (5.4)

for each β and each n ∈ N.

Proof. The representation (3.18) is proportional to the sum of two terms∫
e∓imv·xf±(v) dμ(v) with f± = P±(v)f(v), P±(v) = 1

2 (1 ± γ · v). It is clear
that application of Dβ only modifies functions f±. Now, for any g ∈ S(H+)
and x2 < 0, we have the identity∫

e±imv·xg(v) dμ(v)

=
(±i
m

)n ∫
e±imv·x

[x2 − (v · x)2]n
[

n∏
k=1

x · (δ + (2k − 3)v)

]
g(v) dμ(v), (5.5)

where the operators under the product sign are ordered from right to left
with increasing k. This is easily shown by induction with respect to n (inte-
grate the r.h.s. by parts with the use of (2.6)). But using (2.12), we have
|x2 − (v · x)2| ≥ const(δ) |x|2 for x ∈ Rδ. This leads easily to the thesis. �

Theorem 8. Let ψ be given by the formula (3.18) with f ∈ S(H+), and chose
an arbitrary set of the type Rγ,δ (here δ = 0 is also admitted). Then there
exists χ ∈ S(Rγ,δ) which generates ψ by (5.1) (and, therefore, generates f by
(5.3)).

Proof. Let F be the function defined in the proof of Theorem 6, and set
χ = (γ · ∂ + im)(Fψ). This function has support in Rγ,δ, and with the use
of the last proposition one then easily shows that it is a Schwartz function.
Using the method employed in the proof of Theorem6, one finds that χ gen-
erates ψ. �

5.2. ‘Dressed’ Charged Fields

We now want to add radiation clouds to the Dirac fields. We first treat the
problem heuristically, and write the Dirac field in the ‘integrational’ nota-
tion as Ψ(f) =

∫
f(v)γ · vΨ(v) dμ(v). For each four-velocity of the particle v

we choose an electromagnetic cloud profile Vv(s, l) ∈ V, and form a modified
field Ψ(f, V∗) =

∫
f(v)γ · vW (Vv)Ψ(v) dμ(v). This, of course, has only a heu-

ristic value, but one can expect that this field can be constructed in the von
Neumann algebra of a representation (from the class defining the C∗-alge-
bra F). Let us write, still at this informal level, the commutation relation of
this field with the electromagnetic field. We find

W (V1)Ψ(f, V∗) = Ψ(SV1,V∗f, V∗)W (V1), (5.6)

where (SV1,V∗f) (v) = exp [iϕV1,V∗(v)] f(v) with

ϕV1,V∗(v) = − e

4π

∫
v · ΔV1(l)

v · l d2l + {V1, Vv}. (5.7)
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The problem of compensating the Coulomb field by the cloud field in
some region is now the problem of choosing Vv so as to compensate the first
term in (5.7) by the second term, for V1 in some class. However, we note that
the symplectic form reduces to zero when restricted to any of the two sub-
spaces of functions V (s, l) which are even or odd in s respectively. But ΔV1(l)
is the characteristic of the odd part of V1(s, l). Thus the odd part of Vv(s, l)
has no influence on this expected cancellation, and therefore may be assumed
to vanish. In consequence, Vv has no long-range tail, and the field W (Vv) is
infrared-regular. This brings in an important simplification: in all representa-
tions in our class there is π(W (Vv)) = idF ⊗πr(W (Vv)) and this operator is
independent of π(Ψ(f)) = πF (Ψ(f)) ⊗ idr. Our informal modified field is now
Ψπ(f, V∗) =

∫
f(v)γ · v πF (Ψ(v)) ⊗ πr(W (Vv)) dμ(v).

The use of representations for further construction is unavoidable. We
shall need some general additional assumptions on their properties needed in
the construction, as well as some conditions on the ‘clouds’ profiles V∗. We
formulate these assumptions in the present section successively, and test them
in a large class of representations in the next subsection.

Assumption 1. The profiles Vv(s, l) ∈ V are smooth functions of all their argu-
ments (v, s, l), even in s. For each pair of vectors ϕ, χ ∈ Hr the function v �→
(ϕ, πr(W (Vv))χ)r is measurable.

Smoothness implies, in particular, that for each V1 the function ϕV1,V∗(v) in
(5.7) is smooth, and the operator SV1,V∗ in (5.6) is well defined in S(H+).

