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Abstract The photon magnetic moment for radiation prop-
agating in magnetized vacuum is defined as a pseudotensor
quantity, proportional to the external electromagnetic field
tensor. After expanding the eigenvalues of the polarization
operator in powers of k2, we obtain approximate dispersion
equations (cubic in k2), and analytic solutions for the pho-
ton magnetic moment, valid for low momentum and/or large
magnetic field. The paramagnetic photon experiences a red-
shift, with opposite sign to the gravitational one, which dif-
fers for parallel and perpendicular polarizations. It is due to
the drain of photon transverse momentum and energy by the
external field. By defining an effective transverse momen-
tum, the constancy of the speed of light orthogonal to the
field is guaranteed. We conclude that the propagation of the
photon non-parallel to the magnetic direction behaves as if
there is a quantum compression of the vacuum or a warp of
space-time in an amount depending on its angle with regard
to the field.

1 Introduction

We have shown in [1] that for a photon moving in a magnetic
field B, assumed constant and homogeneous (and for definite-
ness, taken along the x3 axis, thus |B3| = B, B1 = B2 = 01),
an anomalous magnetic moment defined as μγ = −∂ω/∂B
arises. This quantity has meaning, and it can be defined only
when the photon mass shell includes the radiative correc-
tions, i.e., the magnetized photon self-energy, and is calcu-
lated explicitly only after obtaining the solution of the photon
dispersion equations [2]. It was shown that it is paramagnetic
(μγ > 0), since it arises physically when the photon propa-
gates, due to the magnetic response of the virtual electron–

1 Our statements below are valid for all frames of reference moving
parallel to B.

a e-mail: hugo@icimaf.cu
b e-mail: elizabeth@icimaf.cu

positron pairs of vacuum, or vacuum polarization, under the
action of B, leading to vacuum magnetization. Thus, the pho-
ton embodies both properties of the free photon and of a mag-
netic dipole, which leads one to consider it more as a quasi-
photon, in analogy with the polariton of condensed matter
physics [3]. Such properties are valid in the whole region of
transparency, which is the region of momentum space where
the photon self-energy, and in consequence, its frequency,
ω, is real. This region is defined for transverse momentum
(ω2 −k2‖)1/2 ≤ 2m, whereω and k‖ are the photon frequency
and momentum components along B, and m is the electron
mass. In [2] it is shown that the quantities

z1 = (k · B)2/B2 − ω2 = k2‖ − ω2, (1)

z2 = (B × k)2/B2

= k2 − (k · B)2/B2 = k2⊥

are relativistic invariant variables for the photon propagating
in the magnetic field B, where z1 + z2 = k2 is the square of
the four-momentum vector kμ. In what follows we will use
equally z2 and k2⊥ when referring to the transverse momentum
squared.

As pointed out in [1], beyond that region, as the pho-
ton becomes unstable [2] for frequencies ω ≥ 2m (and it
has a significant probability of decaying in electron–positron
pairs), the photon magnetic moment loses meaning if consid-
ered independent of the magnetic moment produced by the
electron–positron background. Let us remark that the case
studied in [1,2] is based on the hypothesis of a constant
and homogeneous magnetic field defined by the invariants
F = F2

μν = 2(B2 − E2) = const > 0, G = E · B = 0
(as pointed out earlier, we will refer to the set of frames for
which the external field E = 0). Expressions for physical
quantities as the polarization operatorΠμν depend on scalar
quantities such as F = 2B2, k2 (the total four-momentum
squared) and kμF2

μνkν . Being scalars, they do not depend on
the direction of the coordinate axis, although in a specific
problem a direction for B must be chosen. Such a direction
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breaks the spatial symmetry, and, for simplicity, it is chosen
as coinciding with one of the coordinate axes. In [1] we found
the expressions of the photon magnetic moment keeping in
mind that the exact photon self-energy is an even function of
B, as is required by Furry’s theorem [4].

Also in [1] the dynamical results obtained have general
validity in the subset of Lorentz frames moving parallel to
the magnetic field pseudovector B, independently of the ori-
entation of the coordinate axes, since 3D scalars (as k2) and
pseudoscalars (as B · k) are invariant under proper rotations.
The reduced Lorentz symmetry for a specified chosen field
direction B is obviously described by the group of Lorentz
translations along B multiplied by the group of spatial rota-
tions around B. In [5,6] a “perpendicular component” for
the photon magnetic moment, orthogonal to B, was reported
to exist as a non-zero vector, but, as was recognized by the
authors, it does not contribute to the photon energy and can-
not be deduced from the photon dispersion equation, as we
will show in Sect. 2.

In Sect. 2 it is shown in a neat way that the photon mag-
netic moment introduced in [1] can be defined as a quantity
linear in the external electromagnetic field tensor Fμν , from

which a pseudovector photon magnetic moment µ(i)γ ‖ B can
be written for each Lorentz frame parallel to B. Physical rea-
sons are given later in support of this fact. We focus mainly
on the case in which the dispersion law is a small deviation of
the light cone case. We shall introduce a cubic-in-k2 approx-
imation for the dispersion curve, whose region of validity
cover most of the region of transparency for fields very near
the critical B � Bc, (where Bc = m2/e ∼ 4.14 × 1013 G
is the Schwinger critical field) but decreases for supercrit-
ical fields, and they can be compared to the exact curves,
drawn numerically for fields of order of and greater than Bc.
We conclude that in the region of transparency the paramag-
netic photon behavior is maintained for supercritical fields.
In Sect. 3 we discuss the interesting consequence of pho-
ton paramagnetism, which leads to a decrease of the fre-
quency with increasing magnetic field. The effect is polariza-
tion dependent. We interpret that in such region the speed of
light does not change, but the dispersion law must be reinter-
preted by defining an effective transverse momentum which
decreases with B. This leads to space-time consequences:
vacuum orthogonal to the field behaves as compressed; time,
measured by the period of an electromagnetic wave, run faster
for increasing B and is direction dependent.

