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Abstract Attention deficit/hyperactivity disorder (ADHD)

involves clinically heterogeneous problems including atten-

tion deficits, behavioural hyperactivity and impulsivity. Sev-

eral animal models of ADHD have been proposed, ranging

from models with neurotoxic lesions to genetically manipu-

lated animals. An ADHD model is supposed to show phe-

nomenological similarities with the disorder, i.e. it should

mimic the three core symptoms (face validity). A model

should also conform to an established or hypothesized path-

ophysiological basis of the disorder (construct validity).

Finally, an animal model should be able to predict previously

unknown aspects of the neurobiology of ADHD or to provide

potential new treatments (predictive validity). The currently

proposed models are heterogeneous with regard to their

pathophysiological alterations and their ability to mimic

behavioural symptoms and to predict response to medication.

This might reflect the heterogeneous nature of ADHD. Since

the knowledge about the biology of ADHD from human

studies is limited, one cannot at present decide which model

best represents ADHD or certain ADHD subtypes. Animal

models with good face and predictive validity may be useful

for investigations of the underlying biological substrates of

ADHD. At present, the models in use should be described as

animal models of ADHD-like symptoms rather than models of

ADHD.
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Introduction

The definition of hyperkinetic disorder according to ICD-10

is based upon the simultaneous presence of three main

behavioural problems, i.e. attention deficit, overactivity

and impulsiveness. They need to be present in more than

one situation and to cause impairment in functioning. The

problems need also to have been present before the age of 7

years. The DSM-IV category is called attention deficit/

hyperactivity disorder (ADHD). The criteria are based

upon the same list of behaviours as those that characterize

the ICD-10 definition of hyperkinetic disorder.

The 4th edition of the Diagnostic and Statistical Manual

of Mental Disorders (DSM-IV) describes three subtypes of

ADHD, i.e. (1) the predominantly inattentive type, (2) the

predominantly hyperactive/impulsive type and (3) the

combined type with symptoms of inattention, impulsivity

and hyperactivity (American Psychiatric Association

1994). ADHD represents the extremes of normal behaviour

in the domains of attention and activity, which makes a

clear diagnosis difficult. In addition, several comorbid

disorders can be found in children and adolescents with

ADHD, including oppositional defiant disorder and con-

duct disorder (50%), anxiety disorders (25–35%), mood

disorders (15%) and learning disabilities (Biederman et al.

1991). In view of the high prevalence of comorbid disor-

ders, clinical, neuropsychological and neuroimaging
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studies of children and adolescents with ADHD will consist

of relatively heterogeneous patient groups. It is therefore

important to describe the core disorder of ADHD, e.g. by

identifying biological markers, which could improve the

diagnosis. This may also help to develop new treatment

strategies.

The current pharmacotherapy with psychostimulants

goes back to 1937 when Bradley discovered that amphet-

amines ameliorate disruptive behaviour in children (Bradley

1937). All drugs that are found to be therapeutically

effective in ADHD affect central catecholaminergic neu-

rotransmission, namely the dopaminergic and noradrener-

gic systems.

These findings suggest that dysfunctions of catechol-

aminergic neurotransmitter systems contribute to the

symptoms of ADHD. In addition, patients with frontal

brain lesions show some behavioural similarities with

ADHD patients (Benton 1991; Heilman et al. 1991; Levin

1938; Mattes 1980) and ADHD has been shown to be

highly heritable (Bobb et al. 2005; Fisher et al. 2002;

Teicher et al. 2000). These findings suggest that ADHD is

based on some specific neurobiological dysfunctions.

Several animal models of ADHD have been suggested

and discussed (for review see also Kostrzewa et al. 2008;

Russell et al. 2005; Sagvolden et al. 2005; van der Kooij

and Glennon 2007). The quality of these animal models

depends on their ability to mimic the symptoms and to

reflect the neurobiology of ADHD. Most models are solely

based on similarities in symptoms. Since our knowledge

concerning the neurobiological alterations in ADHD

remains sketchy, it is too early to propose valid animal

models of ADHD. The present review will come to the

conclusion that none of the currently discussed models

fulfil all necessary validation criteria.

Human studies in ADHD

Genetics

Several investigations have shown that genetic factors play

a major role in the aetiology of ADHD. The risk to develop

ADHD in siblings of an affected child is between 10% and

up to 32% (Biederman et al. 1992, 1995; Levy and Hay

2001; Smidt et al. 2003). If a parent has ADHD, the risk for

offspring to develop the disorder is 57% (Biederman et al.

1995). In twin studies, it was found that the concordance

for ADHD is 81% in monozygotic twins, compared with

29% in dizygotic twins (Gilger et al. 1992). The average

heritability for ADHD was found to be 0.80–0.90 (Gilger

et al. 1992; Rhee et al. 1999). Although high heritability in

ADHD has been reported in twin, family and adoption

studies, with estimates up to 90%, genome-wide linkage

scans and candidate gene studies have so far not been able

to reliably identify ADHD-associated genes (Faraone et al.

2005).

Hebebrand and associates (2006) reported evidence for a

risk haplotype at the dopamine-transporter (DAT/SLC6A3)

locus based on a linkage scan and subsequent finemapping

of chromosome 5p13. Several novel susceptibility loci

have been detected in a linkage analysis of extended

families using 50K single nucleotide polymorphism (SNP)

array-based genotyping assay (Romanos et al. 2008), one

of these loci, the chromosome 16q locus, contributes to the

genome-wide significant finding revealed by a meta-anal-

ysis comprising data of seven ADHD linkage scans (Zhou

et al. 2008). Although significant linkage signals were

identified in some of the studies, there have been limited

replications between the various independent datasets. The

meta-analysis by Zhou et al. (2008) aimed to identify the

genomic region with most consistent linkage evidence

across the studies. Genome-wide significant linkage was

identified on chromosome 16 between 64 and 83 Mb. In

addition, there were nine other genomic regions showing

nominal or suggestive evidence of linkage.

Several candidate genes have been proposed. The focus

was initially on genes coding for the D2 receptor. An asso-

ciation between this gene and alcoholism, Tourette syn-

drome and ADHD was found (Blum et al. 1996; Comings

et al. 1991). However, other studies failed to replicate these

results (Fisher et al. 2002; Gelernter et al. 1991; Kelsoe et al.

1989). Another promising gene codes for the dopamine D4

receptor. Several studies have suggested that an overrepre-

sentation of this gene is associated with ADHD (Faraone

et al. 1999, 2005; Faraone and Doyle 2001; Grady et al.

2003; LaHoste et al. 1996; Li et al. 2006; Swanson et al.

1998). The D4 receptor is predominantly expressed in pre-

frontal regions, which are thought to be involved in the

aetiology of ADHD (Floresco and Tse 2007; Noain et al.

2006). Several mutations on the D4 receptor gene have been

suggested to be associated with ADHD. The most widely

studied polymorphism is the 48-bp VNTR in exon 3. The

most common alleles are the 2-, 4- and 7-repeat alleles. A

recent meta-analysis by Gizer et al. (2009) has found a

significant association between ADHD and the 7-repeat

allele. This result is in line with other studies (Faraone et al.

