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1 Introduction

It is well-known that string theory compactified on Tn has the O(n, n;Z) T-duality sym-

metry, which is manifested in the classical equations of motion for both background fields

and the 2d sigma model. In [1], it has been shown that string T-duality can be realized

on the string worldsheet as a rotation of field equations into Bianchi identities. M theory

compactified on Tn also has the U-duality symmetry, which, when n = 3 and n = 4, are

SL(2, Z)×SL(3, Z) and SL(5, Z) respectively. Equations of motion for the 11d supergravity

are U-duality invariant. It remains to find the U-duality transformation rule of membrane

on the given supergravity background. A natural generalization of [1] in the membrane

case is to realize the U-duality transformation as the rotation of field equations into Bianchi

identities on the 3 dimensional worldvolume [2]. However, the approach has some difficulties

as discussed recently in [3]. Concretely, when n = 3, the SL(2, R)×SL(3, R) transformation

is well-defined, but for n = 4, only a subgroup GL(4, R)×R4 can be realized.

Nevertheless, because M theory compactified on Tn is U-duality symmetric, there

must be a U-duality transformation rule for membrane. In this note, we will reconsider

this problem. Different from the approaches in [2, 3], where the worldvolume theory of

membrane is covariant, we will impose the lightcone gauge, and then, after the discrete

regularization, membrane worldvolume theory becomes U(∞) Matrix model. Another

difference is that in [2, 3], membrane worldvolume, including the time direction, is totally

embedded in Tn, but in our discussion, membrane lives in Tn ×R with the time direction

identified as R. As a result, some identities in [3] are not valid here. For example, membrane

in T 3 is a topological object with the winding current proportional to the momentum

current due to some algebraic relations [3]. On the other hand, membrane in T 3×R carries

dynamical degrees of freedom, while the winding current and the momentum current are

independent.
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Branes in compact space contain more degrees of freedom than branes in non-compact

space, coming from the winding modes on non-trivial 1-cycles. For example, the world-

volume theory of a single D2 in 10d non-compact spacetime is the 3 dimensional U(1)

super-Yang-Mills (SYM) theory. If n transverse dimensions are compactified to Tn, open

string winding modes along Tn should also be added so that the theory is equivalent to

the (3 + n) dimensional U(1) SYM theory. Duality transformation usually makes branes

without winding modes transformed into branes with winding modes. As an instance, let

us consider the type IIA theory compactified on T 4 ∼ x1×x2×x3×x4 and a D2 wrapping

x1×x2 with no winding modes. If D2 is not translation invariant along x1 and x2, after two

successive T-duality transformations along x1 and x2, it will become a D0 with winding

modes along x1×x2 included. The further T-duality transformations along x3 and x4 give

D2, which wraps x3 × x4 and is translation invariant along x3 and x4, still including the

winding modes along x1×x2. Similarly, we may expect that for membrane in Tn, winding

modes should also be added and the U-duality transformation may make a configuration

without winding modes transform into the one with winding modes.

Membrane in Tn × R in lightcone gauge with all winding modes included is equiv-

alent to the (n + 1)-dimensional U(∞) SYM theory in the dual T̃n × R. Without the

winding modes, membrane configuration is mapped to the 0-mode of the SYM field. We

will consider the SL(2, Z)× SL(3, Z) and SL(5, Z) transformations for the 4d and 5d SYM

theories, respectively. It turns out that the duality transformation does not always con-

vert the 0-mode into the 0-mode, so starting from the membrane configuration without

winding modes, the U-dual configuration may involve winding modes. For the SL(2, Z)

transformation of the 4d YM fields, based on the loop space formulation, [13, 14] gives a

prescription converting the classical on-shell fields into each other. On the other hand, the

SL(5, Z) transformation of the 5d SYM fields cannot always be realized classically. The

5d SYM theory in T 4 × R, with all instanton configurations taken into account, could be

taken as the 6d (2, 0) theory in T 5×R, which is supposed to be SL(5, Z) symmetric. Each

5d SYM field configuration carries the definite instanton number, or in other words, the

definite P 5 momentum, and thus could not form the representation of SL(5, Z), except for

the SL(4, Z) subgroup on T 4. Nevertheless, the SL(5, Z) symmetry may be realized at the

quantum level, for example, the partition function of the 5d SYM theory on T 4 × R may

be SL(5, Z) invariant, although the explicit verification is still lacking.

The rest of the paper is organized as follows. In section 2, we review the SO(n, n)

transformation for strings on Tn, based on [1]. In section 3, we comment on the problems

for the U-duality transformation of membrane on Tn, following [3]. In section 4, we review

the matrix theory description of the membrane on Tn × R. In section 5, we discuss the

U-duality transformation of membrane on T 3 ×R. In section 6, we consider the U-duality

transformation of membrane on T 4 ×R. The conclusion is in section 7.

2 SO(n, n) transformation for string on T n

In [1], it was pointed out that string T-duality originates from transforming field equations

into Bianchi identities on the string worldsheet. Consider the worldsheet theory of the
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string on Tn with the constant background fields gµν and bµν , the equations of motion and

the Bianchi identity can be interpreted as the conservation equations for the currents piµ
and jiµ:

∂i(gµν
√−γγij∂jx

ν + bµνǫ
ij∂jx

ν) = ∂ip
i
µ = 0 ,

∂i(ǫ
ij∂jx

µ) = ∂ij
iµ = 0 , (2.1)

where γij = ∂ix
µ∂jx

νgµν , i = 0, 1, µ = 1, 2, · · · , n, and

piµ = gµν
√−γγij∂jx

ν + bµνǫ
ij∂jx

ν , (2.2)

jiµ = ǫij∂jx
µ . (2.3)

Integrations of piµ and jiµ give Pµ and Jµ, the momentum and winding number of the string

in µ direction. Pµ and Jµ are integers. Under the SO(n, n;Z) T-duality transformation Λ,

(P, J) transforms as
(

P

J

)

→
(

P ′

J ′

)

= Λ

(

P

J

)

. (2.4)

Although the exact symmetry is SO(n, n;Z), one can nevertheless first consider the con-

tinuous group SO(n, n;R), under which the infinitesimal transformation of (P, J) is

δPµ = −Aα
µPα + CµβJ

β ,

δJν = BναPα +Aν
βJ

β . (2.5)