In Sect. 4 we deal in a more detailed way with the redshift
effect in a magnetic field (already reported in [7]), which
acts in an opposite way than the gravitational redshift in the
whole range of the transparency region. We discuss also the
rise of an effective transverse momentum orthogonal to the
field (also polarization dependent), from which the photon
dispersion curves are obtained in a wide range of frequencies
characterized by the condition z1 � m2.

2 Photon magnetic moment from tensor
and pseudovector expressions

In [1] the quantity ∂ω/∂B was introduced as the modulus
of a vector parallel to B. The definition of photon magnetic
moment was a generalization of the usual definition of this
quantity for electrons and positrons, as is done in [8]. Then
μγ = −∂ω/∂B is understood as the modulus of a vector
along B since we have ∂B/∂B = n‖, where n‖ is a unit
vector parallel to B.

Let us consider the expression for the vector µγ =
−∂ω/∂B in the most general case. For any value of B and
independently of the order considered in the loop expansion
for the polarization operator, the photon anomalous mag-
netic moment will be shown to be a vector parallel to B. This
can easily be deduced from the photon dispersion equations.
Initially we have seven independent variables: the four com-
ponents of kμ plus the three components of B in an arbitrary
system of reference. By choosing the field along a fixed axis,
say, x3, its three components are reduced to one, B = √

F/2
(in components it is Bμ = 1

2εμλνFλν). Each of the dispersion
equations for the eigenvalues of the polarization operator κ(i)

(i = 1, 2, 3) imposes an additional constraint, reducing the
independent variables to four, B plus the three components
of k which are k1, k2, and k3 ≡ k‖, but cylindrical symmetry
around B makes k1, k2 appear always as k2

1 +k2
2 = z2, reduc-

ing one independent variable. As κ(i) depends on the photon
momentum components in terms of the invariant variables
z1, z2, the dispersion equations, obtained as the zeros of the
photon inverse Green function D−1

μν = 0, after diagonalizing
the polarization operator, are

k2 = κ(i)(z2, z1, B), i = 1, 2, 3 (2)

which can be written [2] as

z1 + z2 = κ(i)(z1, z2, B), i = 1, 2, 3. (3)

There are three non-vanishing eigenvalues and three eigen-
vectors, since i = 1, 2, 3, corresponding to three photon
propagation modes. One additional eigenvector is the pho-
ton four-momentum vector kν whose eigenvalue is κ4 = 0
[2]. However, in a specific direction only two out of the three
modes propagate in vacuum, which manifests the property
of bi-refringence.

The independent variables in (3) are reduced to two, for
instance, z2 and B, if (3) is solved as z1 = f (z2, B) [2]. But as
k‖ is a component of the photon momentum, the dependence
of z1 on z2 and B in specific calculations is assumed to be
contained in the photon energy, ω. Thus we usually write
ω2 = k2‖ − f (i)(z2, B). In other words, in the solution of

each of the dispersion equations one assumesω2 as a function
of the independent variables z2, k‖ and B. After solving the
dispersion equations for ω in terms of k‖ and z2 we get
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ω(i)2 = |k|2 + f
(

z2,m2, B
)(i)

. (4)

It can be shown [2] that for propagation orthogonal to B the
mode i = 2 is polarized along B and the i = 3 is polarized
perpendicular to B.

We will define from (4) the tensor

M (i)
μν = ∂z1/∂Fμν

= 1

2

∂ f i (z2, B)

∂B2 Fμν. (5)

Thus,

− ∂ω

∂Fμν = 1

2ω

∂z1

∂Fμν = 1

2ω
M (i)
μν = 1

4ω

∂z1

∂B2 Fμν. (6)

Then the photon magnetic moment can be defined as a quan-
tity proportional to the pseudovector:

Mλ = 1

2

∂z1

∂B2 ελμνFμν. (7)

The proportionality factor 1/2ω is not Lorentz invariant,
and for each frame moving parallel to B we define for each
mode the photon magnetic moment as a 3d pseudovector
µ
(i)
γ = 1

2ωM, where M||B.
This can also be seen directly from (3) by writing

∂z1

∂B
= ∂κ(i)

∂z1

∂z1

∂B
+ ∂κ(i)

∂B
, (8)

which leads to

∂z1

∂B
= −2ω

∂ω

∂B
=

∂κ(i)

∂B

1 − ∂κ(i)

∂z1

. (9)

Finally we get the 3d pseudovector photon anomalous mag-
netic moment as

µ(i)γ ≡ −∂ω
∂B

(10)

= 1

2ω

∂κ(i)

∂B

1 − ∂κ(i)

∂z1

n‖.

Thus, |M | = ∂κ(i)

∂B /(1− ∂κ(i)

∂z1
). It has been proved in the most

general case that µγ = −∂ω/∂B = −(∂ω/∂B)n‖ is a vector
parallel to B.