2005; Li et al. 2006). Another polymorphism that has been

associated with the D4 receptor, and ADHD is located in the

promoter region of this gene. Some studies have found an

association between ADHD and the 240-bp-allele in the

promoter region of the D4 receptor gene (Kustanovich et al.

2004; McCracken et al. 2000) while other studies were not

able to confirm this association (Barr et al. 2001; Todd et al.

2001). Other authors have suggested a role of the D5 receptor

(Daly et al. 1999; Fisher et al. 2002) or the D1 receptor (Cook

et al. 1995; Daly et al. 1999; Gill et al. 1997; Waldman et al.
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1998). The D1 receptor gene might also be associated with

different responses to methylphenidate in patients with

ADHD (Winsberg and Comings 1999). Genes regulating the

dopamine (DA) metabolism might also play a role, e.g. the

gene regulating dopamine-beta-hydroxylase appears to be

associated with hyperactivity (Mueller et al. 2003). Genes

regulating noradrenergic activity, such as the noradrenaline

(NA) transporter gene (NAT), have been found to be asso-

ciated with ADHD (Barr et al. 2002; Wang et al. 1999).

The serotonin transporter gene has been proposed as a

candidate gene for ADHD and may be involved in the

aetiology of impulsivity (Halperin et al. 1997; Spivak et al.

1999; Stein et al. 1993). One of the most studied poly-

morphisms of this gene (the 5HTTLPR) is located in the

promoter region of this gene. There are two variants, the

long variant is associated with a more rapid serotonin

reuptake and the short variant is associated with a reduced

serotonin uptake (Lesch et al. 1996). A meta-analysis by

Gizer et al. (2009) found a significant but modest associ-

ation between ADHD and the long variant, which supports

the importance of this gene in the aetiology of ADHD. In

the same study, Gizer et al. (2009) also investigated the

serotonin 1B receptor and serotonin 2A receptor genes. An

association between ADHD and the serotonin 1B receptor

had been reported by Hawi et al. (Hawi et al. 2002), and

this was confirmed in the meta-analysis by Gizer et al.

(2009). No association was observed between the serotonin

2A receptor and ADHD (Gizer et al. 2009).

In summary, several genes related to DA, NA and

serotonin appear to be involved in the aetiology of ADHD

(Bobb et al. 2005; DiMaio et al. 2003; Gizer et al. 2009),

Both genome-wide linkage scans and the results of gen-

ome-wide association studies are contradictory concerning

the ‘classic’ genes of the dopaminergic (e.g. DAT/SLC6A3;

COMT), noradrenergic and serotonergic pathways (Lesch

et al. 2008; Franke et al. 2009). Other genes not related to

the major neurotransmitters have also been identified, e.g.

the synaptosomal-associated protein 25 gene (Gizer et al.

2009). New findings from genome-wide association studies

provide additional support for common effects of genes

coding for cell adhesion molecules (e.g., CDH13, ASTN2)

and regulators of synaptic plasticity (e.g. CTNNA2) (Lesch

et al. 2008).

Even though many associations between candidate

genes and ADHD have failed despite a plausible aetio-

logical relevance (Gizer et al. 2009), a combination of

several genes is likely to be involved in ADHD.

Functional and structural abnormalities

There is a striking similarity in symptoms between patients

with lesions in the prefrontal cortex (PFC) and individuals

with ADHD (Benton 1991; Heilman et al. 1991; Levin

1938; Mattes 1980), which suggests an important role of

the PFC in ADHD. Three studies using magnetic resonance

imaging (MRI) found a decreased volume of the right PFC

in children with ADHD, while no such result was found

regarding the left PFC (Castellanos et al. 1996b; Filipek

et al. 1997; Hynd et al. 1990). Other brain nuclei including

the basal ganglia were also found to be altered. For

example, two studies described a reduced volume of the

left caudate nucleus in children with ADHD (Filipek et al.

1997; Hynd et al. 1993). Two further studies found a

reduced volume of the globus pallidus in children with

ADHD compared to normal controls (Aylward et al. 1996;

Castellanos et al. 1996b). However, whereas Castellanos

et al. (1996b) observed a volume reduction in the right

pallidum, Aylward et al. (1996) found a smaller left pal-

lidum. Even more important is the observation that the size

of the basal ganglia and the right frontal lobe appears to

correlate with the degree of impairment in attention and

inhibition in children with ADHD (Casey et al. 1997;

Semrud-Clikeman et al. 2000).

The volumes of several regions of the corpus callosum,

such as the anterior genu (Hynd et al. 1991), rostral body

regions (Baumgardner et al. 1996; Giedd et al. 1994) and

splenial regions (Hynd et al. 1991; Semrud-Clikeman et al.

1994) have also been shown to be reduced in ADHD. Other

brain regions including the temporal lobe, insula, hippo-

campus, amygdala or the central grey did not differ

between children with ADHD and controls (Castellanos

et al. 1996b; Filipek et al. 1997).

Some studies have reported a reduced cerebellar vol-

ume, especially concerning the vermis, in children with

ADHD (Castellanos et al. 1996b, 2001, 2002; Durston et al.

2004). The meaning of this finding is not entirely clear.

Some studies have shown a close connection between the

cerebellum and certain parts of the PFC. It has been sug-

gested that there are anatomically separate output channels

of the cerebellum to the PFC and back to the pons, which is

the main input to the cerebellum (Middleton and Strick

1997a, b, 2001). These data suggest a circuit involved in

cognition between the cerebellum and the PFC. Further-

more, based on observations in patients with cerebellar

tumours, a cerebellar cognitive affective syndrome was

postulated (Schmahmann 2004; Schmahmann and Sherman

1998), which is characterized by deficits in executive

functions, disturbed spatial orientation and uninhibited

behaviour. All these disturbances can also be observed in

ADHD. The cerebellum may therefore play a role in

ADHD.

Several single photon emission computed tomography

(SPECT) studies have shown a reduced blood flow in

prefrontal regions and the connecting pathways to the

limbic system and cerebellum (Lou et al. 1984, 1989, 1990;

Sieg et al. 1995). Even more interesting is the fact that the
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reduction in blood flow in these regions is reversed by

methylphenidate (Langleben et al. 2002; Lou et al. 1984,

1989).

In a PET study, Zametkin et al. (1990) found a reduced

glucose metabolism in striatum, thalamus, hippocampus,

cingulate regions and most prominently in the premotor

and superior PFC. Subsequent studies, however, found no

overall alterations in these regions (Ernst et al. 1994;

Zametkin et al. 1993). Post-hoc analyses revealed a

reduced glucose metabolism in females but not in males

with ADHD (Ernst et al. 1994, 1997; Zametkin et al. 1993).

In summary, structural and functional abnormalities

have been observed within the prefronto-striato-cerebellar

network suggesting an important role of this system in

ADHD. Evidence in support of this hypothesis is that

children with ADHD show different activation patterns

during attention and inhibition tasks within prefrontal

regions, basal ganglia and cerebellum (Rubia et al. 1999;

Teicher et al. 2000; Vaidya et al. 1998; Yeo et al. 2003).

Neurotransmitters

Given the important role of catecholamines in ADHD,

alterations in the metabolism of these neurotransmitters are

to be expected. However, the investigation of urinary levels

of the NA metabolite 3-methoxy-4-hydroxyphenylglycol

(MHPG) has indicated no differences (Rapoport et al.