Motivated by the above discussion we choose an orthonormal basis {ej}
of the Hilbert space K formed of functions ej ∈ S(H+), and ‘expand’ πF (Ψ(v))
in that basis. This leads us to the definition

Ψπ(f, V∗) =
∞∑

j=1

πF (Ψ(ej)) ⊗Wπr
(V∗, f Γej), (5.8)

where Γ is the operator defined by (Γf)(v) = γ · vf(v), and Wπr
(V∗, ρ) is

defined by

Wπr
(V∗, ρ) =

∫
πr(W (Vv))ρ(v) dμ(v), (5.9)

integration in the weak sense: the operators are sandwiched in (ϕ, . χ)r before
integration. We note that |(ϕ, πr(W (Vv))χ)r| ≤ ‖ϕ‖r‖χ‖r, so it is sufficient
that ρ be integrable. Note also that all operators Wπr

(V∗, ρ) commute with
each other, as all Vv are even.

Proposition 9. The series defining Ψπ(f, V∗) by (5.8) converges ∗-strongly to
a bounded operator independent of the choice of the basis {ej} in S(H+).

Proof. If we denote by Ψ(n)
π (f, V∗) the series truncated to the first n terms, set

Cmn = Ψ(n)
π (f, V∗) − Ψ(m)

π (f, V∗), and use the anticommutation relations for
Ψ(ej), we find

CmnC
∗
mn + C∗

mnCmn = idF ⊗
n∑

j=m+1

w∗
jwj , (5.10)
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where wj = Wπr
(V∗, f Γej). Now, using (5.9) it is easy to see that(

ϕ,Wπr
(V∗, f Γej)χ

)
r

= (f, (ϕ, πr(W (V∗))χ)r ej)

=
(
(ϕ, πr(W (V∗))χ)r f, ej

)
, (5.11)

so if we choose any orthonormal basis ϕk of Hr, we find
∞∑

j=1

(χ,w∗
jwjχ)r =

∞∑
j,k=1

|(ϕk, wjχ)r|2

=
∞∑

k=1

∫
|(ϕk, πr(W (Vv))χ)r|2f(v)γ · vf(v) dμ(v)=‖f‖2‖χ‖2

r,

(5.12)

the last step by the Lebesgue theorem. As
∑n

j=1 w
∗
jwj is an increasing sequence

of operators, this calculation shows that
∑∞

j=1 w
∗
jwj = ‖f‖2 idr in the σ-strong

sense. This is sufficient for the ∗-strong convergence of the series (5.8) and the
bound of the norm of the limit. The independence of the basis follows from
the action of the limit operator on product vectors. It is easy to see with the
use of (5.11) that

(ξ1 ⊗ χ1,Ψπ(f, V∗) ξ2 ⊗ χ2) =
(
ξ1, πF

(
Ψ
(

(χ1, πr(W (V∗))χ2)rf
))

ξ2

)
F
.

(5.13)

�

The (anti-) commutation relations of the ‘dressed’ Dirac fields are:

[Ψπ(f, V∗),Ψπ(f ′, V ′
∗)]+ = 0, (5.14)

[Ψπ(f, V∗),Ψπ(f ′, V ′
∗)∗]+ = idF ⊗Wπr

(V∗ − V ′
∗ , f ′ Γf), (5.15)

π(W (V1))Ψπ(f, V∗) = Ψπ(SV1,V∗f, V∗)π(W (V1)), (5.16)

where SV1,V∗ is given, as in the heuristic introduction, by (5.7). These relations
are straightforwardly calculated with the use of the definition (5.8). For the
second and third identity use the technique of the above proof and the inde-
pendence of basis {ej} respectively. Setting V ′

∗ = V∗ we find that dressed fields
with a fixed profile V∗ satisfy the usual CAR relations among themselves. It
follows thus by a standard argument (see e.g. [7]) that ‖Ψπ(f, V∗)‖ = ‖f‖.

