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Abstract

Background: Centipedegrass extract (CGE) is mainly composed of maysin and its derivatives, which are recognized
internationally as natural compounds. Compared to other flavonoids, maysin has a unique structure in that
mannose is bound to the flavonoid backbone. CGE exhibits some biological properties in that it can function as an
anti-oxidant, anti-inflammatory, anti-adipogenic, and insecticidal. Whether CGE has other biological functions, such

as anti-cancer activity, is unknown.

increase in CGE-induced apoptosis.

Methods: B16F1 (mouse) and SKMEL-5 (human) cells were treated with CGE, and their subsequent survival was
determined using MTT assay. We performed a cell cycle analysis using propidium iodide (PI), and detected
apoptosis using double staining with annexin V-FITC/PI. In addition, we examined mitochondrial membrane
potentials using flow cytometry, as well as signaling mechanisms with an immunoblotting analysis.

Results: CGE inhibited skin cancer cell growth by arresting the cell cycle in the G,/M phase, and increased
both early and late apoptotic cell populations without affecting normal cells. Furthermore, we observed
mitochondrial transmembrane depolarization, increased cytochrome-c release, caspase-3 and caspase-7
activation, and increased poly ADP-ribose polymerase degradation. CGE also downregulated activation of
p-AKT, p-glycogen synthase kinase-3f3 (GSK-3(3), and p-BAD in a time-dependent manner. LY294002
inhibition of phosphoinositide 3-kinase (PI3K) significantly sensitized skin cancer cells, which led to an

Conclusions: CGE controlled skin cancer cell growth by inhibiting the PI3K/AKT/GSK-33 signaling pathway
and activating the effector caspases. This study is the first to demonstrate anti-cancer properties for CGE,
and that CGE may be an effective therapeutic agent for treating skin cancer.
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Background

Non-melanoma skin cancer has the highest incidence rate
among all cancers [1]. In the US alone, more than 1 mil-
lion cases are diagnosed every year, which is equivalent to
the incidence of malignancies in all other organs com-
bined [2]. The phosphoinositide 3-kinase (PI3K) pathway
is frequently targeted in the germ line for somatic muta-
tions in many human cancers. These findings, and the fact
that PI3K and other kinases in the PI3K pathway are
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highly suitable for pharmacological studies, make this
pathway one of the most attractive targets for therapeutic
intervention in cancer treatment [3]. The PI3K/AKT sig-
naling pathway participates in melanogenesis of B16 skin
cancer cells [4]. However, several downstream substrates
of the PI3K/AKT signaling pathway, such as glycogen syn-
thase kinase-3p (GSK-3p), BAD, and BAX, contribute to
chemotherapeutic resistance in cancer cells and regulated
apoptosis.

Interest in using naturally occurring compounds for me-
dicinal treatments is growing due to the adverse effects
that are sometimes associated with non-naturally occur-
ring medicines. Centipedegrass (Eremochloa ophiuroides
[Munro] Hack) is a grass that is native to China and
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Southeast Asia, and has become one of the most popular
lawn grasses in South America [5,6]. Previous analysis with
liquid chromatography-mass spectrometry has identified
maysin as a component of centipedegrass, in addition to
maysin derivatives such as luteolin, orientin, isoorientin,
rhamnosylisoorientin, derhamnoslymaysin, and luteoin-6-
C-boivinopyranose [7]. Centipedegrass extract (CGE) also
contains several C-glycosyl flavones and phenolic constitu-
ents. However, there is limited information on the bio-
logical function of CGE. For example, the methanolic
extract of centipedegrass leaves exhibits pancreatic lipase
inhibitory activity [7], and CGE exhibits anti-adipogenic ac-
tivity and can attenuate expression of adipogenesis-related
factors and lipid metabolic genes [8].

In the present study, we explored the anti-cancer activity
of CGEs by applying CGE to several cancer cell lines de-
rived from the breast, kidney, liver, prostate, and skin.
Among the cells analyzed, skin cancer cells showed a par-
ticularly strong response to CGE without affecting normal
cells, Detroit 551 (ATCC CCL-110) (Table 1). Therefore,
we further investigated the anti-cancer properties of CGE
in skin cancer cells. To better understand the mechanisms
that mediate CGE actions, we analyzed various signaling
pathways, particularly the PI3K/AKT/GSK-3f pathway.
Given that apoptosis is an intricate process, a detailed un-
derstanding of the molecular mechanisms involved in
CGE-induced apoptosis in skin cancer cells is a critical
step for using CGE in cancer therapy.