A stronger requirement is that the current (piµ, j
iν) transforms in the same way as the

charge (Pµ, J
ν):

δpiµ = −Aα
µp

i
α + Cµβj

iβ ,

δjiν = Bναpiα +Aν
βj

iβ . (2.6)

The background fields gµν and bµν can be compactly written as a 2n×2n metric GMN

GMN =

(

gµν + bµαg
αβbνβ bµαg

αβ

gαβbνβ gαβ

)

. (2.7)

The SO(n, n) transformation rule for GMN is G → G′ = ΛGΛT , which gives

δgµν = −Aρ
µgρν −Aρ

νgρµ − bµαB
αβgβν − gµαB

αβbβν ,

δbµν = −Aρ
µbρν −Aρ

νbρµ − bµαB
αβbβν − gµαB

αβgβν + Cµν . (2.8)

From (2.6) and (2.8), δ∂ix
µ is determined to be

δ∂ix
µ = Bνα(−gαν

√−γǫikγ
kj∂jx

ν + bαν∂ix
ν) +Aν

β∂ix
β . (2.9)

With the equations of motion imposed, ǫij∂iδ∂jx
µ = 0, so (2.9) can be integrated to give

some δxµ. δxµ together with (2.8) composes the SO(n, n;R) transformation rule with the

momentum and winding number current (piµ, j
iν) transforming as (2.6).

– 3 –
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3 Problem for the U-duality transformation of membrane on T n

Similar to the string situation, it is naturally expected that the M theory U-dualities

originate from transforming field equations into Bianchi identities on the membrane world-

volume [2]. However, unless the target space has dimension D = p + 1, there is a problem

that is identified as the non-integrability of the U-duality transformation assigned to the

pull-back map [3].

For the worldvolume theory of membrane on Tn with the constant background fields

gµν and bµνρ, the equations of motion and the Bianchi identity are

∂i

(

gµν
√−γγij∂jx

ν +
1

2
bµνρǫ

ijk∂jx
ν∂kx

ρ

)

= ∂ip
i
µ = 0 ,

∂i(ǫ
ijk∂jx

µ∂kx
ν) = ∂ij

iµν = 0 . (3.1)

(3.1) can be interpreted as the conservation laws of the current piµ and jiµν , and the

integration of which gives the momentum Pµ and membrane wrapping number Jµν , where

i = 0, 1, 2, µ = 1, 2, · · · , n. Pµ and Jµν are also integers.

piµ = gµν
√−γγij∂jx

ν +
1

2
bµνρǫ

ijk∂jx
ν∂kx

ρ , (3.2)

jiµν = ǫijk∂jx
µ∂kx

ν . (3.3)

For n = 3, there is the identity

gµν
√−γγij∂jx

ν = −1

2

√−gǫµνρǫ
ijk∂jx

ν∂kx
ρ . (3.4)

Let

bµνρ =
√−gǫµνρb , jiµ =

1

2
ǫµνρj

iνρ , (3.5)

also note that

ǫijkǫµνρ∂jx
ν∂kx

ρ = −2(det ∂x)γijgµν∂jx
ν = −2|γ|1/2|g|−1/2γijgµν∂jx

ν , (3.6)

piµ and jiµ can be simplified as

piµ = −√−γγijgµν(1 + b)∂jx
ν , jiµ =

√−γγijgµν |g|−1/2∂jx
ν (3.7)

with

piµ = −(1 + b)|g|1/2jiµ ≡ Cjiµ . (3.8)

The GL(2, R) = SL(2, R)×R transformation of (piµ, j
i
µ) is required to be

δ

(

piµ
jiµ

)

=

(

α β

γ −α

)(

piµ
jiµ

)

+ λ

(

piµ
jiµ

)

, (3.9)

which can be satisfied when

δC = β + 2αC − γC2 , (3.10)

δ(∂iX
µ) = (Cγ − α+ λ)∂iX

µ . (3.11)

(3.11) is of course integrable and then the defined transformation is consistent.

– 4 –
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For n = 4, the U-duality symmetry of M theory is SL(5, Z). Let us define Kµ5 ≡ Pµ,

Kµν ≡ 1
2ǫµνρσJ

ρσ, K ≡ (Kµ5,Kµν) forms a 5× 5 antisymmetric matrix, which, under the

action of Λ ∈ SL(5, Z), transforms as

K → K ′ = ΛKΛT . (3.12)

If one requires the worldvolume Lorentz invariance, the current (piµ, j
iνρ) will transform in

the same way as the charge (Pµ, J
νρ), and if the SL(5, Z) symmetry is relaxed to SL(5, R),

the infinitesimal transformation of (piµ, j
iνρ) will be

δpiµ =

(

−Aα
µ +

3

4
Aδαµ

)

piα +
1

2
Bµβγj

iβγ ,

δjiνρ = Cνραpiα +

(

2A
[ν
[βδ

ρ]
γ] −

1

2
Aδνρβγ

)

jiβγ . (3.13)

gµν and bµνρ can also be assembled into a symmetric 5×5 matrix GMN with M,N=1,· · ·, 5,

Gµν = g−2/5gµν , Gµ5 = G5µ =
1

3!
g−2/5gµαǫ

αβγδbβγδ ,

G55 = g3/5
(

1 +
1

3!
b2
)

, b2 ≡ bµνρb
µνρ . (3.14)

Under the SL(5, R) transformation, G → G′ = ΛGΛT ,

δgµν = −2Aσ
(µgν)σ +

5

6

(

A+
2

15
Cαβγbαβγ

)

gµν − Cαβγgγ(µbν)αβ ,

δbµνρ = −3Aσ
[µbνρ]σ +

5

4

(

A− 2

15
Cαβγbαβγ

)

bµνρ +Bµνρ + Cαβγgµαgνβgργ , (3.15)

where

ǫ =
1√−γ

ǫlmn∂lx
µ∂mxν∂nx

ρgµαgνβgργB
αβγ . (3.16)

From (3.13), (3.15) and the constraint γij = ∂ix
µ∂jx

νgµν , δ∂ix
µ is determined to be

δ∂ix
µ =

[

Aµ
σ − 1

4

(

A+
1

3
Cαβγbαβγ +

1

3
ǫ

)

δµσ +
1

2
Cµαβbαβσ

]

∂ix
σ +

1

2
Cµ

νρ

γijj
jνρ

√−γ
.