2.1 Conserved electron–positron and photon angular
momentum

For the transparency region (ω < 2m) the photon magnetic
moment is a consequence of the vacuum magnetization pro-
duced by the electron–positron virtual pairs. The dynamics
of observable electrons and positrons was discussed in [8],
and these results are valid for virtual pairs of vacuum. All
symmetry and conservation properties are valid for vacuum
pairs, in agreement with the content of a basic theorem due to

Coleman [9] which states that the invariance of the vacuum
is the invariance of the world.

As stated earlier, for electrons and positrons physical
quantities are invariant only under rotations around x3 or dis-
placements along it [8]. This means that conserved quantities
(whose operators commute with the Dirac Hamiltonian), are
all parallel to B, as angular momentum and spin components
J3,L3, s3 and the linear momentum p3. We must empha-
size here that the electron–positron momentum orthogonal
to B is not conserved. It implies that for the photon disper-
sion equation, which includes the self-energy tensor, momen-
tum k⊥ orthogonal to the field is neither conserved. Also,
eigenvalues J1,2, L1,2, s1,2 do not correspond to any observ-
able. By using units h̄ = c = 1, the energy eigenvalues are

En,p3 =
√

p2
3 + m2 + eB(2n + 1 + s3) where s3 = ±1 are

the spin eigenvalues along x3 and n = 0, 1, 2 . . . are the Lan-
dau quantum numbers. In other words, the eigenvalues of the
transverse squared Hamiltonian H2

t are E2
n,p3

− p2
3 − m2 =

eB(2n + 1 + s3), and they quantized as integer multiples of
eB. We can write H2

t = 2eB(Jz + eBr2
0/2), where r2

0 is the
squared center of the orbit coordinates operator, with eigen-
values (2l+1)/eB, and the eigenvalues of Jz are n−l+s3/2.
Thus, the energy is degenerate with regard to the quantum
number l, or rather either with regard to the momentum py

or the orbit’s center coordinate x0 = py/eB.
The magnetic moment operator M is the sum of two

terms, one of which [8] is not a constant of motion, but its
quantum average vanishes. Its expectation value is M̄ =
−〈∂H/∂B〉 = −∂En,p3/∂B [10]. Then

M̄(p3, n) = −(E2 − p2
3 − m2)/2B E, (11)

is the modulus of a vector parallel to B for negative energy
states, antiparallel to B for positive energy states, and B =
Mn‖.

The expression (11) for the magnetic moment behaves
as diamagnetic, but the magnetization, obtained from the
energy density of the vacuum, has otherwise a paramag-
netic behavior. This is because, due to the degeneracy of
energy eigenvalues with regard to the orbit’s center coordi-
nates, the density of states depends linearly on the magnetic
field (returning momentarily to units h̄, c) through the fac-
tor eB/4π2h̄2c2. Thus (11) is not enough for calculating the
vacuum magnetization since we must start actually from the
energy eigenvalues and, taking the density of states factor,
proceed to a summation over the Landau states,

∑
n , and to

integration on
∫

cd p3. Then, for obtaining the energy den-
sity, we must note that the factor (1/h̄c)

∫
cd p3 provides the

energy per unit length whereas the factor (eB/h̄c), having
inverse square of length dimensions and coming from the
orbit’s center degeneracy, is necessary to provide the energy
per unit volume. By recalling that φ0 = h̄c/e is the mag-
netic flux quantum, the term in parentheses can be written
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as B/φ0 and it is (up to a factor 1/4π2) the number of flux
quanta per unit area orthogonal to the field in vacuum. Thus,
we see that due to this factor the Landau ground state n = 0,
whose energy eigenvalue is independent of B, has however,
an important contribution to vacuum magnetization.

Notice that, although 〈M〉 and J3 are parallel vectors, and
these quantities are closely related dynamically, there is no
a linear relation between their moduli M̄ and J3 as it is in
non-relativistic quantum mechanics. On the opposite M̄ is a
nonlinear function of the J3 and r2

0 eigenvalues. There is no
room for an electron magnetic moment component orthogo-
nal to B, which would provide a physical basis to that of the
photons.

To obtain the expression for the vacuum energy density
Ω we start from

Ω = (eB/4π2h̄2c)
∑

n

∫
d p3αn E(p3, n, eB), (12)

where αn = 2 − δ0n is a degeneracy factor. Such expres-
sion is divergent, and after subtracting the divergences,
one is left with the Euler–Heisenberg expression [11] for
the vacuum energy (returning to units h̄ = c = 1),

ΩEH = αB2

8π2

∫ ∞
0 e−Bcx/B

[
coth x

x − 1
x2 − 1

3

]
dx
x which is an

even function of B and Bc,where Bc = m2/e � 4.4×1013 G
is the Schwinger critical field. The main conclusion is that
magnetized vacuum is paramagnetic MV =−∂ΩEH/∂B>0
and is an odd function of B [12]. For B � Bc it is
MV = 2α

45π
B3

B2
c

, where α is the fine structure constant. We

conclude that no component of µγ perpendicular to B arises
in our problem. But the main conclusion according to [1],
after explicit calculations, is the photon paramagnetic behav-
ior µγ > 0.