To investigate the long-range behaviour of the dressed fields, we scale
their radiation clouds. The profile Vv in the element W (Vv) may be assumed
to result from a conserved current Jv supported in Rγ,δ, having vanishing
asymptote, even with respect to the reflection: Jv(−x) = Jv(x). As then, in
loose terms, W (Vv) = exp[−iA(Jv)] and A(Jv) =

∫
A(x)Jv(x)d4x, scaling

the electromagnetic field observable to spacelike infinity means replacing Jv

by JR
v (x) = R−3Jv(x/R) and taking the limit R → ∞ (cf. [8]). This scaling

induces a simple scaling law for Vv. Thus we set

V R
v (s, l) = Vv(s/R, l) (5.17)
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Assumption 2. There exist weak limits

w− lim
R→∞

πr(W (V R
v )) = Nπr

(Vv)W∞
πr

(Vv), (5.18)

such that W∞
πr

(Vv) are unitary operators in Hr, and the real, positive func-
tions v �→ Nπr

(Vv) > 0 are smooth and such that 1/Nπr
(Vv) are multipliers

in S(H+).

Note that it follows from Assumptions 1 and 2 that Nπr
(Vv) ≤ 1 and

functions v �→ (ϕ,W∞
πr

(Vv)χ) are measurable for all ϕ, χ ∈ Hr. Also, the oper-
ators W∞

πr
(Vv) commute with each other.

Mimicking the definitions (5.9) and (5.8) we now define

W∞
πr

(V∗, ρ) =
∫
W∞

πr
(Vv)ρ(v) dμ(v), (5.19)

Ψ∞
π (f, V∗) =

∞∑
j=1

πF (Ψ(ej)) ⊗W∞
πr

(V∗, f Γej), (5.20)

and note that also the analogue of (5.13) holds:

(ξ1 ⊗ χ1,Ψ∞
π (f, V∗) ξ2 ⊗ χ2) =

(
ξ1, πF

(
Ψ
(

(χ1,W∞
πr

(V∗)χ2)rf
))

ξ2

)
F
.

(5.21)

The correctness and independence of basis of the definition (5.20) is shown as
in the proof of Proposition 9. It is now easy to show that (the order of limits
in the second relation is irrelevant)

w− lim
R→∞

Wπr
(V R

∗ , ρ/Nπr
(V∗)) = W∞

πr
(V∗, ρ), (5.22)

w− lim
R→∞

lim
R′→∞

Wπr

(
V R

∗ − V ′
∗

R′
, ρ/ [Nπr

(V∗)Nπr
(V ′

∗)]
)

=
∫
W∞

πr
(Vv)W∞

πr
(V ′

v)∗ ρ(v) dμ(v), (5.23)

w− lim
R→∞

Ψπ(f/Nπr
(V∗), V R

∗ ) = Ψ∞
π (f, V∗) ; (5.24)

for the last relation use (5.13) and the uniform boundedness of the norms of
the operators under the limit. To find the (anti-) commutation relations of
the dressed fields, we use their representation (5.24) and the relations (5.14) –
(5.16), with the use of (5.23) on the r.h.s. of (5.15). Setting now V ′

∗ = V∗ we
find

[Ψ∞
π (f, V∗),Ψ∞

π (f ′, V∗)]+ = 0, (5.25)

[Ψ∞
π (f, V∗),Ψ∞

π (f ′, V∗)∗]+ = (f, f ′)K id, (5.26)

π(W (V1))Ψ∞
π (f, V∗) = Ψ∞

π (S∞
V1,V∗f, V∗)π(W (V1)), (5.27)

where(
S∞

V1,V∗f
)
(v) = exp

[
iϕ∞

V1,V∗(v)
]
f(v), (5.28)

ϕ∞
V1,V∗(v) = − e

4π

∫
v · ΔV1(l)

v · l d2l +
1
2π

∫
Vv(0, l) · ΔV1(l) d2l. (5.29)
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To show (5.27), one notes first that limR→∞ ϕV1,V R∗ (v) = ϕ∞
V1,V∗(v) and then

observes that while taking the weak limit of Ψπ(SV1,V R∗ f/Nπr
(V∗), V R

∗ ) one
can replace SV1,V R∗ by S∞

V1,V∗ as the difference vanishes in norm.
We note that the dependence of ϕ∞

V1,V∗(v) on V1 is only through its infra-
red tail ΔV1. In spacetime terms it means that the dependence on the test
current J1 giving rise to V1 is only through its asymptote Jas

1 , which may be
assumed to be of the form Jas

1 (z) = zρ1(z), in accordance with Proposition 4.
Thus using (4.14) we can write

ϕ∞
V1,V∗(v) =

∫
ρ1(z)Fv(z) dν(z), (5.30)

Fv(z) =
1
2π

∫
1
z · l z ·

[
Vv(0, l) − e v

2 v · l
]

d2l, (5.31)

the second integral in the principal value sense.
The negative result mentioned at the beginning of Sect. 5 is now the

following.