(3.17)

ǫijk∂jδ∂kx
µ = 0 does not necessarily hold when Cαβγ 6= 0, even if the equations of motion

is imposed. This just indicates that we cannot find a δxµ with (piµ, j
iνρ) transforming

as (3.13).

A possible reason is that maybe (3.13) is a too strong requirement. We may only need

the chargeKMN transforming as a 5×5 antisymmetric matrix like that in (3.12). In fact, we

do have examples for which, the U-duality transformation is implemented respecting (3.12)

but violating (3.13). Consider the membrane configuration in T 4 corresponding to string

in T 3. Membrane should wrap one direction, for example, x4 in T 4. Decompose the

membrane worldvolume coordinate as ξi = (ξ î, ξ2), î = 0, 1 and the target-space coordinate

as xµ = (xµ̂, x4), µ̂ = 1, 2, 3. One can let ξ2 = x4 so that ∂îx
4 = 0, ∂2x

4 = 1, and also

– 5 –



J
H
E
P
0
8
(
2
0
1
6
)
1
3
8

suppose ∂2x
µ̂ = 0. For simplicity, assume g4µ̂ = bµ̂ν̂ρ̂ = 0. One can prove that the

transformation

δ∂îx
µ̂ = C ρ̂µ̂4(−gρ̂ν̂

√−γγk̂ĵ ǫ̂ik̂∂ĵx
ν̂ + bρ̂ν̂4∂îx

ν̂)

δ∂k̂x
4 = δ∂2x

µ̂ = δ∂2x
4 = 0 (3.18)

is integrable on-shell. j3µ̂ν̂ does not transform as in (3.13) but (3.12) is respected. So for

such kind of the particular membrane configurations, the symmetry generated by Cµν4 can

indeed be realized at the price of the violation of (3.13). Compared with (2.9), Cµν4 ∼ Bµν

generates part of the SO(3, 3) T-duality transformation for string in T 3.

Besides, there are several subtleties in the U-duality transformation of the membrane.

Consider M theory on T 4 and then make a dimensional reduction along x4 to get type IIA

in T 3. The SL(5, Z) U-duality also has its manifestation in type IIA. For example, M2

without wrapping T 4 becomes D2 without wrapping T 3, which is dual to D4 wrapping 12

or 13 or 23, or equivalently, M5 wrapping 124 or 134 or 234. In this case, M2 is U-dual

to M5. M2 wrapping 23 is also D2 wrapping 23, which, after the T-duality transformation

along 2 becomes D1 winding 3 with all winding modes along 2 included, if the original

M2 configuration is not translation invariant along the x2 direction. A further T-duality

transformation along 1 gives D2 wrapping 13, or equivalently, M2 wrapping 13, which is

translation invariant along 1 but still with all winding modes along 2 included. Obviously,

the appearance of M5 and the infinite number of the winding modes after the U-duality

transformation cannot be realized in the worldvolume transformation of the membrane.

It is well-known that matrix theory [4], which is supposed to be the non-perturbative

description of M theory, is U-duality invariant [5–9]. On the other hand, matrix theory can

also arise as the discrete regularization of the membrane theory in lightcone gauge [10],

so U-duality transformation rule of matrix theory can also be translated as the U-duality

transformation rule of membrane. Moreover, matrix theory description is also complete

enough to incorporate the M5 brane as well as the winding modes.

In the following, we will consider the membrane worldvolume theory in lightcone gauge,

which is equivalent to the matrix theory. We will discuss the U-duality transformation rule

for matrix theory in Tn × R, and then reinterpret it as the U-duality transformation rule

of the membrane theory in Tn ×R. This is a little different from the approaches in [2, 3],

where membrane is the instanton in Tn. As a result, some conclusions in [2, 3] do not hold

here. For example, membrane in T 3 is topological with the identity (3.8) holds, while the

membrane in T 3 × R is dynamical with the momentum density and the winding number

density independent.

4 A review of the matrix theory description of the membrane in T n
×R

Let us consider (the bosonic part of) the supermembrane action with the background fields

gµν and bµνλ, µ = 0, 1, · · · , 10 [11].

S = −
∫

d3σ [
√−γ(γαβ∂αx

µ∂βx
νgµν − 1) + ∂0x

µ{xν , xλ}bµνλ] , (4.1)

– 6 –
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where {xν , xλ} = ǫab∂ax
ν∂bx

λ, ǫ12 = 1, γαβ = ∂αx
µ∂βx

νgµν , α, β = 0, 1, 2, a, b = 1, 2.

Suppose the membrane world-volume is of the form Σ×R, where Σ is a Riemann surface

of the fixed topology and R is the time direction σ0. In lightcone gauge,

x± =
x0 ± x10√

2
, (4.2)

with the gauge fixing γ0a = 0, (4.1) is equivalent to

S = ν

∫

d3σ

(

1

2
D0x

iD0x
jgij −

1

ν
D0x

i{xj , xk}bijk −
1

ν2
{xi, xj}{xk, xl}gikgjl

)

, (4.3)

where

D0x
i = ∂0x

i − {ω, xi} , (4.4)

i = 1, 2, · · · , 9. In temporal gauge, we have ω = 0 together with the constraint

{∂0xi, xi} = 0 . (4.5)

With x+ = σ0 ≡ t, the Hamiltonian is

H = ν

∫

d2σ

(

1

2
ẋiẋjgij +

1

ν2
{xi, xj}{xk, xl}gikgjl

)

, (4.6)

where ẋi = ∂tx
i = ∂0x

i. The conjugate momentum is

pi = gij ẋ
j − 1

ν
{xj , xk}bijk . (4.7)

The equation of motion is

ẍi =
4

ν2
{{xi, xj}, xj} . (4.8)

With the matrix regularization [10]

x(t, σ1, σ2) → X(t) , {f, g} → − iN

2
[F,G] ,

1

4π

∫

d2σ f =
1

N
trF , (4.9)

(4.3) with ω = 0 becomes

S = 4πκ

∫

dt tr

(

1

2
ẊiẊjgij +

i

2κ
Ẋi[Xj , Xk]bijk +

1

4κ2
[Xi, Xj ][Xk, X l]gikgjl

)

(4.10)

with the constraint

[Ẋi, Xi] = 0 , (4.11)

where ν/N = κ. (4.10) is the matrix theory action on the background gij and bijk with Xi

the N ×N matrix, N = ∞. The extension to the supersymmetric case is straightforward.