3 Photon anomalous magnetic moment in the one-loop
approximation

We want to give explicit expressions for the photon magnetic
moment, starting from the renormalized eigenvalues of the
polarization operator in the one-loop approximation, given
in [2]

κi = 2α

π

∞∫

0

dt

1∫

−1

dηe− t
b

[
ρi

sinh t
eζ + k2η̄2

2t

]
, (13)

ζ(z1, z2, B) = − z2

eB

sinh(η+t) sinh(η−t)

sinh t
− z1

eB
η̄2t,

ρ1(z1, z2) = −k2

2

sinh(η+t) cosh(η+t)

sinh t
η−,

ρ2(z1, z2) = − z1

2
η̄2 cosh t − z2

2

sinh(η+t) cosh(η+t)

sinh t
η−,

ρ3(z1, z2) = − z2

2

sinh(η+t) sinh(η−t)

sinh2 t

− z1

2

sinh(η+t) cosh(η+t)

sinh t
η−,

where we have used the notation b = eB
m2 = B

Bc
, η± = 1±η

2 ,
η̄ = √

η+η−.
As we discussed in [1], an explicit expression for the pho-

ton magnetic moment μ2,3
γ > 0 in the regions −z1 ≤ 4m2

can be obtained from (13). To that end we differentiate with
regard to B the dispersion equation z1 + z2 = κi and get

∂z1

∂B
= ∂κi

∂B
= 2α

π

∞∫

0

dt

1∫

−1

dηe− t
b

[
φi + ∂z1

∂B
ϕi

]
, (14)

φi = 1

m2

[
ρi eζ

sinh t

(
t

b
− ζ

)
+ k2

b

η̄2

2

]
,

ϕi = eζ

sinh t

(
∂ρi

∂z1
− ρi

eB
η̄2t

)
+ η̄2

2t
,

and, keeping in mind that ∂z1
∂B = −2ω ∂ω

∂B in (14), we obtain
a general expression for the photon anomalous magnetic
moment:

μi
γ = − ∂ω

∂B
= m2

2ωB

2α
π

∫ ∞
0 dt

∫ 1
−1 dηe− t

b φi

1 − 2α
π

∫ ∞
0 dt

∫ 1
−1 dηe− t

b ϕi

. (15)

It is easy to see that for propagation along B the vacuum
behaves as in the limit B = 0 for all eigenmodes. For that
reason, we are mainly interested in studying perpendicular
photon propagation case k‖ = 0, for which the first mode
is non-physical. In [1] we solved numerically the system of
equations (40) and (3) in the interval 0 < B < Bc and con-
firmed that the paramagnetic behavior is maintained through-
out the region of transparency. We stress here that the photon
magnetic moment has a maximum on the photon dispersion
curve [1] near the threshold for pair creation, z1 = −4m2+ε.

3.1 The limit k2 = z1 + z2 � eB

There is a wide range of frequencies characterized by the
condition k2 = z1 + z2 � eB, which corresponds to small
deviations from the light cone k2 = 0. For such frequencies
the photon magnetic moment behavior is well described by
the following approximate expression (see the Appendix for
details):

μγ = − ∂ω
∂B

= 1

2ω

∂χ
(0)
i
∂B + ∂χ

(1)
i
∂B k2 + ∂χ

(2)
i
∂B k4 + ∂χ

(3)
i
∂B k6

1 − χ
(1)
i − ∂χ

(0)
i
∂z1

− Xk2 − Y k4 − ∂χ
(3)
i

∂z1
k6
, (16)
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X = ∂χ
(1)
i

∂z1
+ 2χ(2)i ,

Y = ∂χ
(2)
i

∂z1
+ 3χ(3)i ,

where the χ(l)i are functions of z1 and B

χ
(l)
i = 2α

π

∞∫

0

dt

1∫

−1

dηe− t
bψ l

i , (17)

ψ
(0)
i = ρ0i

sinh t
eζ0 ,

ψ
(1)
i =

[
ρ0iξ + θi

sinh t
eζ0 + 1 − η2

8t

]
,

ψ
(l)
i = eζ0

sinh t

[
ρ0iξ

l

l! + θiξ
l−1

(l − 1)!
]
, l = 2, 3, . . . ,

and ω and k2 are given by

k2 =
3

√√√√R +
√

Q3
(
χ
(3)
i

)2 + R + 3

√√√√R −
√

Q3
(
χ
(3)
i

)2 + R

3

√(
χ
(3)
i

)2

− χ
(2)
i

3χ(3)i

, (18)

R = −1

2

[
χ
(0)
i χ

(3)
i − 1

3

(
χ
(1)
i − 1

)
χ
(2)
i + 2

27

(
χ
(2)
i

)2
]
,

Q = 1

3

[(
χ
(1)
i − 1

)
χ
(3)
i − 1

3

(
χ
(2)
i

)2
]
.

We have found a cubic-in-k2 approximation for the disper-
sion curve, which, as we see in Fig. 1, is valid in the whole
region of transparency for small deviations from the light
cone dispersion equation. The approximate curves can be
compared to the exact ones, which in both cases were drawn
numerically. We conclude from Fig. 2 that in the region
of transparency the paramagnetic photon behavior is main-
tained for supercritical fields: by fixing z2, we observe that the
quantity −z1, and in consequence ω, decreases with increas-
ing B.