Methods

Preparation of the CGE

Centipedegrass seeds imported from Fukukaen Nursery
(Blu co. Ltd., Nagoya, Japan) were cultivated at the Korea
Atomic Energy Research Institute (KAERI, Jeongeup,
South Korea). The leaves of centipedegrass were harvested
in October 2011 and stored at —80°C until use. The dried
leaves of centipedegrass (5 kg) were ground in a Wiley mill
(Weiber, India) and passed through a 420-pum sieve. The
final ground sample (1 kg) was extracted three times with
80% methanol (MeOH, 100 L; Merck, Germany) for 24 h
with constant shaking at ambient temperature in the dark.

Table 1 The anti-proliferation effects of CGE extracts on
different cancer cell lines

Cell lines 1C50 (pg/ml)
Detroit 551 (Fibroblast cells) > 500
MCF-7 (Breast cancer cells) 824+32
HepG2 (Liver cancer cells) 746+56
LNCap (Prostate cancer cells) 954+ 3.1
293 T (Kidney cancer cells) 693+2.7

Cell viability was measured by MTT assay after CGE treatment. The half-
maximal inhibitory concentrations (ICso) were calculated using Sigma Plot 10.0
software (Systat Software Inc., San Jose, CA, USA) with the 4 parameters
logistic function standard curve analysis for dose response.
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The extracts were filtered using No. 2 filter paper (Advan-
tech, Japan) and concentrated in vacuo. The MeOH ex-
tracts were fractionated with n-hexane and ethyl acetate
(EA), successively. The EA extracts were concentrated in
vacuo and the dried compounds were dissolved in MeOH.
The active MeOH extracts were diluted in 20% MeOH
and chromatographed on a TOYOPEARL HW-40C resin
(TOSOH, Japan) column using 70% MeOH (elution vol-
ume, 700 mL). The fraction was evaporated and then
freeze-dried. Dried extracts were reconstituted in dimethyl
sulfoxide (DMSO) for cell treatment.

Chemicals and reagents

Thiazolyl blue tetrazolium blue (MTT), annexin V-FITC,
protease inhibitor cocktail, propidium iodide (PI), and
DMSO were purchased from Sigma (St. Louis, MO, USA).
Antibodies for p-PI3K, p-AKT (Ser 473), p-AKT (Thr
308), AKT, p-GSK-3B (Ser 9), GSK-3p, p-BAD (Ser 136),
BAD, procaspase-3, cleaved caspase-3, cytochrome-c, poly
ADP-ribose polymerase (PARP), GAPDH, horseradish per-
oxidase (HRP)-conjugated secondary antibody, and the
PI3K inhibitor LY294002 were obtained from Cell Signal-
ing Technology (Beverly, MA, USA). The general caspase
inhibitor Z-VAD-FMK was purchased from R&D Systems
(Minneapolis, MN, USA). All other chemicals used in this
study were obtained from Sigma.

Cell culture

B16F1 (ATCC CRL-6323), SKMEL-5 (ATCC HTB-70), and
Detroit 551 (ATCC CCL-110) lines were purchased from
American Type Culture Collection (Rockville, MD, USA).
Cell lines were cultured with either Dulbecco’s modified
eagle’s medium (DMEM) or Eagle’s minimum essential
medium (EMEM) for Detroit 551 supplemented with peni-
cillin (100 unitsmL™), streptomycin (100 pg-mL™), and
10% fetal bovine serum (FBS), and maintained in an incu-
bator with a humidified atmosphere of 95% air and 5%
CO, at 37°C.

Cell viability assay

Cell viability was measured using MTT. Cells were seeded
in 96-well plates (1 x 10* cells/well) and incubated over-
night. The cells were treated with CGE at the concentra-
tions indicated and incubated for 48 h. The cells were
then incubated with 0.5 mg-mL™" of MTT for 1 h at 37°C.
The blue MTT formazan crystals resulting from MTT re-
duction were then dissolved using acidified isopropanol
solubilization solution. The plates were left at room
temperature for 10 min on an orbital shaker to allow for
complete cell lysis. The absorbance at 570 nm was mea-
sured using a micro plate reader (Tecan, Switzerland).
The half-maximal inhibitory concentrations (ICsy) were
calculated using Sigma Plot 10.0 software (Systat Software
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Inc., San Jose, CA, USA) with a 4-parameter logistic func-
tion standard curve analysis for dose response.