(4.10) is also the low energy effective action for N D0-branes.

When a particular transverse dimension xî is compactified to S1 with the radius Rî, Xi

for i = 1, 2, · · · , 9 should be replaced by the infinite block matrix Xi
mn with constraints [12]

Xi
mn = Xi

(m−1)(n−1) = Xi
m−n , i 6= î

X î
mn = X î

(m−1)(n−1) = X î
m−n , m 6= n (4.12)

X î
nn = 2πRî +X î

(n−1)(n−1) = 2nπRî +X î
0 .

– 7 –
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X î
mn can be explicitly written as



















. . . X î
1 X î

2 X î
3

. . .

X î
−1 X î

0 − 2πRî X î
1 X î

2 X î
3

X î
−2 X î

−1 X î
0 X î

1 X î
2

X î
−3 X î

−2 X î
−1 X î

0 + 2πRî X î
1

. . . X î
−3 X î

−2 X î
−1

. . .



















(4.13)

where X î
0 is the original X î, X î

m−n for m 6= n are winding modes. If there are n transverse

dimensions xî with î = 1, 2, · · · , n compactified to S1, we can make the replacement (4.12)

for n directions successively.

After a T-duality transformation, D0-brane with one transverse dimension compact-

ified with the radius Rî becomes D1-brane with one longitudinal dimension compactified

with the radius R̃î = α′/Rî = 1/(2πRî).

X î = i∂ î +Aî (4.14)

where

i∂ î = diag(· · · ,−4πRî,−2πRî, 0, 2πRî, 4πRî, · · · ). (4.15)

Aî
mn = Aî

m−n = X î
m−n (4.16)

are the momentum modes of the gauge field on the dual circle

Aî(x̃) =
∑

n

Aî
ne

inx̃/R̃î

. (4.17)

After the successive n times T duality transformations, D0 branes with n transverse dimen-

sion compactified to Rî becomes Dn branes with n longitudinal dimensions compactified to

R̃î, î = 1, · · · , n. (4.10) becomes (the bosonic part of) the action of the (n+1)-dimensional

SYM theory on the dual T̃n in temporal gauge with A0 = 0. The winding modes on Tn are

converted into the momentum modes of the gauge fields on the dual T̃n. In the following,

we will consider two particular situations with n = 3 and n = 4.

5 U-duality transformation of membrane on T 3
× R

In this case, xî with î = 1, 2, 3 are compactified to S1. {i} = {̂i}∪{̄i}, where ī = 4, 6, · · · , 10,
i = 1, · · · , 4, 6, · · · , 10.1 R is identified with the time direction t, which, together with xi,

composes the 10d spacetime. (gij , bijk) ≡ (gîĵ , gîj̄ , gīj̄ , bîĵk̂, bîĵk̄, bîj̄k̄, bīj̄k̄). After three T-

duality transformations, (4.10) becomes (the bosonic part of) the action of the N = 4 SYM

theory on the dual T̃ 3 in the temporal gauge with A0 = 0. Let I = 0, 1, 2, 3 and set the six

1Different from section 4, where i = 1, · · · , 9, in sections 5 and 6, we will assume i = 1, · · · , 4, 6, · · · , 10

for convenience.
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transverse scalar fields X ī = 0 for simplicity, equations of motion and the Bianchi identity

for the YM fields on T̃ 3 ×R are

DJF
IJ = 0 , (5.1)

ǫIJKLDJFKL = 0 . (5.2)

The original membrane configuration xî(t, σ1, σ2) corresponds to X î(t), which is the

zero mode Aî
0(t) of the YM fields on T̃ 3. For the zero mode,

F îĵ = −i[Aî, Aĵ ] = −i[X î, X ĵ ] , (5.3)

F î0 = Ȧî = Ẋ î . (5.4)

(5.1) and (5.2) reduce to

[Aî, Ȧ
î] = [Xî, Ẋ

î] = 0 , Äĵ + [Aî, [A
î, Aĵ ]] = Ẍ ĵ + [Xî, [X

î, X ĵ ]] = 0 , (5.5)

which is the equation of motion in matrix theory together with the Gauss constraint, or

equivalently, the equation of motion for membrane in lightcone gauge.

Wrapping number of the membrane is mapped as

W îĵ =
1

A

∫

d2σ {xî, xĵ} = −i tr[Aî, Aĵ ] = trF îĵ , (5.6)

while the momentum becomes

Pk̂ =
1

A

∫

d2σ

(

gk̂ĵ ẋ
ĵ − 1

ν
{xî, xĵ}bîĵk̂

)

= tr(gk̂ĵȦ
ĵ − i[Aî, Aĵ ]bîĵk̂) = tr(gk̂ĵF

ĵ0 − F îĵbîĵk̂) .

(5.7)

In (5.6) and (5.7), Aî is the 0-mode of the gauge field. If Aî is the N ×N matrix with N

finite, there will be W îĵ = 0. In matrix theory, the non-trivial wrapping number can be

produced due to N = ∞.

For the membrane configuration in Tn×R with the topology of T 2×R, one can make

a mode expansion

xî(t, σ1, σ2) = aîσ1 + bîσ2 + cît+
∞
∑

k1,k2=−∞

dî(k1,k2)(t)e
ik1σ1+ik2σ2 (5.8)

with aî and bî windings around σ1 and σ2 respectively, which are integers and thus must

be time independent. The wrapping number is calculated to be

W îĵ = aîbĵ − aĵbî , (5.9)

while the momentum is

Pk̂ = gk̂ĵc
ĵ − (aîbĵ − aĵbî)bîĵk̂ . (5.10)

(σ1, σ2) are also subject to a SL(2, Z) transformation, under which, W îĵ and Pk̂ are invari-

ant. With the replacement

σ1 → Y1 , σ2 → Y2 , eik
1σ1+ik2σ2 → Y (k1,k2) , (5.11)
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where Y1, Y2 and Y (k1,k2) are N ×N matrices with N = ∞ and [Y1, Y2] = iIN×N , we get

the matrix configuration

xî(t, σ1, σ2) → X î(t) = aîY1 + bîY2 + cît+
∞
∑

k1,k2=−∞

dî(k1,k2)(t)Y
(k1,k2) (5.12)

with wrapping taken into account.