1978; Wender et al. 1971) or increased levels in ADHD

children compared to control subjects (Shekim et al. 1977,

1979, 1983, 1987).

Oades et al. (1998) found slightly elevated levels of

plasma NA and adrenaline in children with ADHD com-

pared to controls. But there are indications that there is no

correlation between plasma/urine levels of MHPG or the

DA metabolite homovanillic acid (HVA) and the behav-

ioural measures of hyperactivity or aggression. Further-

more, the metabolite levels do not predict the response to

stimulant medications (Castellanos et al. 1994, 1996a).

The assessment of peripheral levels of catecholamine

metabolites has revealed conflicting results, and there are

doubts whether these levels actually reflect the brain neu-

rochemistry in ADHD. A better approach is the measure-

ment of these levels in the central nervous system. A few

studies have investigated neurotransmitter metabolites in

the cerebrospinal fluid (CSF). For example, Shetty and

Chase (1976) found no significant differences in the level

of CSF-HVA between hyperactive children and normal

controls, while Shaywitz et al. (1977) found reduced CSF-

HVA levels in children with minimal brain dysfunction.

However, none of these studies used children with ADHD

according to current diagnostic standards. A more recent

study by Kruesi et al. (1990) found no differences in the

CSF levels of HVA or MHPG in children with disruptive

behaviour, many of whom had ADHD, compared to chil-

dren with obsessive compulsive behaviour. Although these

children were diagnosed with ADHD, they also presented

with disruptive behaviour and, in addition, they were

compared to children with obsessive compulsive behav-

iour. It is therefore difficult to describe the neurotransmitter

status of ADHD children on the basis of this study.

Other studies have attempted to establish a relationship

between stimulant medication and central catecholamine

activity. For example, Reimherr et al. (1984) found in

adults that methylphenidate responders had lower CSF-

HVA levels than non-responders. A predictive value of

CSF-HVA levels for the responsiveness to methylpheni-

date was confirmed by Castellanos et al. (1996a) who,

however, found that increased levels of HVA predicted a

good response to stimulant treatment while low levels were

associated with a worsening of some symptoms. This dis-

crepancy might be explained by the fact that Castellanos

reported on children and Reimherr on adults.

In summary, the findings regarding the neurochemistry

of ADHD are inconsistent. Since heterogeneous patient

groups were used, it is difficult to perform reliable com-

parisons between patients and controls. Furthermore, it is

questionable whether the levels of peripheral neurotrans-

mitter metabolites reflect the neurochemical status of

patients with ADHD, since neither plasma nor urinary

levels of HVA and MHPG correlate with hyperactivity or

predict the response to stimulant treatment (Castellanos

et al. 1994, 1996a). Neurotransmitter metabolite levels in

the CSF provide limited information since they reflect the

overall activity of a neurotransmitter. Concurrently occur-

ring regional increases and reductions in transmitter

activity might offset each other. The above-mentioned

findings clearly underline the contribution of a catechol-

aminergic dysfunction to ADHD.

In ADHD, there appears to be a functional disturbance

within the fronto-striato-cerebellar system affecting the

neurotransmitters DA and NA. These disturbances may be

associated with genes regulating dopaminergic, noradren-

ergic and probably serotonergic functions. The exact nature

of the neurotransmitter dysfunctions is not clear. Further

research is therefore needed in order to elucidate the

neurobiological basis of ADHD. In this context, the

investigation of animal models may be a useful approach.

Dysfunctional systems in ADHD

Mefford and Potter (1989) postulated a noradrenergic

dysfunction of the locus coeruleus (LC) as one of the

earliest models of ADHD. This model was supported by

findings in monkeys, which showed that the LC is involved

in selective processing of sensory stimuli (Aston-Jones
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et al. 1997), which is partly modulated by alpha2-autore-

ceptors (Simson and Weiss 1987). An increase in nor-

adrenaline (NA) suppresses basal firing and enhances

responses to stimuli, i.e. an increase in NA leads to more

focused behaviour, while a reduction in NA would increase

the response to irrelevant stimuli. In addition, adrenaline is

known to inhibit the tonic activity of the LC. A deficit in

one of the two systems might therefore disrupt stimulus-

evoked responding, and this could induce deficits in sus-

tained attention.

In contrast to Mefford and Potter (1989), Pliszka et al.

(1996) suggested a dysfunction in two neurotransmitter

systems. Studies in humans have shown that attention is

distributed in a posterior and anterior system (Posner and

Petersen 1990). The posterior system includes the superior

parietal cortex, the superior colliculus and the pulvinar

nucleus. This system receives a dense innervation from the

LC (Holets 1990). NA enhances the signal-to-noise ratio

and primes, according to Pliszka et al. (1996), the posterior

system to orientate to novel stimuli. Attention then shifts to

the anterior system, which is known to control executive

functions. It consists of the PFC and the anterior cingulate

gyrus. The sensitivity of this system is modulated by DA

from the ventral tegmental area (VTA). According to

Pliszka et al. (1996), a noradrenergic dysfunction could

inhibit the priming of the posterior system and lead to

attention deficits. A loss of DA could induce deficits in the

anterior system and impair executive functions.

A third model suggested by Arnsten et al. (1996) is

based on a dysfunction of the alpha2-autoreceptors in the

prefrontal cortex (PFC). The PFC inhibits the processing of

irrelevant sensory stimuli through connections with the

association cortex (Cavada and Goldman-Rakic 1989) and

therefore protects on-going tasks from interference

(Alexander et al. 1976; Knight et al. 1989). This function is

regulated by the LC, since ascending noradrenergic fibres

stimulate postsynaptic alpha2-adrenoreceptors on the

pyramidal cells in the PFC (Aoki et al. 1994) leading to a

reduction in spontaneous firing (Hasselmo et al. 1997).

Therefore, the activity of the LC primes the PFC to sup-

press task-irrelevant stimuli and inhibits behaviour.

According to Arnsten et al. (1996), a reduced NA activity

causes a partial denervation of the alpha2 receptors in the

PFC, thereby disrupting the inhibitory control of children

with ADHD. Based on this model, the central deficit in

ADHD is a lack of inhibition induced by a decrease in

brain NA.

These models differ but they also have certain points in

common, e.g. the central role of the PFC and catechol-

amine neurotransmitters. The models by Mefford and

Potter (1989), Pliszka et al. (1996) and Arnsten et al.

(1996) emphasize the role of NA in focusing on relevant

stimuli or tasks. Pliszka et al. (1996) and Arnsten et al.

(1996) suggest that a reduced noradrenergic activity con-

tributes to attention deficits and distractibility. However,

these models need to be tested against findings in patients

with ADHD.

Animal models in research

Animal models of diseases are supposed to show phe-

nomenological similarities with the modelled disease. In

animal models of ADHD, one would expect the three core

symptoms of this disorder to be present, i.e. attention

deficits, hyperactivity and impulsivity (Rhee et al. 1999).

These symptom similarities represent the face validity of

the model (Willner 1991). However, as Willner (1991) has

pointed out, face validity also includes a resemblance

regarding aetiology, treatment and the physiological basis

of the modelled disease. Most of these aspects cannot be

used for validation since they are currently objects of

research. Face validity is therefore frequently reduced to

symptom similarities. Validity based on symptom simi-

larities alone might be misleading, since not every hyper-

active rat is a valid model of ADHD. There may be several

alternative reasons why a certain behaviour is observed.