Cell cycle analysis by flow cytometry

Skin cancer cells were seeded into 6-well plates at a density
of 0.5 x 10° cells/well. After 24 h, the cells were treated with
0, 25, 50, 75, and 100 pgmL™ of CGE for 48 h. The cells
were collected and washed with cold 1x PBS, and then fixed
in 70% cold ethanol overnight at 4°C. The fixed cells were
washed and resuspended in 1x PBS containing 100 pg-mL™
RNase A, incubated for 30 min at 37°C, and stained with PI
(20 pugmL™) for 15-20 min at room temperature in the
dark. The DNA content of the stained cells was analyzed
using a FC500 flow cytometer (Beckman-Coulter, Fullerton,
CA, USA). The data were analyzed using CXP analysis soft-
ware version 2.2 (Beckman-Coulter, Fullerton, CA, USA).

Apoptosis detection by annexin V/PI staining and TUNEL
staining

Apoptosis can be detected by translocation of phosphati-
dyl serine to the cell surface using an annexin V-FITC
antibody. Cells were seeded into 6-well plates (0.5 x 10°
cells/well), incubated overnight, treated with the indi-
cated concentrations of CGE, and then incubated again
for 48 h. To assess apoptosis, cells were washed twice
with ice-cold PBS (pH 7.4), resuspended in a binding
buffer (10 mM HEPES, pH 7.4, 140 mM NaCl, and
2.5 mM CaCl,), and incubated with annexin V-FITC for
10-15 min in the dark. PI was then added and the cells
were incubated again for 15 min in the dark. Annexin
V-FITC and PI fluorescence was monitored using an
FC500 flow cytometer. Ten thousand events were col-
lected per sample. Data were analyzed using CXP ana-
lysis software, and TUNEL method was applied with a
commercially available DeadEnd™ Fluorometric TUNEL
System (Promega Co., Madison, WI, USA) according to
the manufacture’s manual to explore the CGE effect on
skin cancer cells apoptosis. TUNEL positive cells were
identified with a fluorescence microscope.

Detection of mitochondrial transmembrane potential
Changes in the mitochondrial membrane potential were
determined using DiOCy (3). Cells were treated with
DMSO or with the indicated concentrations of CGE for
48 h. Cells were then harvested, washed twice in cold 1x
PBS, resuspended in 1x PBS supplemented with DiOCg
(3) (40 nM), incubated in the dark at 37°C in an incubator
with 5% CO, for 20 min, and then immediately analyzed
by flow cytometry.

Immunostaining for apoptotic proteins

CGE-treated cells were briefly washed with ice-cold 1x
PBS. Cell lysis was carried out using RIPA buffer (Cell
Signaling Technology, Beverly, MA, USA) with 1% (v/v)
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protease inhibitor, according to the manufacturer’s in-
structions. The protein concentrations of the supernatants
were measured using bicinchoninic acid assay (Pierce,
Rockford, IL, USA) with BSA as a standard. For the ana-
lysis of apoptotic proteins, equivalent amounts of protein
from various samples were subjected to electrophoresis
through 12% or 15% SDS-polyacrylamide gels, and subse-
quently transferred to polyvinyl difluoride (PVDF) mem-
branes. The PVDF membranes were blocked with 1x
Tris-buffered saline containing 0.1% Tween 20 and 5%
non-fat milk at room temperature for 1 h, and then incu-
bated overnight with the appropriate primary antibodies
at 4°C on a shaker. Incubation with a HRP-conjugated sec-
ondary antibody was followed by the detection of protein
expression using the ECL plus chemiluminescence kit
(Amersham Biosciences, Piscataway, NJ, USA).

Statistical analysis

The data are presented as mean + SD for the three ex-
periments performed in triplicate. Using Sigma Plot 10.0
software, we performed Student’s ¢-tests for the statis-
tical analyses, and * P<0.05, ** P<0.01, *** P<0.001
were considered statistically significant.

Results and discussion

CGE induced cytotoxicity through G,/M cell cycle arrest,
and both early and late apoptosis

CGE exhibits various biological functions [7]. The pres-
ence of the C-glycosidic flavonoid maysin and its deriva-
tives suggests that CGE also may contain anti-cancer
properties. We examined the anti-cancer activity of CGE
in B16F1 (mouse skin cancer cell line) and SKMEL-5
(human skin cancer cell line) cells treated with varying
concentrations of CGE for 48 h. We then determined the
cell viability using the MTT assay. As shown in Figure 1A,
CGE significantly suppressed cell proliferation in these
tumor cells in a dose-dependent manner. The human skin
cancer cell line (SKMEL-5) was more susceptible to CGE
than the mouse skin cancer cell line (B16F1). The ICs
values of CGE were 19.18 and 43.41 pgmL™" for SKMEL-
5, and B16F1 cells, respectively. However, the human nor-
mal fibroblast cells were not affected by CGE, suggesting
that CGE might break the cell signaling pathway related
with cancer cell proliferation.