N = 4 SYM theory is expected to have the SL(3, Z) × SL(2, Z) duality symmetry.

For Aî(xĵ) on T 3, the SL(3, Z) transformation acts on both the coordinate xĵ and the

index î. For the 0-mode Aî
0 = X î ∼ xî(σ1, σ2), SL(3, Z) only acts on the index and

thus will manifest as a global symmetry of the membrane worldvolume, i.e., xî(σ1, σ2) →
x′̂i(σ1, σ2) = Λi

jx
ĵ(σ1, σ2) for Λ ∈ SL(3, Z). Let us define

τ = b+ i|ĝ|1/2, (5.13)

where bîĵk̂ = ǫ̂iĵk̂b, ĝ = det gîĵ . Under the SL(2, Z) S-duality transformation, τ trans-

forms as

τ → aτ + b

cτ + d
ad− bc = 1, a, b, c, d ∈ Z. (5.14)

The SL(2, Z) transformation is generated by the T element

τ → τ + 1 (5.15)

and the S element

τ → −1

τ
. (5.16)

The T transformation makes FKL invariant, but the S transformation is quite nontrivial.

When N = 1, (5.1) and (5.2) become

∂JF
IJ = 0 , (5.17)

ǫIJKL∂JFKL = 0 . (5.18)

S transformation is simply

FIJ → −1

2
ǫIJKLF

KL . (5.19)

For N > 1, (5.1) and (5.2) are

∂JF
IJ − i[AJ , F

IJ ] = 0 , (5.20)

ǫIJKL∂JFKL − iǫIJKL[AJ , FKL] = 0 , (5.21)

for which (5.19) does not necessarily apply anymore.

Nevertheless, there are some special non-abelian field configurations with (5.19) valid.

One such example is when FIJ = F̃IJ = −ǫIJKLF
KL/2 and then AI = ÃI . Another

example is

Aî(t) = aîY1 + bîY2 + cît , (5.22)

– 10 –



J
H
E
P
0
8
(
2
0
1
6
)
1
3
8

which trivially satisfies the equations of motion.

F îĵ = (aîbĵ − aĵbî)IN×N , F 0̂i = cîIN×N . (5.23)

The S-dual gauge field can be taken to be

Ãî(t) = ãîY1 + b̃îY2 + c̃ît (5.24)

with

c̃î = −ǫ̂iĵk̂a
ĵbk̂ , ǫ̂iĵk̂ã

îb̃ĵ = ck̂ (5.25)

so that the field strength transforms as

F0̂i → −1

2
ǫ̂iĵk̂F

ĵk̂ ,
1

2
ǫîĵk̂Fîĵ → F k̂0 . (5.26)

(5.22) and (5.24) can be mapped into the membrane configuration

xî(t, σ1, σ2) = aîσ1 + bîσ2 + cît (5.27)

and its S-dual

x̃î(t, σ1, σ2) = ãîσ1 + b̃îσ2 + c̃ît . (5.28)

Both of them are 1/2 BPS configurations and the transformation law (5.25) can be verified

by considering the T-duality transformation of F1 in type IIA theory compactified on T 2.

As the third example, consider the gauge fields

A1(t) = c1t+ b1Y2 +
∞
∑

k2=−∞

dL1(0,k2)e
ik2(Y2+t) + dR1(0,k2)e

ik2(Y2−t) ,

A2(t) = c2t+ b2Y2 +
∞
∑

k2=−∞

dL2(0,k2)e
ik2(Y2+t) + dR2(0,k2)e

ik2(Y2−t) ,

A3(t) = Y1 , (5.29)

which is a solution for the equations of motion (5.5). The dual field (Ã1, Ã2, Ã3) can be

obtained via the replacement

b̃α = ǫαβcβ c̃α = ǫαβbβ d̃Lα(0,k2) = −ǫαβd
L
β(0,k2) d̃Rα(0,k2) = ǫαβd

R
β(0,k2) (5.30)

and is again a solution for the equations of motion, α, β = 1, 2. The hodge dual rela-

tion F̃IJ = −ǫIJKLF
KL/2 is satisfied. In fact, (5.29) can be mapped to the membrane

configuration

x1 = c1t+ b1σ2 +
∞
∑

k2=−∞

dL1(0,k2)e
ik2(σ2+t) + dR1(0,k2)e

ik2(σ2−t) ,

x2 = c2t+ b2σ2 +
∞
∑

k2=−∞

dL2(0,k2)e
ik2(σ2+t) + dR2(0,k2)e

ik2(σ2−t) ,

x3 = σ1 , (5.31)
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which is also the string in type IIA theory compactified on T 2 with x3 the M theory

direction. U-duality transformation (5.30) can be realized via two successive O(2, 2;Z) T

duality transformations together with a SL(2, Z) transformation on T 2.

For the generic on-shell non-abelian gauge field AI , the S-dual field strength cannot

satisfy F̃IJ = −ǫIJKLF
KL/2, since the related gauge field ÃI may not exist. The key point

for the S transformation is that the equations of motion for F IJ can be reinterpreted as

the integrable condition for the dual field strength F̃ IJ , and vice versa. Based on the loop

space formulation, [13, 14] give a prescription to get the S-dual for the generic non-abelian

gauge field. Consider the loops passing through a fixed reference point ξ0

C : {ξI(s) : s = 0 → 2π, ξ(0) = ξ(2π) = ξ0} . (5.32)

For each loop, one may define a path-ordered phase factors (Wilson loops)

Φ[ξ] = Ps exp ig

∫ 2π

0
dsAI(ξ(s))ξ̇

I(s) . (5.33)

The derivatives in loop space can be defined as

δI(s)Ψ[ξ] ≡ lim
∆→0

1

∆
{Ψ[ξ′]−Ψ[ξ]} , (5.34)

with

ξ′J(s′) = ξJ(s′) + ∆δJI δ(s− s′) . (5.35)

A new variable EI [ξ|s] can be introduced as follows

EI [ξ|s] = Φξ(s, 0)
i

g
Φ−1[ξ]δI(s)Φ[ξ]Φ

−1
ξ (s, 0) , (5.36)

where

Φξ(s2, s1) = Ps exp ig

∫ s2

s1

dsAI(ξ(s))ξ̇
I(s) . (5.37)