Theorem 10. There is no choice of profiles Vv(0, l) such that S∞
V1,V∗f = f would

hold for any test function f and for all Jas
1 (z) = zρ1(z) supported in any given

fixed symmetrical spacelike cone.

Proof. The asymptote ρ1(z) is subject to two conditions: it must be an even
function and satisfy

∫
ρ1(z)dν(z) = 0 (cf. (4.5)). The only way to achieve

exp[iϕ∞
V1,V∗(v)] = 1 for some v and all admissible ρ1 supported in a given

symmetrical spacelike cone would be that Fv(z) = const. on the patch of
hyperboloid defining this cone (note that Fv(z) is also even). This, however,
is impossible for the following reason. It is easily seen that Fv(z) extends nat-
urally to an even, homogeneous function Fv(x) of degree 0 for all x2 < 0
(by simply replacing z by x in (5.31)). Now Fv(z) = const. in a patch iff
Fv(x) = const. in the corresponding cone. This, however, is impossible, as we
shall see that �Fv(x) = 2e/x2. To show this, we first use the result of Appen-
dix A of [3]. Each possible profile Vv(0, l) must be orthogonal to l and thus
satisfies the conditions on V (l) of this Appendix. Using Eq. (A.4) one finds

F (1)
v (x) ≡ 1

2π

∫
x · Vv(0, l)

x · l d2l

= − 1
2π

∫
∂ · Vv(0, l) log

|x · l|
v · l d2l +

1
2π

∫
v · Vv(0, l)

v · l d2l. (5.32)

This implies �F (1)
v (x) = 0. On the other hand one explicitly calculates

F (2)
v (x) = −e v · x

4π

∫
d2l

x · l v · l
= −e v · x√

(v · x)2 − x2
artanh

v · x√
(v · x)2 − x2

(5.33)

and �F (2)
v (x) = 2e/x2. �
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This result shows that it is impossible to choose Vv(s, l) in such a way
that the exponential factor in (5.28) vanishes for all test functions and test cur-
rents supported in symmetrical spacelike cones. However, one can find Vv(s, l)
which makes this exponential factor independent of v. Let

Vv(s, l) =
(e

2

)( v

v · l − t

t · l
)
η
( s

t · l
)
, (5.34)

where t is a timelike unit vector and η(s) is a smooth function satisfying:
0 ≤ η(s) ≤ 1, η(0) = 1, η(s) = η(−s) and there exist s0 > 0 such that η(s) = 0
for s > s0. For this profile, if it satisfies Assumptions 1 and 2 (beside smooth-
ness, which is obvious), it follows that:

ϕ∞
V1,V∗ = − e

4π

∫
t · ΔV1(l)

t · l d2l, S∞
V1,V∗ = exp

[
iϕ∞

V1,V∗

]
id . (5.35)

The commutation relation (5.27) and its adjoint take now the following simple
form:

π(W (V1))Ψ∞
π (f, V∗) = eiϕ∞

V1,V∗ Ψ∞
π (f, V∗)π(W (V1)), (5.36)

π(W (V1))Ψ∞
π (f, V∗)∗ = e−iϕ∞

V1,V∗ Ψ∞
π (f, V∗)∗π(W (V1)). (5.37)

It is now possible to restrict the scope of test functions f to those resulting from
compactly supported four-spinor test fields χ in (5.3). Then the observables
Ψ∞

π (f, V∗)∗Ψ∞
π (f ′, V∗) form a local net commuting with the electromagnetic

field, with localization determined by the union of the supports of χ and χ′.
These are the asymptotic incarnations, in our model, of the quantities dis-
cussed at the beginning of Sect. 5.

Assumption 3. For any two profiles Vv, V
′
v of the form (5.34) (with possibly

different vectors t and functions η) the unitary operator W∞
πr

(Vv)W∞
πr

(V ′
v)∗

formed by the operators defined by Assumption 2 is independent of v.

With this assumption it is now easy to see that the observables defined
above do not depend on a particular choice of the profile Vv in the class (5.34).

5.3. Special Choice of Representation

In this subsection we show that Assumptions 1, 2 and 3 are fulfilled for profiles
(5.34) in a class of representations πr in (3.26) constructed in earlier papers.