4 The decrease of frequency with increasing field

In [1] we showed that in the region of transparency μi
γ =

−∂ωi/∂B > 0, which means that ∂ωi/∂B < 0. This means
that the frequency decreases with increasing field, that is, the
incoming photon is redshifted. (In the case of a gravitational
field, for the incoming photon the frequency increases with
increasing the modulus of the field [13].) We will give below

Fig. 1 Solutions of the dispersion equations for the second mode, for
different magnetic field values (with continuous lines we represent the
approximate solution and with discontinuous lines the exact ones). Note
that the light cone curve is the straight line −z1 = z2. The behavior for
(z1 + z2)/m2 is drawn in the upper right figure, in a logarithmic scale,
to allow us to depict the three curves

Fig. 2 Photon anomalous magnetic moment for the second mode

detailed expressions, especially for the small departure from
the light cone case.

It is very important to consider at this point two limits
for the dispersion equations: the low frequency quasi-photon
limit ω � 2m (small departure from the light cone), and the
high frequency quasi-pair limit, which occurs for the second
mode when z1 � −4m2. In this case κ2 has an inverse square
root divergence, and the solution of the dispersion equation
shows a very strong departure from the light cone. In the first
case, the expansion of κ i in the low frequency, low magnetic
field b = B/Bc < 1 limit, and the resulting dispersion equa-
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tions, was discussed in [1]. The dispersion equation, written
as ω2 = |k2| + κ(i)(z2, eB) is such that κ(i)(z2, eB) � ω2.
Thus, as said earlier, the photon self-energy acts as a small
perturbation to the light cone equation. The high frequency
limit was discussed in [2]. In that case, for instance, for the
second mode, near the first resonance frequency z1 � −4m2,
it is κ(2)(z2, eB) � ω2 (in other words, for Landau quantum
numbers n, n′ = 0, 1, 2, . . . the polarization tensor has an
infinite set of branching points at values z1 = (E0n + E0n′)2,
where E0n = √

m2 + 2eBn and E0n′ = √
m2 + 2eBn′).

The polarization operator diverges and it is not strictly a
“perturbation” but becomes the dominant term. It leads to
a quasi-particle which behaves as a massive vector boson,
and we name it a quasi-pair. Its phase and group velocities
are smaller than c.

For the quasi-photon limit, by taking the first two terms in
the κ(i)(0) series expansion in powers of b2, and up to fields
very close to Bc (for instance, B ∼ 0.4Bc), in the series
expression for the functions f (2,3), defined in Sect. 2, one can
neglect terms from the power b4 on. One has f (2,3)/k2⊥ =
−Ciαb2

45π � 1, and as a good approximation for the dispersion
equations for these modes we have

ωi2 − k2‖ = k2⊥
(

1 − Ciαb2

45π

)
(19)

where Ci = 7, 4 for i = 2, 3. Equation (19) must be inter-
preted as the dispersion equation in presence of the mag-
netic field for an incoming photon which initially, far from
the magnetized region, satisfied the usual light cone equa-
tion ω2

0 = k2‖ + k2⊥. In other words, the dispersion equation
before the magnetic field was switched on. The effect of the
magnetic field is to decrease the incoming transverse momen-
tum squared by a factor g(B)(i) = 1 − f (B)(i)/k2⊥ < 1, to
the effective value k2

eff⊥ = k2⊥g(B)(i) < k2⊥ (and, in conse-
quence, the initial photon energy decreased from ω0 → ω,

where ω =
√

k2‖ + k2
eff⊥. Thus, as stated previously, the

transverse momentum is not conserved in the magnetic field,
and keff⊥ is the effective transverse momentum measured by
an observer located in the region where the magnetic field is
B. For propagation orthogonal to B, it is ω = ω0

√
g(B)(i),

since ω0 = k⊥. The non-conservation of momentum leads
to the decrease of the photon energy, which is redshifted for
incoming photons.

The magnetic field drains (gives) momentum (and energy)
to the incoming (outgoing) photon. The case is just the
opposite of the gravitational case, in which the gravitational
field increases (decreases) the incoming (outgoing) photon
momentum (and energy).

Let us devote some space to reminding the reader of the
gravitational field case (we shall use in this paragraph the
speed of light as c). The last statements can be seen by start-
ing from the Hamilton–Jacobi equation in the massless limit

(the action function S becomes the eikonal) [14]. For a pho-
ton moving in a centrally symmetric gravitational field the
constants of motion are the energy ω0 and angular momen-
tum L with regard to its center. The linear momentum is not
a constant of motion. Very far from the massive body, the
total energy is ω0, and its linear momentum is k0 = ω0/c.
Near the massive body of mass M , for r > rG , by call-
ing eν = 1 − rG/r , where rG = 2G M/c2 is the gravita-
tional radius of the body, we can write for a massless par-
ticle whose squared effective radial momentum defined by
k2

r = eν(∂S/∂r)2 as

k2
r + L2

r2 = e−νk2
0, (20)

which expresses the total effective squared momentum as
the effective squared energy ω2

G = e−νω2
0 divided by c2.

The observed photon energy (frequency) has been increased
from ω0 to ωG = e−ν/2ω0. Notice that for rG � r , one may
write, by taking approximately ωG � (1 + rG/2r)ω0,

c
√

k2
r + (L2/r2)− rGω0

2r
= ω0, (21)

which expresses in a transparent way that the energy is
conserved, and that the observed (kinetic) energy for the
approaching photon isωG > ω0 [14], whereas its interaction
energy with the body of mass M is negative. For very large
r , (21) leads back to k0c = ω0.