The presence of a certain disease symptom does not nec-

essarily reflect the presence of the entire disease. Further-

more, similar behavioural expression does not necessarily

indicate that this expression has the same biological sub-

strate. This indicates that models based on symptom sim-

ilarities alone are weak and that other criteria are needed

for the validation of an animal model. Willner (1991) has

suggested to check for aspects of construct validity and

predictive validity.

Construct validity means that the model conforms to an

established or hypothesized pathophysiological basis of the

disorder. A disturbance within the fronto-striato-cerebellar

system has been postulated in ADHD. An animal showing

hyperactivity because of alterations in this system has both

construct and face validity. Construct validity is more

important than face validity because it is a certain theo-

retical framework that connects the behavioural symptoms

with the modelled disease.

Another criterion used in validating an animal model is

predictive validity, which is the ability to predict previ-

ously unknown aspects of the genetics, neurobiology and

pathophysiology of a disorder or to provide potential new

treatments. In practice, drugs with similar effects in human

disease and animal model are often used to validate the

model.

In summary, the validity of an animal model should not

solely be based on behavioural similarities. Both construct

and predictive validity have also to be considered. Con-

struct validity depends on the knowledge about the human

Animal models of attention deficit/hyperactivity disorder (ADHD) 5
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neurobiology of the modelled disease. Since this knowl-

edge is often limited, construct validity is relatively weak.

Animal models of ADHD

Genetic models (Table 1)

The spontaneously hypertensive rat

The spontaneously hypertensive rat (SHR) was initially

developed as a model of hypertension (Okamoto and Aoki

1963) by inbreeding rats of the Wistar-Kyoto strain

(WKY). This rat strain also showed high spontaneous

motor activity suggesting it as an animal model of ADHD

(Moser et al. 1988). Sagvolden and colleagues established

it as one of the best studied animal models of ADHD

(Sagvolden et al. 1992, 1998; Sagvolden 2000). The SHR

shows several major ADHD symptoms such as impulsivity,

learning deficits or a reduced waiting capacity. These

findings suggest a good face validity of this model (Moser

et al. 1988; Sagvolden 2000; Wyss et al. 1992). The deficits

observed are likely to be related to dysfunctioning within

the fronto-striatal system. For example, the SHR has an

impaired release of DA in the prefrontal cortex, nucleus

accumbens and caudate-putamen (Deutch and Roth 1990;

Jones et al. 1995; Myers et al. 1981; Russell et al. 1995,

1998, 2000b; Russell 2000). Young male SHRs have an

increased density of D1 and D5 receptors in the neostriatum

and nucleus accumbens (Carey et al. 1998), and a recent

study by Li et al. (2007) showed that SHRs show a reduced

expression of the D4 receptor gene in the PFC.

In addition, alterations in the noradrenergic system such

as elevated concentrations of NA in the LC, substantia

nigra and PFC have been found (de Villiers et al. 1995).

This finding is in line with an increased NA transmission

and a down-regulation of beta-adrenoreceptors (Myers

et al. 1981). Glutamatergic-induced NA release in the

prefrontal cortex is higher in SHRs than in control WKY

rats (Russell and Wiggins 2000), while the stimulus-

induced release from prefrontal cortex slices does not differ

between these rat strains (Russell et al. 2000a, b). How-

ever, the inhibition of NA release by the alpha2-autore-

ceptor may be deficient (Reja et al. 2002; Russell et al.

2000a, b; Tsuda et al. 1990) suggesting an overall

increased noradrenergic transmission in SHR. Finally, the

behavioural deficits can be attenuated with monoaminergic

agents (Boix et al. 1998; Myers et al. 1982). The SHR

shows therefore several aspects of face validity, construct

validity and predictive validity.

However, hypertension is a confounding factor in this

animal model since it is not associated with ADHD, and it

Table 1 Genetic animal models of ADHD

Modification Face validity Predictive validity Construct validity Missing data and problems

with the model

SHR Bred for

hypertension

Hyperactivity,

impulsivity,

learning deficits

All symptoms reduced

by monoaminergic

agents

Dysfunctional fronto-

striatal system

Hypertension, WKY rats as

control group

DAT-KO Knock-out of the

dopamine-

transporter gene

Hyperactivity,

spatial memory

deficits

Hyperactivity reduced

by psychostimulants

Alterations in the

dopaminergic system

No hints for reduced dopamine

transporter in patients with

ADHD

Coloboma

mouse

Mutation on the

SNAP-25 gene

Hyperactivity,

impulsivity

– Alterations in the

dopaminergic and

noradrenergic systems

No data on predictive validity

Role of SNAP-25 in ADHD is

unclear

Naples high-

excitability

rat

Bred for excitability Hyperactivity – Alterations in the

dopaminergic system

No data on predictive validity

No data on impulsivity

Acallosal

mouse

Agenesis of the

corpus callosum

Hyperactivity,

learning deficits

– Reduced callosal regions

found in patients with

ADHD

Role of the corpus callosum in

ADHD unclear

No data on the dopaminergic

and noradrenergic systems

No data on predictive validity

(TR)-beta(1)

transgenic

mouse

Carries a mutant

human TRb1 gene

Hyperactivity,

impulsivity,

inattention

All symptoms reduced

by methylphenidate

Alterations in the

dopaminergic system

Role of the thyroid system in

ADHD unclear

Alpha-

synuclein

lacking

mouse

Lack of alpha and

gamma synuclein

Hyperactivity,

working memory

deficits

– Increased dopamine

release

No data on predictive validity

No data on attention

No data on impulsivity
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cannot be excluded that increased blood pressure affects

behaviour. The behavioural deficits in SHRs might reflect

dysfunctioning or brain damage caused by high blood

pressure. Some human studies have shown a negative

effect of hypertension on cognition (Anstey and Christensen

2000; Birkenhager et al. 2001). Young SHRs do not show

hypertension and Diana (2002) reported no cognitive

decline in aged SHRs compared to WKY rats. These

findings suggest that the cognitive deficits in SHRs do not

depend on hypertension. Both SHRs and WKY rats have

shown a poor performance at the age of 6 months com-

pared to normal Sprague–Dawley rats. This suggests that

both young SHRs and young WKY rats show cognitive

impairment, which does not worsen with increasing age.

This is in support of the SHR as a model of ADHD.

However, the finding that WKY rats have cognitive deficits

puts in question the use of these rats as controls for SHRs.

Interestingly, Pare (1989) reported a decrease in open field

activity in WKY rats compared to Wistar rats and SHRs.

These findings were confirmed by other researchers

(McCarty and Kirby 1982; Sagvolden et al. 1993; Schaefer

et al. 1978). WKY rats have also shown decreased activity

levels in the forced swim test suggesting them as a model

of depression (Lahmame et al. 1997). It is therefore not

surprising that SHRs show increased motor activity when

compared to hypoactive rats. In a recent report, Alsop

(2007) could not show any difference between SHRs and

WKY rats when correcting for different activity levels in

these two strains. As Alsop (2007) pointed out, this does

not necessarily mean that the SHR is of no use as an animal

model of ADHD. However, all studies comparing SHRs

with WKY rats have to be interpreted with care.