Consider the vector space of equivalence classes of real, smooth vector
functions fa(l) on the cone, homogeneous of degree −1, with l · f(l) = 0. The
equivalence relation is introduced by: f1 ∼ f2 ⇔ f1a(l) = f2a(l) + β(l)la. The
completion of this space with respect to the scalar product

(f1, f2)0 = −
∫
f1(l) · f2(l) d2l

is a real Hilbert space denoted H0. The closure of the subspace of (equivalence
classes of) smooth functions satisfying L∧f = 0 forms a Hilbert space denoted
by HIR. Let H(s, l) be a homogeneous of degree 0, smooth function, such that
lims→±∞H(s, l) = ±1 and Ḣ(s, l) satisfies the falloff condition analogous to
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(3.3). We denote h(s, l) = πḢ(s, l) and fix notation for Fourier transform with
respect to s by

h̃(ω, l) =
1
2π

∫
eiωsh(s, l) ds, (5.38)

so h̃(0, l) = 1. Following the notation of [1] and [3] we set

p(V̇ ) = ˜̇V (0, l) =
1
2π

ΔV,

the long range characteristic of V (s, l), and denote by rh(V̇ ) the orthogo-
nal projection of 1

2

∫
V̇ H(s, l)ds onto HIR. We split function V (s, l) into the

IR-regular and IR-singular part by setting:

˜̇V (ω, l) =
[ ˜̇V (ω, l) − ˜̇V (0, l)h̃(ω, l)

]
+ ˜̇V (0, l)h̃(ω, l)

= ˜̇V reg(ω, l) + ˜̇V (0, l)h̃(ω, l). (5.39)

In particular, p(V̇ ) = 0 means that V̇ is IR-regular, i.e. the field has no ‘long
range tail’.

Further, we consider the Weyl algebra generated by the elements w(g⊕k),
where g ⊕ k belongs to the vector space C∞

IR ⊕ C∞
IR (C∞

IR := C∞ ∩ HIR, differ-
entiability is understood in the sense of Lab) with the symplectic structure:

{g1 ⊕ k1, g2 ⊕ k2}IR := (g1, k2)IR − (k1, g2)IR. (5.40)

Algebraic relations satisfied by elements w(g ⊕ k) are

w(g1 ⊕ k1)w(g2 ⊕ k2) = e− i
2 {g1⊕k1,g2⊕k2}IRw ((g1 + g2) ⊕ (k1 + k2)) ,(5.41)

w(g ⊕ k)∗ = w(−(g ⊕ k)). (5.42)

Let πsing be a cyclic representation of this algebra derived by GNS con-
struction from the state

ωsing (ω(g ⊕ k)) = exp
(

−1
4
(g, C−1g)IR − 1

4
(k,Ck)IR

)
, (5.43)

with the corresponding Hilbert space Hsing and the cyclic vector Ωsing. Here C

is any positive, trace-class operator such that C∞
IR ⊂ C1/2HIR, C−1/2C∞

IR

HIR

=
HIR. Denote by π0 the standard positive energy Fock representation of infra-
red-regular fields, generated by GNS construction from the vacuum state

ω0(W (Vreg)) = exp
(

−1
2
F (V̇reg, V̇reg)

)
, (5.44)

F (V̇1, V̇2) =
∫

ω≥0

(
− ˜̇V 1(ω, l) · ˜̇V 2(ω, l)

)
dω
ω

d2l, (5.45)

with the corresponding Hilbert space Hreg and cyclic vector Ω0. Then the
formula

πr(W (V )) = πsing

(
w(p(V̇ ) ⊕ rh(V̇ ))

)
⊗ π0(W (Vreg)) (5.46)
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determines a regular, translationally covariant positive energy representation
of B− on Hr = Hsing ⊗ Hreg [1]. Now one has to prove that Assumptions 1, 2
and 3 are fulfilled for this choice of πr.

It was shown in [1] that the representation πr does not depend on the
concrete shape of H(s, l). Therefore, for the convenience of the proof of prop-
osition 11, we shall assume, from now on, a special choice of this function. We
put H(s, l) = Ht (s/t · l) for a timelike unit vector t, and a smooth function
Ht such that for some u0 > 0 there is Ht(u) = 1 for u > u0, and Ht(u) = −1
for u < −u0.

Proposition 11. For the representation πr defined by (5.46) and the profiles Vv

given by (5.34), Assumptions 1, 2 and 3 are satisfied.