To determine whether apoptosis mediated the growth
inhibition observed in skin cancer cells treated with CGE,
we performed an annexin V-FITC/PI double-staining ex-
periment. A considerable increase in apoptotic cells was
observed for B16F1 (78% + 8.0%) and SKMEL-5 (69.6% +
1.0%) cells treated with CGE (Figure 1B). Next, we per-
formed TUNEL staining to confirm the apoptotic cells
treated with CGE. CEG significantly increased TUNEL-
positive nuclei in the SKMEL-5 cells, which indicates CGE
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Figure 1 Centipedegrass extract (CGE) induced cytotoxicity through G,/M cell cycle arrest and both early and late apoptosis. (A) Cell
viability of B16F1 and SKMEL-5 skin cancer cells after CGE treatment by MTT assay. (B) Double staining with annexin V-FITC and propidium iodide
(Pl) demonstrated an increase in the percentage of apoptotic cells (early and late) when skin cancer cells (SKMEL-5) were treated with the
indicated doses of CGE for 48 h. (C) Flow cytometry analysis of cell cycle distribution in CGE-treated B16F1 and SKMEL-5 skin cancer cells. (D) Data
are presented as mean + SD for at least three independent experiments. * P < 0.05, ** P < 0.01, and *** P <0.001 compared with the control.

induced apoptosis in skin cancer cells (Additional file 1:
Figure S1).

Cell cycle checkpoints that temporarily arrest a spe-
cific cell cycle stage are important control mechanisms
as they allow the cell to correct possible defects. Many
anti-cancer agents halt cell cycles [9-12], which induces
apoptosis in cancer cells. To examine whether CGE-
induced growth inhibition is mediated by cell cycle ar-
rest, we assessed the cell cycle distribution of skin cancer
cells treated with CGE for 8, 24, or 48 h. As shown in
Figure 1C-D, both skin cancer cell lines showed a sig-
nificant and time-dependent G,/M stage arrest and a
sub-G; peak. A prominent population increase was ob-
served in B16F1 cells that was time dependent. After
48 h, the cell population increased by 56.7 +4.80% at
G,/M, and the sub-G; peak increased from 7.3 + 0.56%
to 11.5+0.49%. In the case of SKMEL-5 cells, 33.3 +
1.50% of the cell population was arrested at the G,/M
stage, and the sub-G; increased from 1.5 + 0.49% to 8.3 +
0.56% (Figure 1C-D).

CGE induced of cytochrome-c release, activated caspases,
and cleaved PARP

Apoptosis causes the mitochondrial membrane to break-
down and release cytochrome-c into the cytosol. Therefore,
we investigated whether CGE affected the mitochondrial
membrane by examining the mitochondrial membrane po-
tential. Specifically, we used the fluorescent dye DiOC6 in
CGE-treated cells to identify disruption of mitochondrial
membrane potential [3]. We observed decreased staining in
SKMEL-5 cells from 3.3 + 0.69% to 58.1 + 6.5%, which indi-
cated CGE decreased the mitochondrial membrane poten-
tial (Figure 2A-B). These findings strongly suggest that
CGE induced apoptosis in skin cancer cells that was ac-
companied by a breakdown in the mitochondrial mem-
brane potential.

To determine what role caspases play in CGE-induced
apoptosis, we pretreated cells with a pan-caspase inhi-
bitor (Z-VAD-FMK) with a concentration of 50 pM.
Treatment with Z-VAD-FMK resulted in considerable
rescue of skin cancer cells from CGE-induced apoptosis
at 48 h, as measured by annexin V-FITC/PI double staining
(Figure 2C). Blocking caspase activation by Z-VAD-FMK
significantly suppressed CGE-induced apoptosis.