4.1 Speed of light orthogonal to B and vacuum
compression

Lorentz transformations in non-parallel directions change the
magnetic field to B′ and leads to the arising of an electric
field E′, preserving the invariance of F = 2B2 = 2(B ′2 −
E ′2), but leading to inequivalent solutions of the equations of
motion. However, they are physically good. Lorentz frames
parallel to B are preferred to preserve the simplicity of the
case B �= 0, E = 0. In all of them the photon propagation
have equivalent dynamics. It is easy to see that ∂ω/∂k‖ = 1
in these frames.

As the transverse momentum is not conserved, the speed
of light orthogonal to B, if taken as

∂ωi/∂k⊥ < 1 (22)

seems to lead to a sub-luminal speed of photons. This inter-
pretation, however, is logically unsatisfactory: one starts
from a relativistic invariant theory (Quantum Electrodynam-
ics) and from results obtained perturbatively in the context of
this theory in a magnetized medium, concludes that the cor-
nerstone of the relativistic invariance is violated. We maintain
the relativistic principle of constancy of the speed of light in
vacuum as valid, and claim that (22) expresses the fact that
the non-conserved momentum transverse to the field B has
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an effective value smaller than k⊥. In doing that, we state
that due to the non-conservation of transverse momentum k⊥,
both its initial value k⊥ and energyω0 have been decreased to
keff⊥, ωi and the transverse speed of light must be expressed
by the equation ∂ωi/∂keff⊥ = 1, in full analogy to the grav-
itational field case. That is, local observers would find the
transverse speed of light as unity. For them, from (19), the
light cone equation can be written in coordinate space as
[
∂2

∂x2i ′
1

+ ∂2

∂x2i ′
2

+ ∂2

∂x2
3

− ∂2

∂x2
0

]

Ψ i = 0 (23)

where xi ′
1,2 = xi

1,2/
√

g(B)(i) > xi
1,2. This means that the

local observer measures, for instance, longer wavelengths,
since any rule for measuring lengths if placed in magne-
tized vacuum, is compressed in the direction orthogonal to B
in the amount

√
g(B)(i). The longer wavelength is in corre-

spondence to the observed smaller frequenciesωi < ω0. The
vacuum compression is due to the negative pressure effect of
the magnetized vacuum in the direction perpendicular to the
field B discussed in [12]. Such a compression is related to the
following facts: the quantity SB = ch̄/eB can be considered
as the quantum of area corresponding to a flux quantum for
a field intensity B. Thus, by increasing B, SB decreases. As
a consequence, the spread of the electron and positron wave
functions decreases exponentially with B in the direction
orthogonal to the field since they depend on the transverse
coordinates as e−ξ2

where ξ2 = x2⊥/SB .
These results mean space-time consequences which bear

some analogy to general relativity: we have seen that the
vacuum orthogonal to the field behaves as compressed; and
also that the redshift means shorter frequencies. But this, in
turn, leads to the fact that if time is measured by the wave
modes periods T (i) = 2π/ω(i), it runs faster for increasing
B and do it in a polarization-dependent way and for waves
propagating non-parallel to B.

The previous discussion is valid for the low frequency
ω � 2m, low magnetic field limit, B � Bc, when the spac-
ing between Landau levels is small compared to 2m. As the
field intensity increases the quantity g(B) decreases. The
role of the separation between Landau levels of virtual pairs
becomes more and more significant as one approaches the
first threshold of resonance, which is the quasi-pair region,
where B � Bc. For frequencies ω � 2m and k‖ < ω, the
dispersion equation for the second mode may be written [2],
since the polarization operator is expressed as a sum over
Landau levels n, n′ of the virtual electron–positron pairs, in
terms of the dominant term n = n′ = 0, as

z1 + z2 = 2αeBme−z2/2eB

√
z1 + 4m2

. (24)

This equation is valid in a neighborhood of z1 � −4m2.
Notice that its limit for k → 0 is ω �= 0. Actually, it

describes a massive vector boson particle closely related to
the electron–positron pair (see below). This is not in con-
tradiction with the gauge invariance property of the photon
self energy. Equation (24) has solutions found by Shabad [2]
as those of a cubic equation. One can estimate its behavior
very near z1 = −4m2, by assuming z1 = −4m2 + ε and
z2 = 4m2 − ε, the initial energy and transverse momen-
tum where ε is a small quantity. One can obtain the solu-
tion approximately as (z1 + 4m2)3/2 = 2αeBme−z2/2eB ,
from which z1 = −4m2 +(2αeBme−z2/2eB)2/3. This means

approximately ω2 =
√

k2‖ + 4m2 − (2αeBme−2m2/eB)2/3.
Thus, the transverse momentum of the original photon is
trapped by the magnetized medium, the resulting quasi-
particle being deviated to move along the field as a vec-
tor boson of mass ωt = √

4m2 − m2(2αbe−2/b)2/3. Our
approach is approximate. A more complete discussion would
be made by following the method of [2]. This quasi-pair is
obviously paramagnetic, as can be checked easily. It differs
totally from photons originally propagating parallel to B. For
slightly larger energies such that z1 � −4m2, and b of order
unity, that is, B ∼ Bc, they decay in observable electron–
positron pairs, and the polarized vacuum becomes absorp-
tive (see [2]). Thus, near the critical field Bc our problem
bears some analogy to the gravitational singularity effects
on light. For light passing near a black hole, if r � rG , the
light is deviated enough to be absorbed by the black hole.
Among other differences in both cases, it must be remarked
that the gravitational field in black holes is usually centrally
symmetric, whereas our magnetic field is axially symmetric.