Proof. (Assumption 1) To prove the measurability, it suffices to show that
(y, πr(W (Vv))x)r is continuous in v for vectors from a total set, those of the
form

x = πsing (w(g1 ⊕ k1)) Ωsing ⊗ π0 (W (V1)) Ω0,

y = πsing (w(g2 ⊕ k2)) Ωsing ⊗ π0 (W (V2)) Ω0,

where Vi, i = 1, 2, are IR-regular. As Vv is IR-regular, so

πr(W (Vv)) = πsing(w(0 ⊕ rh(V̇v))) ⊗ π0(W (Vv)). (5.47)

One obtains:

(y, πr(W (Vv))x)r = ωsing

(
w(g2 ⊕ k2)∗w(0 ⊕ rh(V̇v))w(g1 ⊕ k1)

)

×ω0 (W (−V2)W (Vv)W (V1)) . (5.48)

From the algebraic relations it follows that:

ω0 (W (−V2)W (Vv)W (V1)) = exp
[
−1

2
F (V̇1 − V̇2 + V̇v, V̇1 − V̇2 + V̇v)

− i

2
{Vv, V1 + V2} − i

2
{V1, V2}

]
. (5.49)

Because F (V̇v, V̇v) and F (V̇v, V̇k) (k = 1, 2), as easily shown, are smooth in v,
so is the r.h.s. of (5.49). Now we turn to ωsing. Using (5.41), (5.42) and (5.43),
one finds:

ωsing

(
w(g2 ⊕ k2)∗w(0 ⊕ rh(V̇v))w(g1 ⊕ k1)

)

= exp
[
−1

4
(
Δg, C−1Δg

)
IR

− 1
4

(
Δk + rh(V̇v), C[Δk + rh(V̇v)]

)
IR

]

× exp
[
i

2

(
rh(V̇v), g1 + g2

)
IR

+
i

2
(g2, k1)IR − i

2
(g1, k2)IR

]
, (5.50)

where Δg = g1 − g2,Δk = k1 − k2. To prove that the r.h.s of (5.50) is
indeed a continuous function in v, it suffices to show that terms of the form:(
rh(V̇v), C rh(V̇v)

)
IR
,
(
rh(V̇v), k

)
IR
,
(
k,C rh(V̇v)

)
IR

are continuous in v for
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k ∈ C∞
IR. As C is a bounded operator, it is sufficient to show that rh(V̇v), as

an element of HIR, is norm-continuous in v. Since

1
2

∫
V̇v(s, l)Ht

( s

t · l
)

ds =
e

4

∫
η̇(u)Ht(u)du

(
v

v · l − t

t · l
)

= rh(V̇v)(l),

(5.51)

we have

||rh(V̇v) − rh(V̇v′)||2IR =
(
e

4

∫
η̇(u)Ht(u)du

)2
[
−
∫ (

v

v · l − v′

v′ · l
)2

d2l

]
.

(5.52)

The last integral can be calculated explicitly:

−
∫ (

v

v · l − v′

v′ · l
)2

d2l =
∫ [

2
v · v′

(v · l)(v′ · l) − 1
(v · l)2 − 1

(v′ · l)2
]

d2l

= 8π

{
v · v′√

(v · v′)2 − 1
log
(
v · v′ +

√
(v · v′)2 − 1

)
− 1

}
. (5.53)

Because (5.53) converges to 0 for v → v′, rh(V̇v) is norm continuous. Finally
we can conclude that (5.50) is a continuous function of v. This ends the proof
of Assumption 1.

(Assumptions 2 and 3) First we show the existence of the weak limit
w−limR→∞ πr(W (V R

v )). The norms of πr(W (V R
v )) are uniformly bounded,

so it is sufficient to obtain the weak limit for operators sandwiched between
vectors from a total set chosen as in the proof of Assumption 1. We have
to investigate the limit of the expressions (5.49) and (5.50) in which Vv

has been replaced by V R
v , for R → ∞. From (5.17) and (5.38) one has˜̇V R

v (ω, l) = ˜̇V v(Rω, l). As ˜̇V k(0, l) = 0, k = 1, 2, it follows by the Lebesgue
dominated convergence theorem that limR→∞ F (V̇ R

v , V̇k) = 0 (see (5.45)), and
since {V R

v , Vk} = 2Im
(
F (V̇ R

v , V̇k)
)
, also limR→∞{V R

v , Vk} = 0. On the other
hand, by a change of the integration variable ω one finds