Pro-apoptotic proteins, such as BAD and BAX, can trig-
ger the apoptotic cascade by forming pores in the mito-
chondrial membrane [13,14]. These membrane pores lead

to an increased cytosolic concentration of cytochrome-c,
which in turn activates effector caspases. Caspase-3 activa-
tion is responsible for cleaving most apoptotic substrates
such as poly-(ADP-ribose) polymerase (PARP) [15,16]. In
this study, we observed decreased levels of procaspase-3,
procaspase-7, and procaspase-9, but increased levels of
the cleaved active forms of caspase-3, caspase-7, and
caspase-9. CGE induced cleavage of PARP into 115- and
89-kDa fragments through caspase-3 activation, which
suggests CGE induces apoptosis by activating caspase-3.
In addition, we observed CGE upregulated BAX and
downregulated Bcl-2 (Figure 2D). Apoptosis increases the
permeability of the outer mitochondrial membrane and
cytochrome-c release, which leads to the subsequent acti-
vation of caspase-3 [17,18]. Accordingly, we analyzed the
level of cytochrome-c with immunoblotting, which re-
vealed increased cytosolic levels of cytochrome-c in CGE-
treated skin cancer cells (Figure 2E).

It was of note that Bcl-2 family of proteins has been
shown to play an important role in regulating epidermal
homeostasis in skin cancer cells [19]. As shown in
Additional file 2: Figure S2, CGE was not affected the
signaling pathway in normal fibroblast cells, indicating
that cancer cells were more susceptible than normal
cells to CGE.

CGE effect of on the PI3K/AKT/GSK-3f3 pathway

The PI3K/AKT/GSK-3p signaling pathway is important
for cell survival and apoptosis. AKT plays a crucial role
in tumorigenesis and tumor progression by promoting
cell proliferation and inhibiting apoptosis [20-22]. For
example, GSK-3f is phosphorylated by AKT and helps
regulate cell proliferation, cell cycle progression, and
anti-apoptotic pathways [23]. Another substrate, BAD, is
a pro-apoptotic member of the Bcl-2 protein family that
plays an important role in apoptosis. The balance be-
tween the pro-apoptotic (e.g., BAD and BAX) and anti-
apoptotic (e.g., Bcl-2 and Bcl-XL) members of the Bcl-2
family is critical for controlling mitochondria-induced
apoptosis [24]. Activated caspases also can serve as bio-
chemical markers for the apoptosis cascade reaction
[25,26]. Activated AKT functions to promote cell sur-
vival by suppressing apoptosis via subsequent modula-
tion of several target molecules that regulate apoptosis,
including BAD [27-29], GSK-3p [30], and BAX [31,32].
We therefore performed and immunoblotting analysis to
identify the mechanisms of CGE-induced apoptosis in
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Figure 2 CGE induced the release of cytochrome-c, activated caspases, and PARP. (A) SKMEL-5 cells were treated with the indicated
concentrations of CGE for 48 h, DIOC6 (3) staining was performed, and the mitochondrial membrane potential of the cells were analyzed by flow
cytometry. (B) Data are presented as mean + SD for at least three independent experiments. * P < 0.05 and *** P < 0.001 compared with the
control. (C) CGE inhibition caused cytotoxicity by z-VAD FMK, as demonstrated by double staining with annexin V-FITC and PI. (D) Skin cancer
cells were exposed to CGE (50 pg-mL™") for 8, 24, and 48 h. Cell lysates were prepared and assayed for BAX, Bcl-2, caspase-9, caspase-7, caspase-3,
poly-(ADP-ribose)-polymerase (PARP), and GAPDH protein levels. (E) B16F1 and SKMEL-5 cells were treated with 50 pg-mL’1 CGE for 8, 24, and

48 h. Equal amounts of protein from each sample were separated by SDS-PAGE and immunoblotted with cytochrome-c and GAPDH antibodies.

J

skin cancer cells. As shown in Figure 3A, skin cancer cells
treated with CGE (25-100 pg:mL™) for 48 h exhibited a
significant, dose-dependent decrease in AKT activation

compared with control cells. To examine

whether the

effect of CGE on skin cancer cells were time dependent,
we examined the phosphorylation levels of phosphorylated
PI3K, AKT (Ser 473), AKT (Thr 308), GSK-3p (Ser 9), and
BAD (Ser 136). The results of this analysis indicated
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Figure 3 Effect of CGE on the PI3K/AKT/ GSK-3B pathway. (A) CGE inhibited the constitutively active PI3K/AKT/glycogen synthase kinase-33
(GSK-3B) signaling pathway in skin cancer cell lines in a dose-dependent manner. B16F1 and SKMEL-5 cells were treated with CGE at the indicated
doses for 48 h. Equal amounts of protein from each sample were separated by SDS-PAGE and immunoblotted with p-AKT (Ser 473), AKT, and
GAPDH. (B) B16F1 and SKMEL-5 cells were treated with 50 ugmL’1 CGE for 8, 24, and 48 h. Proteins from each sample were separated by
SDS-PAGE and immunoblotted with p-PI3K, p-AKT (Thr 308), p-AKT (Ser 473), p-GSK-3[3 (Ser 9), GSK-3(3, p-BAD (Ser 136), BAD, and GAPDH.