In summary, the SHR is a well-studied model, and many

studies have confirmed the necessary validation criteria.

The influence of hypertension and the problematic role of

WKY rats as control animals remain unsolved problems.

The dopamine-transporter knockout mouse

The DA transporter knockout (DAT-KO) mouse lacks the

DA transporter (DAT) gene and shows some ADHD

symptoms such as spontaneous behavioural hyperactivity

(Gainetdinov et al. 1999; Gainetdinov and Caron 2001;

Giros et al. 1996) or deficits in spatial memory (Gainetdinov

et al. 1999; Gainetdinov and Caron 2001). The hyper-

activity observed in DAT-KO mice is associated with a

marked decrease in DA clearance (Jones et al. 1998a),

which is most likely due to the lack of the DAT. This lack

has been shown to induce several compensatory changes

such as a decrease in DA release from nerve terminals

(Gainetdinov et al. 1998; Jones et al. 1998a) so that the

extracellular DA concentration is only increased about

fivefold.

The concentration of DA metabolites has been shown to

vary. HVA is increased, while 3,4-dihydroxyphenylacetic

acid (DOPAC) is unaltered (Jones et al. 1998a). There are

also changes on the postsynaptic side such as a decrease in

D1 and D2 receptor protein and mRNA in the basal ganglia

(Gainetdinov et al. 1998; Jaber et al. 1996, 1999). Para-

doxically, hyperactivity can be inhibited by compounds

such as amphetamine, methylphenidate and cocaine, which

act primarily on the DA transporter (Gainetdinov et al.

1998; Gainetdinov and Caron 2001; Jones et al. 1998b).

This suggests that the therapeutic effects of these com-

pounds in ADHD are not necessarily based on changes in

dopaminergic transmission alone. In line with this is the

finding that the DA concentration in the striatum of

DAT-KO mice is not increased after challenges with the

psychostimulant drugs in a new environment (Gainetdinov

et al. 1998, 1999; Gainetdinov and Caron 2001). Since

these agents also act on the noradrenergic system, it is

likely that the reduction in hyperactivity in the DAT-KO

mouse is based on alterations of the noradrenergic system

rather than the dopaminergic system.

In summary, this mouse model shows some face, con-

struct and predictive validity because of behavioural sim-

ilarities, alterations of the catecholaminergic system and

the effectiveness of psychostimulants. However, animal

models have to be compared with patients, and there are so

far no indications that the DAT is reduced in patients with

ADHD. On the contrary, several studies have found

increased DAT levels in the striatum of adults and children

with ADHD (Cheon et al. 2003; Dougherty et al. 1999;

Krause et al. 2000).

The coloboma mutant mouse

The coloboma mutant mouse was developed using neutron

irradiation (Searle 1966). This mouse shows delayed neu-

rodevelopment and behavioural deficits such as motor

hyperactivity, impulsivity and impaired inhibition in a

delayed reinforcement task (Bruno et al. 2007; Hess et al.

1994, 1996; Heyser et al. 1995; Wilson 2000). The hyper-

activity observed could be reduced by D-amphetamine but

not by methylphenidate (Hess et al. 1996; Wilson 2000).

Since this mouse has a mutation on the SNAP-25 gene, it is

likely that the behavioural deficits are related to a SNAP-25

dysfunction (Hess et al. 1992, 1996; Steffensen et al. 1996).

The SNAP-25 protein is essential for the fusion of the

neurotransmitter vesicle with the presynaptic membrane in

order to release neurotransmitters. This might explain why

the DA release in the dorsal striatum of the coloboma

mutant mouse is almost completely lost (Raber et al. 1997).

In addition, the D2 receptor expression is increased in the

ventral tegmental area and substantia nigra (Jones et al.

2001b).
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Alterations in the noradrenergic system such as an

increased NA concentration in the striatum, LC and nucleus

accumbens were also observed (Jones et al. 2001a). NA

depletion following the administration of the neurotoxin

N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) has

been shown to reduce the hyperactivity but not the

impulsivity (Bruno et al. 2007; Jones and Hess 2003). In

line with this is the finding that adrenergic receptor

antagonists also reduce hyperactivity (Bruno and Hess

2006). Taken together, these results suggest that the motor

activity in coloboma mutant mice is related to a hyperac-

tive noradrenergic system.

In summary, the biochemical data suggest that—similar

to the SHR—the coloboma mouse has a hyperactive nor-

adrenergic system and a hypoactive dopaminergic system.

The alterations of the catecholaminergic systems support

the construct validity of this mouse. Face validity is given

by the behavioural deficits, and predictive validity is given

through the effects of amphetamine. However, the role of

the SNAP-25 gene in ADHD remains to be investigated.

Hess and colleagues found no link between ADHD and the

SNAP-25 gene (Hess et al. 1995) whereas findings from

another group suggest a role of SNAP-25 in ADHD (Barr

et al. 2000).

The Naples high-excitability rat

Naples high-excitability (NHE) rats were selected based

on an increased exploration behaviour as assessed in the

lat-maze. This increased activity is dependent on the

environment, e.g. no hyperactivity could be observed in

the rats’ home cage (Sadile 1993) and motor activity

increased with increasing complexity of the environment

(Sadile et al. 1993; Viggiano et al. 2002b, 2003b). In

addition, NHE rats showed deficits in visual-spatial

attention but no deficits in working memory (Aspide

et al. 1998; Gallo et al. 2002; Papa et al. 2000). Further

investigations have shown that these rats have alterations

in the dopaminergic system. For example, tyrosine

hydroxylase, DAT and D2 receptor mRNA are hyperex-

pressed in the PFC, while the D1 receptor is down-reg-

ulated. No such changes have been reported for the

striatum (Viggiano et al. 2002a, b, 2003a, b; Viggiano

and Sadile 2000).

Face validity of this model is supported by the pres-

ence of motor hyperactivity and attentional deficits.

Construct validity is given because these deficits are

probably based on altered dopaminergic function in the

forebrain. However, studies regarding impulsivity or the

effects of psychostimulants on the deficits observed are

still lacking. Therefore, this model has so far no pre-

dictive validity.

The acallosal mouse strain

Acallosal mice show a complete agenesis of the corpus

callosum. This mouse strain presents with learning deficits

(Lipp et al. 1990; Lipp and Wahlsten 1992; Magara et al.

2000) and signs of hyperactivity, such as a reduced number

of brief stops and a decrease in habituation in an open field

(Magara et al. 2000). This behaviour appears to be related

to a functional dominance of the right hemisphere (Magara

et al. 2000). This is interesting since dysfunctioning of the

right hemisphere has also been discussed in human ADHD

(Garcia-Sanchez et al. 1997; Stefanatos and Wasserstein

2001), and reduced sizes of callosal regions have been

found in some patients with ADHD (Baumgardner et al.

1996; Giedd et al. 1994; Hynd et al. 1991; Semrud-

Clikeman et al. 1994). However, whether or not alterations

in the human corpus callosum contribute to the aetiology of

ADHD remains an open question. In addition, information

regarding impulsive behaviour and attentional deficits,

possible alterations in the catecholaminergic system and

the effects of psychostimulants are still lacking. Taken

together, the validity of this model appears to be rather

weak.