5 The redshift of the paramagnetic photon

For the specific case of the magnetic field produced by a star,
we assume that it has axial symmetry and that it decreases
with increasing distance along the plane orthogonal to it. In
place of assuming an explicit dependence B = B(r), we
assume a partition in concentric shells, in which the mag-
netic field is considered as constant inside each one. Then B
increases to B +ΔB when passing from a shell to its inner
neighbor, and decreases B −ΔB when passing to the outer
one.

From (19), the frequency is redshifted when passing from
a region of magnetic field B to another of increased field
B +ΔB. In the same limit it is,

Δω(2) = −14αz2bΔb

45π |k| < 0, (25)

and

Δω(3) = −8αz2bΔb

45π |k| < 0. (26)
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Here Δb = ΔB/Bc. Thus, the redshift, consequence of
the photon paramagnetism, differs for longitudinal and trans-
verse polarizations.

To give an order of magnitude, for instance, for photons
of frequency 1020 Hz, and magnetic fields of order 1012 G,
|Δω| ∼ 10−6ω.

For the quasi-pair case, from [1], when z1 → −4m2 + ε

the photon redshift can be written approximately, by calling
P = 4m2 + z1. U = αm3e−z2/2eB , as

Δω(2) = − PU

ωBc(P3/2 + bU )

(
1 + z2

2eB

)
ΔB < 0, (27)

The coefficient of ΔB at the right, which is minus the
photon magnetic moment, has a maximum located on the
dispersion curve near the threshold for pair creation z1 =
−4m2 + ε. In terms of

ωt =
√

4m2 − m2[2αb exp (−2/b)]2/3, (28)

this maximum is

μ(2)γ = e(1 + 2b)

3ωt b

[
2αb exp (−2/b)

]2/3 (29)

which for b ∼ 1 is about 13μ′, where μ′ is the anomalous
electron magnetic moment.

For supercritical fields B → Bc/4α, μ(2)γ (given by the
expression (29)) may become arbitrarily large. But this for-
mula is not valid in the mentioned limit B → Bc/4α,
for which the condition z1 � 4m2 is also satisfied when
z2 ≈ 4m2. In that case, according to [15], the right approxi-
mate dispersion equation is

z1 = − z2

1 + α
3π b

, (30)

and, as a consequence, the photon anomalous magnetic
moment (for perpendicular photon propagation) looks like

μ(2)γ = αe

6πm2

√
z2

1 + α
3π b

. (31)

It is easy to see from (31) that μ(2)γ uniformly tends to zero
when the magnetic field grows b → ∞.

Notice that (25), (26) are the analog of the gravitational
redshift [13]

Δωg = −Δφ
c2 ω, (32)

where Δφ = −G M/r2 + G M/r1 and r2 > r1. However,
since the gravitational field is negative,Δφ > 0 corresponds
to a decrease in the absolute value of φ, as opposite toΔB >

0. But as pointed out earlier, the magnetic redshift is produced
with opposite sign than the gravitational redshift. For r2 →
∞ the photon gravitational redshift is Δωg = −rG/2r ; this
is what is observed for the light coming from a star of mass
M . For a neutron star of mass M ∼ M⊙, and star radius
r1 ∼ 10 km, ωg/ω ∼ 10−1. The magnetic redshift for the

same star, at frequencies of order ω = 2m and field B ∼ Bc

is ΔωB/ω = ∫ B
0 μi

γ dB/ω ∼ 10−5. This implies that the
magnetic redshift is a small correction to the gravitational
redshift up to critical fields.

6 Conclusions

We have shown that the photon magnetic moment µ
(i)
γ can

be understood as a pseudovector quantity, which is linear in
the electromagnetic field tensor Fμν . A cubic-in-k2 approx-
imation for the polarization operator was obtained, from
which analytic solutions of the photon dispersion equations
and anomalous magnetic moment are easily deduced. These
approximate expressions are valid in a very wide range of
photon momentum and magnetic fields, whenever the condi-
tion k2/eB � 1 is satisfied. In the whole region of trans-
parency the paramagnetic photon behavior is maintained,
even for supercritical fields B > Bc.

In the region of transparency and for magnetic fields
B � Bc and frequencies ω � 2m photons propagate in
magnetized vacuum with energies and transverse momentum
decreasing for increasing fields, and vice versa: it behaves as
a tiny dipole moving at the speed of light in magnetized vac-
uum. For larger magnetic fields B � Bc and frequencies
ω � 2m, the resulting quasi-particle behaves as a massive
vector boson moving parallel to the field B, its mass being
mq � 2m. The last behavior extends to all the region of
transparency for supercritical fields B � Bc. It has been
discussed the analogy between the photon propagation in a
magnetic field and in a gravitational field. Redshift is pro-
duced also in the magnetic field case, but with opposite sign
to the gravitational one, leading also to space-time deforma-
tions.