In order to guarantee the existence of AI(x), from which, EI [ξ|s] can be derived, EI [ξ|s]
should satisfy the integrable condition

δI(s)EJ [ξ|s]− δJ(s)EI [ξ|s] = 0 . (5.38)

Besides, to make AI(x) satisfy the Yang-Mills equation (5.1), EI [ξ|s] should also satisfy

δI(s)EI [ξ|s] = 0 . (5.39)

(5.38) and (5.39) are the integrable condition and the equation of motion for the loop space

variable EI [ξ|s]. The S-dual ẼI is defined as

ω−1(η(t))ẼI [η|t]ω(η(t)) = − 2

N̄
ǫIJKLη̇

J(t)

∫

δξds EK [ξ|s]ξ̇L(s)ξ̇−2(s)δ(ξ(s)− η(t)) ,

(5.40)

or more concretely,

ω−1(x)F̃IJ(x)ω(x) = − 2

N̄
ǫIJKL

∫

δξds EK [ξ|s]ξ̇L(s)ξ̇−2(s)δ(x− ξ(s)) . (5.41)
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As is required, the dual transformation is reversible apart from a sign, i.e., ˜̃E = −E. For

N = 1, (5.41) gives the abelian S-dual F̃IJ = −1
2ǫIJKLF

KL. From (5.40), one can prove

δI(s)EI [ξ|s] = 0 ⇔ δI(t)ẼJ [η|t]− δJ(t)ẼI [η|t] = 0 , (5.42)

δI(s)EJ [ξ|s]− δJ(s)EI [ξ|s] = 0 ⇔ δI(t)ẼI [η|t] = 0 , (5.43)

which is the non-abelian extension of

∂JF
IJ = 0 ⇔ ǫIJKL∂J F̃KL = 0 , (5.44)

ǫIJKL∂JFKL = 0 ⇔ ∂J F̃
IJ = 0 . (5.45)

Taking the trace on both sides of (5.41), we get

tr F̃IJ = −1

2
ǫIJKL trFKL . (5.46)

Thus, although the relation between FIJ and its S-dual F̃IJ may be complicated, their

traces respect the simple hodge dual relation. For the 0-mode, trF 0̂i and 1
2 ǫ̂iĵk̂ trF

ĵk̂ are

the membrane momentum and wrapping number respectively. If the original field A and

dual field Ã are both 0-modes, since

tr F̃0̂i = −1

2
ǫ̂iĵk̂ trF

ĵk̂ , −1

2
ǫîĵk̂ tr F̃ĵk̂ = trF 0̂i , (5.47)

S transformation exchanges the momentum and wrapping number as is required. On the

other hand, (5.47) does not hold without the trace, so S transformation does not exchange

the momentum density and winding number density.

N = 4 SYM theory can be taken as the 6d (2, 0) theory reduced along 4 and 5

directions. AI ≡ BI4, FIJ ≡ HIJ4. If we can find HIJ5 ≡ F̃IJ , then FIJ and F̃IJ form the

SL(2, Z) doublet for T 2 ∼ x4×x5. In the abelian case, the 3-form strength in the 6d (2, 0)

theory is constrained by the self-dual relation

Hαβγ =
1

6
ǫαβγµνλH

µνλ . (5.48)

HIJ5 = ǫIJ5KL4H
KL4/2, or equivalently, F̃IJ = −ǫIJKLF

KL/2. In the non-abelian case,

the loop space formulation may give the dual F̃IJ , which could be taken as HIJ5 in 6d.

In this sense, [13, 14] also give a generalization of the self-dual relation (5.48) to the non-

abelian case when the 6d theory is reduced on T 2.

It is the 0-mode AI(t) that is mapped to the membrane configuration. It remains to

see whether the SL(2, Z) × SL(3, Z) transformation for N = 4 SYM theory could map

AI(t) to A′

I(t) which is also constant in space. For the SL(3, Z) transformation, the answer

is obviously yes, but for the SL(2, Z) transformation, there are counter-examples in U(1)

case. Consider the on-shell gauge field

A0(t) = 0 , Aî(t) = Kît , (5.49)

Bî =
1

2
ǫ̂iĵk̂F

ĵk̂ = 0 , Eî = F0̂i = Kî . (5.50)
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The dual field strength is

Bî → Eî = Kî , Eî → −Bî = 0 , (5.51)

for which, the related Aî(x, t) cannot be constant in space. In fact, S-transformation in 6d

theory just makes

B4̂i(xk̂, t) → B5̂i(xk̂, t) , B5̂i(xk̂, t) → −B4̂i(xk̂, t) . (5.52)

B4̂i and B5̂i are not independent but are related via the self-duality relation. For B4̂i/B5̂i

that is constant in space, there is no reason to expect that B5̂i/B4̂i is also constant. Espe-

cially, in the U(1) case, the self-duality relation requires

H05̂i = ∂0B5̂i + ∂5Bî0 + ∂îB05 =
1

2
ǫ05̂iĵk̂4H

ĵk̂4 =
1

2
ǫ05̂iĵk̂4(∂ĵBk̂4 + ∂k̂B4ĵ + ∂4Bĵk̂) , (5.53)

so if B5̂i(t) is time-dependent, B4̂i must be space-dependent. In non-abelian case, we have

examples like (5.22) and (5.29), for which, B4̂i and B5̂i can both be constant in space,

but generically, it is still expected that the SL(2, Z) transformation do not always map

the 0-mode into the 0-mode. According to (5.41), starting from AI(t) that is constant

in space, FIJ together with F̃IJ are also constant. Nevertheless, there may not be the

constant ÃI with

F̃îĵ = −i[Ãî, Ãĵ ] , F̃0̂i =
˙̃Aî . (5.54)

Membrane on Tn contains more degrees of freedom than that in non-compact space,

coming from the winding modes on Tn. Without the winding modes included, the mem-

brane configuration corresponds to the constant gauge field of the SYM theory in T̃n. With

the winding degrees of freedom added, membrane is then related to the generic gauge field

in T̃n. When n = 3, there is a SL(2, Z) × SL(3, Z) transformation, mapping the given

AI(x, t) to A′

I(x, t). If the 0-mode subspace is invariant under the U-duality transforma-

tion, i.e. AI(t) → A′

I(t), there will be a well-defined U-duality transformation for membrane

without the need of involving the winding modes. However, this is not quite likely to be

the case and the U-duality transformation can only be complete with the winding modes

also taken into account.