The thyroid hormone receptor (TR)-beta(1) transgenic

mouse

A relatively new animal model of ADHD is the TR-beta(1)

transgenic mouse. This mouse carries a mutant human

TRb1 gene, which was derived from a patient diagnosed to

suffer from a resistance to thyroid hormone (RTH) syn-

drome. This rare syndrome is heritable and characterized

by elevated thyroid hormone levels, normal or elevated

levels of thyroid stimulating hormone (TSH), a short stat-

ure, hearing loss and tachycardia (Weiss and Refetoff

2000). Even more interesting is the fact that approximately

70% of children with RTH syndrome meet the diagnostic

criteria for ADHD (Burd et al. 2003). This suggests a

common mechanism related to the thyroid system in both

diseases.

Both patients with the human RTH syndrome and the

transgenic mouse show an increased level of thyroid hor-

mone and normal levels of TSH. In comparison with the

wild type, the TR-beta(1) transgenic mouse is hyperactive

but not impulsive and shows normal attentional functioning

(McDonald et al. 1998). However, using another promoter

for the TRb1 gene, Siesser et al. (2006) were able to induce

impulsivity, inattention and hyperactivity in these mice. As

shown in patients with ADHD and in most animal models,

the locomotor hyperactivity was primarily present in a

familiar environment. Furthermore, an elevated DA turn-

over and the sensitivity to treatment with methylphenidate
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suggest that these behavioural deficits are related to the

catecholaminergic system (Siesser et al. 2006).

Thyroid abnormalities are rare in children with ADHD

(Weiss et al. 1993). The behavioural deficits in this mouse

model were present at adulthood, although elevated levels

of TSH were only found around the age of 33 days. These

findings suggest that a short period of thyroid abnormalities

during brain development might be responsible for the

behavioural phenotype of these mice (Siesser et al. 2006).

A similar mechanism could be possible in humans, which

might explain why thyroid levels are not abnormal in

children with ADHD.

In summary, this model shows good face validity

because all three core symptoms of ADHD are present. It

has predictive validity since these mice are sensitive to the

treatment with methylphenidate. Finally, it shows some

construct validity because of alterations in the catechol-

aminergic system and developmental disturbances.

However, the role of the thyroid system in ADHD is not

entirely clear. One study has suggested that subclinical

maternal thyroid abnormalities may contribute to the

development of ADHD (Haddow et al. 1999). Abnormal

thyroid hormone levels are known to have severe effects on

brain development and cognition (Thompson and Potter

2000). One might therefore assume that alterations in

thyroid system induce deficits in brain development

resulting in the ADHD behavioural phenotype.

Alpha-synuclein lacking mice

The synucleins are a family of three proteins (alpha, beta,

gamma), which are mainly seen in presynaptic terminals

(Nakajo et al. 1993; Totterdell et al. 2004; Totterdell and

Meredith 2005). The alpha-synuclein protein has been

shown to be involved in the pathogenesis of Parkinson’s

disease (Chartier-Harlin et al. 2004; Zarranz et al. 2004)

suggesting that alpha-synuclein is important in the regu-

lation of DA transmission. In a recent study, Senior et al.

(2008) found that mice lacking both alpha- and gamma-

synuclein proteins showed hyperactive behaviour in a

novel environment and a reduced alternate rate in the

T-maze spontaneous alternation task. These behaviours are

most likely associated with an increase in DA release. Both

the hyperactive behaviour and the deficit in working

memory show that this model has some face validity for

ADHD. The construct validity is given because of the

increase in DA release. However, hyperactive behaviour in

these mice is only present in a novel environment and the

activity in the home cage does not differ to the wild type. It

has been suggested that hyperactivity in a familiar envi-

ronment is a better indicator of ADHD-like hyperactivity

(Sagvolden et al. 2005). Furthermore, no data are available

with respect to attention deficits or impulsive behaviour.

The validity of this model of ADHD is so far only based on

hyperactive behaviour and alterations in the dopaminergic

system.

Pharmacological animal models of ADHD (Table 2)

Juvenile rodents with a neonatal 6-hydroxydopamine-

induced brain lesion

The experimental destruction of DA-containing neurons

with 6-hydroxydopamine (6-OHDA) in adult rats is an

established model of Parkinson’s disease. Lesions of the

dopaminergic system in neonatal rats lead to age-limited

spontaneous motor hyperactivity (Creese and Iversen 1973;

Heffner and Seiden 1982; Luthman et al. 1989, 1997;

Shaywitz et al. 1976a, b). Hyperactivity observed in this rat

is most prominent prior to puberty (Erinoff et al. 1979;

Shaywitz et al. 1976b; Zhang et al. 2002b) and can be

antagonized by stimulants (Davids et al. 2002; Heffner and

Seiden 1982; Luthman et al. 1989; Shaywitz et al. 1976a).

These deficits disappear in adult rats, probably due to

on-going developmental processes. Most behavioural def-

icits observed are based on acute adaptive alterations in the

dopaminergic system due to the 6-OHDA lesion. For

example, the remaining dopaminergic neurons release

more DA from their terminals (Carder et al. 1989;

Castaneda et al. 1990). Both presynaptic D2 autoreceptors

and DA transporters are reduced (Joyce et al. 1996;

Schwarting and Huston 1996). Further data suggest that

increased D4 receptor levels in the caudate-putamen cor-

relate with behavioural hyperactivity (Zhang et al. 2001).

Furthermore, the D4 receptor seems to be essential for

hyperactive behaviour (Avale et al. 2004a). Mice with

neonatal 6-OHDA lesions lacking the D4 receptor did not

show hyperactive behaviour compared to the wild type

(Avale et al. 2004a). This effect was not based on a dif-

ferent sensitivity to 6-OHDA since both genotypes showed

an equivalent degree of DA depletion. These findings are

important since a polymorphism of the D4 receptor has

been linked to ADHD (Faraone et al. 1999; Faraone and

Doyle 2001; Grady et al. 2003; LaHoste et al. 1996;

Swanson et al. 1998). This model appears therefore to be

useful in the investigation of the role of the D4 receptor in

ADHD.

The 6-OHDA lesion also affects other neurotransmitter

systems. For example, a serotonergic hyperinnervation of

the striatum was found (Descarries et al. 1992; Frohna

et al. 1997; Kostrzewa et al. 1998; Luthman et al. 1990;

Stachowiak et al. 1984; Towle et al. 1989; Zhang et al.

2002a). By contrast, no such changes were observed in the

noradrenergic system (Luthman et al. 1990; Ordway 1995).

A study by Avale et al. (2004b) suggests that the increase in

striatal serotonin is associated with hyperactive behaviour.
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Avale and colleagues treated mice with neonatal 6-OHDA

lesions with a tryptophan hydroxylase inhibitor in order to

normalize striatal serotonin without affecting DA levels.

These mice did not show hyperactive behaviour.

In summary, this model shows some predictive validity,

since treatment with psychostimulants reduces the hyper-

activity. Construct validity is given by the profound

changes in the catecholaminergic neurotransmitter system.

Finally, the hyperactivity of this model supports face

validity. In addition, this model enables the study of the

role of the D4 receptor and serotonin in ADHD. However,

data regarding impulsive behaviour or specific attentional

deficits are not available.