reduced phosphorylation levels for PI3K, AKT (Ser Combined treatment with CGE and LY294002 induced a
473), AKT (Thr 308), GSK-3p (Ser 9), and BAD (Ser  spontaneous apoptosis rate

136). These decreases were accompanied by downregu- CGE induced apoptosis in skin cancer cells by inhibiting
lation of AKT and upregulation of both GSK-3f and the PI3K/AKT/GSK-3f pathway. Therefore, we attempted
BAD (Figure 3B), thus indicating CGE inhibited AKT  to identify PI3K contributions to CGE-induced apoptosis
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Figure 4 Apoptosis induced by the combined treatment of CGE with the PI3K inhibitor LY294002. (A) Flow cytometry analysis was used
to detect the cell cycle distribution of CGE-treated skin cancer cells for 48 h in the presence or absence of LY294002 (PI3K inhibitor). (B) The
protein levels of p-PI3K, p-AKT, p-GSK-3f3, AKT, and GAPDH were examined in cells with or without CGE and LY294002 treatment. (C) Flow
cytometry analysis of annexin V-FITC and Pl double-stained cells. Data are presented as mean + SD values for at least three independent
experiments. *** P < 0.001 compared with the control.
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specific inhibitor LY294002. As shown in the example pre-
sented in Figure 4A, the sub-G; peak increased from 8.2%
to 12.7% with CGE treatment alone, and was further in-
creased to 26.5% after the combined CGE and LY294002
treatment. According to the western blot analysis, we
observed a significant decrease in p-PI3K, p-AKT, and p-
GSK-3f expression with combined CGE and LY294002
treatment, as compared with CGE only-treated cells
(Figure 4B). However, the total AKT level was unaffected,
indicating that PI3K acts as an upstream factor in CGE-
induced cellular pro-apoptotic signaling. To further deter-
mine the role of PI3K in CGE-induced skin cancer cell
apoptosis, cells were also treated with LY294002 at a con-
centration of 50 pM. Treatment with CGE alone for 48 h
resulted in an increase of apoptotic cells from 1.7% + 1.0%
to 69.6% + 2.03%, whereas combined CGE and LY294002
treatment for 48 h increased the apoptotic cells from
1.7% + 1.0% to 97.7% + 2.0% (Figure 4C). These results in-
dicate the PI3K inhibitor LY294002 significantly increased
CGE-induced apoptosis by decreasing p-PI3K, p-AKT,
and p-GSk-3p.

Conclusions

In the present study, we demonstrate that CGE can affect
apoptosis-associated factors in skin cancer cells. In par-
ticular, CGE-induced apoptosis was caspase dependent,
and CGE downregulated p-AKT, p-GSK-3f, and p-BAD
activation in a time-dependent manner without affecting
normal cells. LY294002 inhibition of PI3K significantly
sensitized skin cancer cells, and led to an enhanced CGE-
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induced apoptosis (Figure 5). These findings strongly sug-
gest that CGE might serve as a chemo-preventive agent
against skin cancer. The LC-MS/MS analysis showed that
about 20% was chlorogenic acid and more than 70% of the
partially purified CGE extract was maysin and its deriva-
tives, which were the major active compounds, contains a
mannose bound flavonoid backbone that may be easily
absorbed in the body. Given this structural feature, maysin
might contribute new insights into the treatment and/or
preventive measures against cancer using natural com-
pounds. Future studies should continue to investigate the
pharmacological properties of CGE and assess its effect-
iveness as an anti-cancer agent.

Additional files

Additional file 1: Figure S1. TUNEL staining of SKMEL-5 skin cancer
cells. Cells were treated with 50 ug-mL™" CGE for 24 h and double
staining with TUNEL and DAPI demonstrated an increase in the apoptotic
cells population.

Additional file 2: Figure S2. Effect of CGE on the apoptosis pathway.
Cells were treated with 50 ug-mL"' CGE for 24 h. Equal amounts of
protein from each sample were separated by SDS-PAGE and
immunoblotted.
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