Finally, let us consider the complete picture for membrane living in T 3×R8, which has

been discussed in [3, 15–17]. In this case, membrane is not topological and it was found

that only a two-dimensional Heisenberg subgroup of SL(2) could be realized [3, 16, 17].

In lightcone gauge, the worldvolume theory of membrane in T 3 ×R8 (with winding mode

added) is equivalent to N = 4 SYM theory in T̃ 3 × R6 × R, where the last R represents

the time dimension t. For simplicity, the nonvanishing background fields in T 3 × R8 are

taken to be (g+− = 1, gîĵ , gīj̄ , bîĵk̂, bîĵk̄, bîj̄k̄, bīj̄k̄), where î = 1, 2, 3, ī = 4, 6, 7, 8, 9, 10. All

background fields depend on the coordinates xī only. The nonvanishing dual background

on T̃ 3 ×R6 ×R is (gtt = −1, Φ̃ = −1
2 log |ĝ|, g̃îĵ , gīj̄ , b, bk̂k̄, bĵk̂j̄k̄, bîĵk̂īj̄k̄) with Φ̃ the dilaton.

Both the SL(2, Z)× SL(3, Z) U duality symmetry of the 11d supergravity on T 3 ×R8 and

the SL(2, Z)×SL(3, Z) duality of type IIB supergravity on T̃ 3×R6×R are well established.
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Moreover, D3 coupling with the type IIB supergravity is S duality invariant, so N = 4

SYM theory in type IIB background should also be SL(2, Z) invariant.

The situation becomes complicated since the background fields may have the de-

pendence on the six transverse coordinates xī, or in SYM theory, the six scalar fields

X ī. Multiple D branes in curved background was discussed in [18]. For the term like

Tr[gīj̄(X
k̄)(DîX īDîX

j̄)] with gīj̄ depending on xk̄, one can make a Taylor expansion

Tr[gīj̄(X
k̄)(DîX īDîX

j̄)] =
∞
∑

n=0

1

n!
∂k̄1 · · · ∂k̄ngīj̄(0)STr[D

îX īDîX
j̄X k̄1 · · ·X k̄n ] , (5.55)

giving rise to an infinite number of the higher dimensional operators in the Lagrangian. We

will not consider this generic situation here, since according to the counterexample given

in [3], even for the constant background, only a two-parameter subgroup of SL(2) can be

realized in T 3 ×R8.

We will focus on the simplest situation: N = 4 SYM theory in 10d flat spacetime

with the constant axion-dilaton field τ = b + ie−Φ̃. The remaining problem is to find a S

transformation for SYM fields, extending the S transformation (5.41) for YM fields. In [19],

with the 4d spacetime extended to the N = 1 superspace, the loop space formulation and

the S transformation for YM theory is extended to N = 1 SYM theory. The further

extension to the N = 4 supersymmetrty is straightforward. However, just as the YM case,

nothing could guarantee that the zero mode of the N = 4 SYM field would necessarily be

mapped into the zero mode under the S transformation. So the SL(2, Z) duality cannot

always be realized at the membrane worldvolume level, in agreement with [3, 16, 17].

Nevertheless, with the winding modes on T 3 taken into account, membrane worldvolume

theory on T 3 × R8 is equivalent to the N = 4 SYM theory on T̃ 3 × R7, for which, the

SL(2, Z)× SL(3, Z) symmetry is definite.

6 U-duality transformation for membrane on T 4
× R

The situation for membrane living in T 4×R, wrapping the 2-cycles in T 4 is similar. Let î =

1, 2, 3, 4 represent 4 directions in T 4, ī = 6, 7, · · · , 10 represent 5 uncompactified directions,

t ≡ x0 represent the time dimension. After four times of T-duality transformations, (4.10)

becomes (the bosonic part of) the N = 2 SYM theory on the dual T̃ 4 in temporal gauge

A0 = 0 with the Gauss constraint

DîF
î0 = 0 . (6.1)

The T 4 independent background fields are denoted as gîĵ and bîĵk̂, which will become g̃îĵ

and b̃î on the dual T̃ 4. g̃ = g−1, b̃î =
1
6gîĵǫ

ĵk̂l̂m̂bk̂l̂m̂. In type IIA theory, g̃îĵ and b̃î altogether

form a 5× 5 metric G̃ĩj̃ with the 5th direction the M theory dimension, ĩ = 1, 2, 3, 4, 5.

G̃ĩj̃ = φ−
2

3

(

g̃îĵ + φ2b̃îb̃ĵ φ2b̃î
φ2b̃ĵ φ2

)

. (6.2)

Under the SL(5, Z) transformation, G̃ĩj̃ transforms as G̃ → UG̃U−1, U ∈ SL(5, Z).

– 15 –



J
H
E
P
0
8
(
2
0
1
6
)
1
3
8

Let I = 0, 1, 2, 3, 4 and set X ī = 0 for simplicity, the equations of motion and the

Bianchi identity for YM field on T̃ 4 are

DJF
IJ = 0 , (6.3)

ǫIJKLMDKFLM = 0 . (6.4)

For 0-mode, (6.3) and (6.4) reduce to

[Aî, Ȧ
î] = [Xî, Ẋ

î] = 0 , Äĵ + [Aî, [A
î, Aĵ ]] = Ẍ ĵ + [Xî, [X

î, X ĵ ]] = 0 , (6.5)

which are the equations of motion in matrix theory together with the Gauss constraint, or

the equations of motion for membrane in lightcone gauge. Membrane wrapping number is

W îĵ = −i tr[Aî, Aĵ ] = trF îĵ , (6.6)

while the momentum is

Pk̂ = tr(gk̂ĵȦ
ĵ − i[Aî, Aĵ ]bîĵk̂) = tr(gk̂ĵF

ĵ0 − F îĵbîĵk̂) . (6.7)

The discussion is parallel to the T 3 situation. N = 2 SYM theory is the 6d (2, 0)

theory reduced along x5. For simplicity, let bîĵk̂ = 0, gk̂ĵ = δk̂ĵ . AI ≡ BI5, FIJ ≡ HIJ5.