Neonatal hypoxia in rats

Hypoxia induced by nitrogen after birth has been shown to

induce ADHD-like behavioural deficits (Dell’Anna et al.

1993; Speiser et al. 1983, 1988) including age-limited

hyperactivity and deficits in learning and memory

(Gramatte and Schmidt 1986). The hyperactivity can be

counteracted with D-amphetamine (Speiser et al. 1983). As

shown following neonatal lesions, hypoxia induces several

adaptive monoaminergic alterations which change with age

(Dell’Anna et al. 1993). The acute effect is a decrease in

NA in the cortex and of DA in the striatum, while the

serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA)

is increased in both cortex and cerebellum (Dell’Anna et al.

1993). A week after hypoxia NA was increased in the

cerebellum, and serotonin and 5-HIAA were decreased in

both cerebellum and cortex. On postnatal day 21, NA in the

hippocampus and HVA in the striatum were increased. By

contrast, serotonin was decreased in the striatum with

increased levels of its metabolite 5-HIAA in striatum and

hippocampus. Finally, on postnatal day 60, DOPAC and

5-HIAA levels were increased in the striatum (Dell’Anna

et al. 1993).

The learning deficits reported might be related to mor-

phological changes in the hippocampus since neuronal

density was reduced in the CA1 region starting on postnatal

day 15, and indexes of neuronal repair could be observed

on postnatal day 7 (Dell’Anna et al. 1995).

It still remains to be established to what extent these

complex changes contribute to ADHD.

In summary, face validity of this model is based on

hyperactivity, while studies investigating attention deficits

or impulsivity are missing. The alterations in the cate-

cholaminergic system might have some construct validity.

However, it remains unclear whether these complex

changes reflect the symptoms of ADHD. Some predictive

validity is given by the effect of D-amphetamine on

hyperactivity.

Developmental cerebellar stunting in rats

A significantly reduced cerebellar volume in children with

ADHD has been reported (Castellanos et al. 1996b, 2001,

2002; Durston et al. 2004), suggesting a role of the cere-

bellum in ADHD. Animal models using lesions of the

cerebellum may therefore show some construct validity.

Various substances have been used for cerebellar lesions.

For example, the administration of metylazoxymethanol

(MAM) before postnatal day 4 resulted in hyperactivity

while treatment from postnatal day 4 onwards resulted in

Table 2 Pharmacological animal models of ADHD

Modification Face validity Predictive validity Construct validity Missing data and problems

with the model

Neonatal

6-OHDA-

lesion

Lesion of central

dopaminergic

neurons

Hyperactivity Hyperactivity reduced

by methylphenidate

Alterations in the

dopaminergic system

No data on impulsivity and

inattention

Neonatal

hypoxia

Hypoxia induced by

nitrogen

Hyperactivity,

learning

deficits

Symptoms reduced by

amphetamine

Alterations in the

dopaminergic,

noradrenergic and

serotonergic systems

No data on impulsivity and

inattention-

Development

cerebellar

stunting

Lesion of the

cerebellum

Hyperactivity – Reduction in cerebellar

volume found in patients

with ADHD

No data on impulsivity,

inattention and cognitive

deficits

No data on alterations of

the dopaminergic and

noradrenergic systems

Hyperactivity increases

with amphetamine

Maternally

stressed mice

Maternal stress Hyperactivity Hyperactivity reduced

by dopamine

antagonist

Correlation between

perinatal stress and

ADHD

No data on impulsivity,

inattention and cognitive

deficits
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mild hyperactivity (Ferguson et al. 1996; Ferguson 1996,

2001). However, the treatment with amphetamine increased

the activity (Ferguson et al. 1996). The administration of

alpha-difluoromethylornithine (DFMO) on postnatal days

5–10 reduced cerebellar brain volume and affected cere-

bellar development but did not change open field behaviour

(Cada et al. 2000). The administration of dexamethason in

rats on postnatal day 7 has been shown to cause decreased

cerebellar volume and mild hyperactivity in an open field

(Ferguson and Holson 1999).

With regard to ADHD, lesions performed between

postnatal days 5 and 12 show some face validity because of

the hyperactivity observed. However, amphetamine treat-

ment increased the hyperactivity indicating that evidence

of predictive validity is missing. The criterion of construct

validity is difficult to judge since data on abnormal cate-

cholamine neurotransmitters are not available. Reductions

in cerebellar volume have been found in patients with

ADHD. However, it is not clear to what extent the cere-

bellum contributes to ADHD. Studies in primates have

shown a complex circuitry between cerebellum, basal

ganglia, PFC and pons (Middleton and Strick 1997a, b,

2001) Therefore, from an anatomical point of view, it

is possible that the cerebellum influences PFC activity.

In addition, Schmahmann and Sherman (1998) and

Schmahmann (2004) have postulated a cerebellar cognitive

affective syndrome, which has some behavioural similari-

ties with ADHD. In summary, this model may have

potential to study the role of the cerebellum in ADHD.

However, the data available at present are not sufficient to

describe cerebellar stunting as a valid model of ADHD.

Maternally stressed mice

A recent study by Son et al. (2007) has suggested the use of

maternally stressed adult mice as an animal model of

ADHD. It was found that the adult offspring of mice

treated with restraint stress during pregnancy were hyper-

active. These mice showed a reduced habituation to a novel

environment compared to control mice. Furthermore,

wheel-running activity was still increased in these mice

after three days of habituation. The use of a DA antagonist

reduced the wheel-running activity to the level of the

control mice, suggesting that the hyperactive behaviour is

associated with DA. The maternally stressed adult mice

also showed a reduced expression of the DAT and an

increased DA turnover in the striatum.

The maternally stressed adult mice have face validity

because of their hyperactive behaviour. Construct validity

is given because of the alteration in the dopaminergic

system. Furthermore, there are studies in humans sug-

gesting a correlation between stress during pregnancy and

the onset of ADHD (Laucht et al. 2000; McIntosh et al.

1995). However, further studies investigating attention,

impulsivity and cognitive deficits are necessary to validate

this model.

Discussion

Although ADHD is a common disorder among children

and adolescents, little is known about its neurobiological

basis. It has been suggested that disturbances within the

fronto-striatal system and altered levels of the neurotrans-

mitters DA and NA are involved in the pathophysiology of

ADHD. This is based on several indications. For example,

patients with prefrontal lesions show behavioural similar-

ities with ADHD patients (Benton 1991; Heilman et al.

1991; Levin 1938; Mattes 1980) and the right PFC volume

is reduced in children with ADHD (Castellanos et al.

1996b; Filipek et al. 1997; Hynd et al. 1990). Both basal

ganglia and frontal lobe volumes correlate with impaired

attention and inhibition (Casey et al. 1997; Semrud-

Clikeman et al. 2000). Finally, methylphenidate increases

the reduced blood flow in prefrontal regions of individuals

with ADHD (Langleben et al. 2002; Lou et al. 1984, 1989).

DA and NA are important neurotransmitters in these brain

regions, and a dysfunction of these neurotransmitters

appears to be likely. This is also underlined by the fact

that treatment with psychostimulants reduces ADHD

symptoms.

Different pathophysiological mechanisms have been

suggested on the basis of altered dopaminergic and nor-

adrenergic neurotransmission. For example, Arnsten et al.