The presented results, related to the photon propagation
in a uniform magnetic field, may be applied to the study of
photons in an axially symmetric magnetic field B = B(x⊥),
by considering concentric shells in which the field is taken
as uniform, but varying from shell to shell. This can be made
whenever the variation of B over the length l = √

h̄c/eB is
negligibly small. We have found a that the photon magnetic
moment has a maximum on the dispersion curve, in the region
close to the electron–positron pair creation threshold.

The study of photon properties in an external magnetic
field [16–18] is very important in the astrophysical context,
where high magnetic fields have been estimated to exist [19–
22]; and can be considered as an important part of a more gen-
eral problem: the theoretical study of high energy processes
of elementary particles in strong external electromagnetic
fields. Nowadays, this issue has also attracted the interest
of several experimental researchers, due to the development
of high power lasers and ion accelerators (see [23,24] and
references therein).
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Appendix A: Series expansion of the polarization
operator

A.1 k2 = z1 + z2 � eB limit

The functions ζ and ρi (i = 1, 2, 3), linear in z1 and z2, may
also be written as

ζ(z1,−z1 + k2, B) = ζ0(z1, B)+ k2ξ(B), (33)

ρi (z1,−z1 + k2) = ρ0i (z1)+ k2θi , (34)

where ζ0 = ζ(z1,−z1, B), ξ = ζ(0, k2, B)/k2 and ρ0i =
ρi (z1,−z1), θi = ρi (0, k2)/k2. We can then express (13) as

κi =
∞∑

l=0

χ
(l)
i k2l , (35)

χ
(l)
i = 2α

π

∞∫

0

dt

1∫

−1

dηe− t
bψ l

i , (36)

ψ
(0)
i = ρ0i

sinh t
eζ0 ,

ψ
(1)
i =

[
ρ0iξ + θi

sinh t
eζ0 + 1 − η2

8t

]
,

ψ
(l)
i = eζ0

sinh t

[
ρ0iξ

l

l! + θiξ
l−1

(l − 1)!
]
, l = 2, 3, . . .

We retain only the first four terms in the series expansion
(35)

κi ≈ χ
(0)
i + χ

(1)
i k2 + χ

(2)
i k4 + χ

(3)
i k6, (37)

and we explicitly solve the resulting approximate dispersion
equation, cubic in k2,

0 = χ
(0)
i + (χ

(1)
i − 1)k2 + χ

(2)
i k4 + χ

(3)
i k6. (38)

The solutions are given by

k2 =
3

√√√√R+
√

Q3
(
χ
(3)
i

)2 +R+ 3

√√√√R−
√

Q3
(
χ
(3)
i

)2 + R

3

√(
χ
(3)
i

)2
− χ

(2)
i

3χ(3)i

,

(39)

R = −1

2

[
χ
(0)
i χ

(3)
i − 1

3

(
χ
(1)
i − 1

)
χ
(2)
i + 2

27

(
χ
(2)
i

)2
]
,

Q = 1

3

[(
χ
(1)
i − 1

)
χ
(3)
i − 1

3

(
χ
(2)
i

)2
]
.

We differentiate with regard to B the dispersion equa-
tion (38) and, by using ∂z1

∂B = −2ω ∂ω
∂B , we obtain finally an

expression for the photon anomalous magnetic moment,

μγ = − ∂ω
∂B

= 1

2ω

∂χ
(0)
i
∂B + ∂χ

(1)
i
∂B k2 + ∂χ

(2)
i
∂B k4 + ∂χ

(3)
i
∂B k6

1 − χ
(1)
i − ∂χ

(0)
i
∂z1

− Xk2 − Y k4 − ∂χ
(3)
i

∂z1
k6
, (40)

X = ∂χ
(1)
i

∂z1
+ 2χ(2)i ,

Y = ∂χ
(2)
i

∂z1
+ 3χ(3)i ,

with ω and k2 given by (39) and

∂χ
(l)
i

∂B
= − 2α

πB

∞∫

0

dt

1∫

−1

dηe− t
b

eζ0

sinh t
ϑ
(l)
i (41)

ϑ
(0)
i = ρ0i

[
− t

b
+ ζ0

]
,

ϑ
(1)
i =

[
(ρ0iξ + θi )

(
− t

b
+ ζ0

)
+ ρ0iξ

]
− sinh t

eζ0

1 − η2

8b
,

ϑ
(2)
i =

[(
ρ0iξ

2

2
+ θiξ

)(
− t

b
+ ζ0

)
+ ρ0iξ

2 + θiξ

]
,

ϑ
(3)
i =

[(
ρ0iξ

3

6
+ θi

ξ2

2

) (
− t

b
+ ζ0

)
+ ρ0i

ξ3

3
+ θiξ

2
]
,

∂χ
(l)
i

∂z1
= − 2α

π z1

∞∫

0

dt

1∫

−1

dηe− t
b υ

(l)
i (42)

υ
(0)
i = ρ0i

sinh t
eζ0 (ζ0 + 1) ,

υ
(1)
i = eζ0

sinh t
[(ρ0iξ + θi ) ζ0 + ρ0iξ ] ,

υ
(2)
i = eζ0

sinh t

[(
ρ0iξ

2

2
+ θiξ

)
ζ0 + ρ0i

ξ2

2

]
,

υ
(3)
i = eζ0

sinh t

[(
ρ0iξ

3

6
+ θi

ξ2

2

)
ζ0 + ρ0i

ξ3

6

]
.
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