F (V̇ R
v , V̇ R

v ) = F (V̇v, V̇v). (5.54)

In this way, for the scaled version of (5.49), we obtain:

lim
R→∞

ω0

(
W (−V2)W (V R

p )W (V1)
)

= Nπr
(Vv)ω0(W (−V2)W (V1)), (5.55)

where

Nπr
(Vv) = exp

⎛
⎝1

2

∫

ω≥0

˜̇V v(ω, l) · ˜̇V v(ω, l)
dω
ω

d2l

⎞
⎠ . (5.56)

Thus

w− lim
R→∞

π0(W (V R
v )) = Nπr

(Vv) id . (5.57)
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For the IR-singular part we note that

lim
R→∞

‖rh(V̇ R
v ) + Vv(0, .)‖IR = 0, (5.58)

which is easily shown with the use of (5.51). Thus using the scaled version of
(5.50) we find

w− lim
R→∞

πsing(w(0 ⊕ rh(V̇ R
v ))) = πsing(w(0 ⊕ −Vv(0, .))). (5.59)

Therefore, we can finally conclude that the relation (5.18) is satisfied, with
Nπr

given by (5.56), and

W∞
πr

(Vv) = πsing(w(0 ⊕ −Vv(0, . )) ⊗ id .

This form of these operators ensures that Assumption 3 is satisfied. After a
suitable change of variables one finds that the factor function has the form

Nπr
(Vv) = exp

⎛
⎝e2

8

∫

u≥0

u|η̃(u)|2du
∫ (

v

v · l − t

t · l
)2

d2l

⎞
⎠ , (5.60)

where η̃ is the Fourier transform of η defined as in (5.38). Using (5.53) we
obtain:

Nπr
(Vv) = exp

{
−c
[

v · t√
(v · t)2 − 1

log
(
v · t+

√
(v · t)2 − 1

)
− 1

]}
, (5.61)

where c > 0 is a constant. The function v �→ Nπr
(Vv) is smooth and for v0 → ∞

we have: 1/Nπr
(Vv) ∼ const(v0)c, with similar estimates for derivatives. This

proves that 1/Nπr
(Vv) are multipliers in S(H+). �

6. Conclusions

The algebra proposed earlier for the description of asymptotic fields in spinor
electrodynamics incorporates Gauss’ law and thus has good chances to form
(at least a substantial part of) a consistent model of the long-range behavior
of QED. We have found here how to give the elements of this field algebra
localization in regions contained in an arbitrarily chosen time slice ‘fattening
towards edges’. Compact localization regions may be chosen only for infrared-
regular electromagnetic fields. Both infrared-singular electromagnetic fields as
well as charged fields have always localization regions extending to spacelike
infinity. However, the infrared singular electromagnetic fields may be decom-
posed into fields localized in arbitrarily ‘thin’ fattened symmetrical spacelike
cones. On the other hand we have found that there is no way of attaching an
infrared cloud to the charged field so as to localize it in such region, at least in
a wide class of representations which satisfy some natural general conditions.
Nevertheless, we have also shown that compactly supported observables may
be formed by simple multiplication of appropriately dressed charged fields with
compensating charges.

The lack of spacelike-cone localization of dressed Dirac fields in the pres-
ent model seems to be nonstandard, as already mentioned in Introduction
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and Sect. 5. One could object that the model, although it incorporates global
Gauss’ law, still lacks some additional asymptotic electromagnetic variables.
The construction of the model suggests that in such case the variables would
have to originate as limits of gauge-dependent local electromagnetic poten-
tials. However, whether the model is indeed incomplete can only be decided
by finding its place in a formulation of fully interacting electrodynamics. In
particular, it would be interesting to formulate a perturbative electrodynamics
incorporating some nonperturbative infrared aspects of the present model.

On the other hand, we would like to stress once more a physically impor-
tant aspect of the model considered here. Our fundamental fermion fields are
genuinely charged, satisfying Gauss’ law even before ‘dressing’. Dressing is
considered for the sake of inducing a certain localization of these fields, as well
as an auxiliary step in the construction of bi-fermion observables. Simplified
as the model is, it is at the same time non-perturbative.