(1996) have suggested a sole reduction in noradrenergic

function while Pliszka et al. (1996) postulated a combi-

nation of dopaminergic hypofunctioning and noradrenergic

dysfunctioning as the basis of the core symptoms of

ADHD. Studies investigating neurotransmitter levels in

patients revealed conflicting results. Some studies found

indications of an altered activity in catecholaminergic

metabolites (Oades et al. 1998; Shaywitz et al. 1977;

Shekim et al. 1977, 1979, 1983, 1987), while others found

no differences (Rapoport et al. 1978; Shetty and Chase

1976; Wender et al. 1971). However, it has to be consid-

ered that the patients investigated in these studies differed

with regard to comorbidity, medication and other relevant

factors. Catecholamine metabolites may not reflect the

neurochemical status of patients with ADHD since neither

plasma nor urinary levels of HVA and MHPG correlate

with hyperactivity or predict the response to stimulant

treatment (Castellanos et al. 1994, 1996a).

Given the high heritability of ADHD (Gilger et al. 1992;

Rhee et al. 1999), the investigation of genes involved in

catecholamine functioning is another research strategy.

Recent studies have suggested that both the DAT gene and
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the D4 receptor gene are associated with ADHD (Bobb

et al. 2005; DiMaio et al. 2003). However, several studies

were not able to establish any association (Bakker et al.

2005; Frank et al. 2004; Langley et al. 2004; Mill et al.

2004).

Although the available data clearly indicate that dopa-

minergic, noradrenergic and probably serotonergic activi-

ties within the fronto-striatal system play an important role

in ADHD, there is no prevailing concept of the neurobi-

ology of ADHD. This might reflect the heterogeneous

nature of ADHD, and it may not be reasonable to expect a

unique biological profile in ADHD.

Further knowledge about the neurobiology of ADHD

may be provided by animal models. However, these

models will provide reasonable conclusions only if certain

validation criteria are fulfilled.

Several animal models of ADHD have been proposed

(for review see also Kostrzewa et al. 2008; Russell et al.

2005; Sagvolden et al. 2005; van der Kooij and Glennon

2007), and most of these models were initially based on the

presence of hyperactivity. However, face validity of an

animal model of ADHD should also include impulsive

behaviour and attention deficits. In addition, deficits in

learning or executive functions might also be indicators of

face validity. Investigations concerning impulsivity and

attention deficits are still missing for some of the ADHD

models including the acallosal mouse, the neonatal

6-OHDA lesion model, the neonatal hypoxia model, the

NHE rat, the DAT-KO mouse and the developmental

cerebellar stunting model. Further research is therefore

needed in order to validate these models regarding face

validity. Most of these models have predictive validity

since treatment with psychostimulants reduces hyperac-

tivity. It has sometimes been argued that good predictive

validity is given only if both amphetamine and methyl-

phenidate are effective in these models. However, the fact

that there are responders and non-responders to methyl-

phenidate among patients with ADHD suggests different

types of pathophysiology in ADHD. Differential response

to amphetamine and methylphenidate in animal models

might therefore reflect different pathophysiological mech-

anisms. Data concerning predictive validity are not avail-

able for the acallosal mouse and the NHE rat, while the

treatment of the developmental cerebellar stunting rat with

amphetamine leads to an increase in hyperactivity.

With regard to construct validity, alterations in dopa-

minergic or noradrenergic activities have been reported for

all models except the acallosal mouse and developmental

cerebellar stunting. The validity of these two models of

ADHD is therefore limited. However, the developmental

cerebellar stunting rat might have some potential as an

animal model, since human studies have suggested a role

of the cerebellum in ADHD. Not all models fulfil therefore

the criteria necessary. The SHR is the best studied animal

model with regard to validity. However, the hypertension

in this rat and the use of the WKY rat as control in most

studies put in question the use of SHRs as an animal model

of ADHD.

Even if all criteria are fulfilled, the models show differ-

ences. For example, the SHR shows an impaired DA

release, and both neonatal 6-OHDA-lesion rat and colo-

boma mouse have a decreased DA transmission while the

DAT-KO mouse shows an increased DA transmission.

Nevertheless, all these animals present with symptoms of

ADHD, namely hyperactivity. Both increased and

decreased dopaminergic activity can therefore lead to

ADHD-like symptoms. This suggests that a dysbalance

between presynaptic and postsynaptic activities might be

important. There is a similar problem with noradrenergic

activity in these models. Pliszka et al. (1996) and Arnsten

et al. (1996) have postulated a decreased noradrenergic

function in ADHD. Depletion of NA in neonatal rats by

administering 6-OHDA in combination with a selective

DAT-inhibitor (Teicher et al. 1986) has been shown to

induce motor hyperactivity (Raskin et al. 1983), learning

deficits (Roberts et al. 1976) and attention deficits (Carli

et al. 1983). The main source of central NA is the LC, which

innervates the entire cerebral cortex, various subcortical

areas, cerebellum and spinal cord. The LC has been found to

play an important role in attention, arousal, orientation and

vigilance (Solanto 1998) since its neurons selectively

respond to target stimuli. Tonic LC activity corresponds

with the arousal state, and both very low and very high LC

activities are associated with impaired vigilance (Arnsten

1997; Aston-Jones et al. 1994). However, the above-men-

tioned animal models show either unaltered noradrenergic

functioning or an increase in NA functions, while none of

the models show a decrease in noradrenergic activity.

Based on the SHR model, one might conclude that

increased noradrenergic activity and decreased dopami-

nergic activity represent the characteristic dysbalance of

catecholamines in ADHD. However, there are indications

that the opposite might also be true, i.e. both increased and

decreased dopaminergic activity can lead to ADHD-like

symptoms. The same appears to hold true for noradrenergic

activity. Furthermore, the increase in noradrenergic activity

in the SHR is closely connected to hypertension, which is

one of the most confounding factors in this animal model.

The question therefore arises, which model best repre-

sents the nature of ADHD. So far, studies with patients

have only shown that the structural alterations in the

fronto-striatal-cerebellar system, functional alterations in

catecholaminergic systems and genes coding for the DAT

and the D4-receptor are associated with ADHD. In regard

to construct validity in ADHD animal models, this means

that every animal with alterations in these systems has

12 T. A. Sontag et al.
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some construct validity for ADHD. Therefore, it is the

combination of face, predictive and construct validity that

makes an animal model more or less valid. This illustrates

the basic problem in validating animal models: the more is

known about the biology of a disease the more conclusive

is the comparison between animal model and modelled

disease. However, it is the lack of information that makes it

necessary to develop a model in order to learn more about

the biology of the modelled disease.

Conclusion

There are several animal models of ADHD and some of

them fulfil all criteria necessary for a valid model. The

currently proposed models are heterogeneous with regard

to their pathophysiological alterations and their ability to

mimic behavioural symptoms and to predict response to

medication. This might reflect the heterogeneous nature of

ADHD. Since our knowledge about the neurobiology of

ADHD from human studies is limited, one cannot at

present decide, which model best represents ADHD or

certain ADHD subtypes. Animal models with good face

and predictive validity may be useful for investigations of

the underlying biological substrates of ADHD. At present,

the models in use should be described as animal models of

ADHD-like symptoms rather than models of ADHD.
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