H0̃ij̃ ≡ (H0̂i5, H0̂iĵ) forms a 5× 5 antisymmetric matrix. In the abelian case, according to

the self-duality relation (5.48), H0̂iĵ is determined from Hîĵ5 via H0̂iĵ = ǫ0̂iĵk̂l̂5H
k̂l̂5/2, or

equivalently,

H0̂iĵ ≡ F̃îĵ = ǫ̂iĵk̂l̂F
k̂l̂/2 . (6.8)

In the non-abelian case, H0̂iĵ and Hîĵ5 may still be related by some self-duality relation,

whose form is unknown at present. One possibility is that we can still use the prescription

in [13, 14] but with the indices restricted to the 4d space

ω−1(x)H0̂iĵω(x) ≡ ω−1(x)F̃îĵ(x)ω(x) =
2

N̄
ǫ̂iĵk̂l̂

∫

δξds Ek̂[ξ|s]ξ̇ l̂(s)ξ̇−2(s)δ(x− ξ(s)) .

(6.9)

(6.9) reduces to (6.8) in the abelian case as is required. Recall that (5.41) is supposed to

determine H5ij/H4ij from H4ij/H5ij when the 6d theory is translation invariant along x4
and x5, i = 0, 1, 2, 3. The similar relation (6.9) may be able to determine H0̂iĵ from H5̂iĵ

when the 6d theory is translation invariant along x0 and x5, î = 1, 2, 3, 4. So, (6.9) is valid

at least for the time-independent system. For the 0-mode, trH0̂i5 = Pî and trH îĵ5 = W îĵ

correspond to the membrane momentum and the wrapping number respectively. H0̂iĵ

determined from (6.9) satisfies the relation trH0̂iĵ = ǫ̂iĵk̂l̂ trH
k̂l̂5/2. So if (6.9) is valid,

trH0̃ij̃ ≡ (Pî, ǫ̂iĵk̂l̂W
k̂l̂/2) forms a 5× 5 antisymmetric matrix.

With H0̂iĵ = H0̂iĵ(H
k̂l̂5) obtained, SL(5, Z) transformation is realized as

H0̃ij̃(xk̃, t) → U l̃
ĩ
U m̃
j̃
H0l̃m̃(U ñ

k̃
xñ, t) . (6.10)
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However, for the 5d SYM theory, (6.10) is not well-defined due to a subtlety in x5 direction:

fields are translation invariant along x5 but not necessarily so in 1234 space. In fact, gauge

field configurations in N = 2 SYM theory are classified by the instanton number

n = −1

8

∫

d4x tr(ǫîĵk̂l̂FîĵFk̂l̂) . (6.11)

The momentum in the 5th direction is P5 = n/R. All fields are translation invariant

along x5 carrying the definite P5 momentum and then could not form the representation

of SL(5, Z) in the sense of (6.10). Nevertheless, SL(5, Z) symmetry may have the manifes-

tation at the quantum level. Partition function of the N = 2 SYM theory on T 4, with the

contribution from the instanton configurations included, may have the SL(5, Z) invariance,

although the explicit calculation is still lacking.

We are especially interested with the 0-mode AI(t) that could be mapped to the

membrane configuration. In this case, field strength FIJ ≡ HIJ5 is constant in space. It

is reasonable to expect that HIJK , which is determined by HIJ5, is constant as well. Also

suppose the instanton number n = 0, then (6.10) is well-defined and becomes

H0̃ij̃(t) → U l̃
ĩ
U m̃
j̃
H0l̃m̃(t) . (6.12)

However, the SL(5, Z) transformation does not always convert the 0-mode AI(t) to another

0-mode A′

I(t), which is already manifested in U(1) situation. Consider the on-shell gauge

field

A0(t) = 0 , Aî(t) = Kît (6.13)

with

H0̂i5(t) = Kî , H0̂iĵ(t) =
1

2
ǫ0̂iĵk̂l̂5H

k̂l̂5 = 0 . (6.14)

The SL(5, Z) transformed field strength (H ′

0̂i5
(t), H ′

0̂iĵ
(t)) may have H ′

0̂iĵ
(t) 6= 0, which,

cannot be obtained from the space independent A′

î
(t). Intuitively, the SL(5, Z) transfor-

mation on Bĩj̃ acts as

Bĩj̃(xk̃, t) → U l̃
ĩ
U m̃
j̃
Bl̃m̃(Un

k̃
xñ, t) . (6.15)

The components in Bĩj̃ are not independent but are related via the self-duality relation.

For BI5(t) ≡ AI(t) that is constant in space, BIJ is not guaranteed to be constant and

so, the SL(5, Z) transformation does not always map the 0-mode to 0-mode. Moreover,

the transformed A′

I(t) may even be x5-dependent, making the SL(5, Z) transformation

ill-defined. Nevertheless, for some special 0-mode configurations like (5.22) and (5.29),

SL(5, Z) transformation is well defined, making the 0-mode converted into the 0-mode and

M ∼ (Pî, ǫ̂iĵk̂l̂W
k̂l̂/2) transformed into UMU−1 for U ∈ SL(5, Z).

When mapped to the membrane, we may conclude that for the generic membrane

configuration, SL(5, Z) symmetry may only be realized at the quantum level with winding

modes on T 4 also taken into account.
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7 Conclusion

We have studied the U-duality transformation of membrane in Tn×R. In lightcone gauge,

membrane worldvolume theory is equivalent to the matrix theory, which, with the winding

modes on Tn taken into account, becomes (n + 1)-dimensional SYM theory. The original

membrane configuration is mapped to the 0-mode of the SYM field. When n = 3 and

n = 4, 4d SYM theory and 5d SYM theory are SL(2, Z)× SL(3, Z) and SL(5, Z) U-duality

symmetric. However, the U-duality transformation does not always bring the 0-mode into

0-mode, so the truncation to the 0-mode subspace is not valid. In membrane’s respect,

this means the duality transformation may convert the configuration without the winding

mode into the one with the winding mode. The SL(2, Z)× SL(3, Z) transformation in 4d

SYM theory can be realized classically, making the on-shell SYM fields transformed into

each other. On the other hand, the SL(5, Z) symmetry in 5d SYM theory may only be

realized at the quantum level.
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