This is to be contrasted with all forms of ‘dressing’ of fermion fields
in local formulations of QED. There, in the indefinite metric space (Gupta–
Bleuler), local Dirac fields cannot carry physical charge, as they commute with
the electric flux at spatial infinity. After constructing a perturbative solution
of an initial theory formulated in such space, one attempts then, by the addi-
tion of Lorenz condition and nonlocal dressing of charged fields, to restore
Maxwell equations and transport the theory into a Hilbert space of physical
vector states. The dressing takes the form of a formal local gauge transforma-
tion in which the gauge function is constructed with the use of electromagnetic
potential (see e.g. [9]). In an Ansatz put forward by Dirac this has the following
form:

Ψ(x) = exp[ieG(x)]ψ(x), A(x) = A(x) − ∂G(x), (6.1)

where G(x) =
∫
ra(x− y)Aa(y)d4y; here ra(x) is a vector distribution satisfy-

ing ∂ar
a(x) = δ4(x). Within perturbative approach to QED this idea has been

implemented most rigorously in the ‘axiomatic perturbative’ formulation by
Steinmann [6]. In this approach the above tentative transformation is carried
out not on the level of fields, but rather Wightman functions. As argued by
Steinmann, the results are insensitive to a choice of a particular form of the
distribution ra. And as among such distributions are some with supports in
spacelike cones, one can argue that in this way charged fields may be pushed
into such regions.

These constructions, rigorous as they are within the limits of the proce-
dure followed in this approach, are not without weak points. First, not only the
local interaction, but also the dressing exponent is treated perturbatively; this
is admitted by Steinmann himself to be an obstacle to a completely reliable
representation of the infrared problems. Secondly, the dressing transformation
(6.1) is infrared-singular and cannot be performed in this form even at the
level of Wightmann functions; the actual way it is done, is via an effective
spatial truncation followed by an adiabatic limit. However, precisely these two
points are of critical importance for the infrared problem.
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Finally, we want to comment on our choice of representations. One can-
not exclude that the use of some more infrared singular representations would
modify our results. That localization may be improved ‘in front of’ infravacua
(KPR-type representations [10]) has been shown by Kuhnhardt [11] in a scalar
model due to Buchholz et al. [12]. One of the main motivations for the intro-
duction of such more singular representations of free electromagnetic fields is
the fact that they may be stable under the addition of radiation fields produced
in scattering processes. However, in this connection we want to mention two
facts on the asymptotic model considered here. First, it has been shown in [3]
that representations discussed above in Sect. 5.3 do suffice to absorb radiation
fields produced by a classical current. Second, in this model the asymptotic
fields are not completely decoupled, and the electric flux at spatial infinity is
due both to free as well as Coulomb parts. However, the electric flux of the
total field at infinity is an invariant characteristic of the process, not changing
with time (the asymptotic flux depends on the spacelike direction, but, in fact,
is invariant under any finite spacetime translation of the point from which we
go to spacelike infinity). This is a fact in classical theory, and should be also
expected in the full quantum theory.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distrib-
ution, and reproduction in any medium, provided the original author(s) and source
are credited.

Appendix

We prove here the relation (4.25). Let y ∈ Rδ and |x − y| ≤ γ and denote
κ =

√
(1 + δ2)/(1 − δ2), −y2 = r2, r > 0. Then

|x2 − y2| ≤ |(x− y)2| + 2|y · (x− y)| ≤ γ2 + 2γκr,

where we have used (2.12). Thus −r2 − 2γκr − γ2 ≤ x2 ≤ −r2 + 2γκr + γ2.
Consider now two cases.

(i) y2 +R2 ≥ 0 and x2 +R2 ≤ 0.
It follows that R2 − r2 ≥ 0 and −r2 − 2γκr − γ2 + R2 ≤ 0, so
r ∈ 〈R − R1, R〉, with R1 = γκ (although not the whole interval is
covered).

(ii) y2 +R2 ≤ 0 and x2 +R2 ≥ 0.
It follows that R2 − r2 ≤ 0 and −r2 + 2γκr + γ2 + R2 ≥ 0, so
r ∈ 〈R,R + R2〉, with R2 = γ(κ +

√
κ2 + 1) (with the same remark

as above).

Summarizing, we have that from (x2 + R2)(y2 + R2) ≤ 0 it follows
−(R+R2)2 ≤ y2 ≤ −(R−R1)2 for R ≥ R1, which implies (4.25).
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