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Abstract

Background: Liver fibrosis is caused by chemicals or viral infection. The progression of liver fibrosis results in
hepatocellular carcinogenesis in later stages. Recent studies have revealed the importance of DNA
hypermethylation in the progression of liver fibrosis to hepatocellular carcinoma (HCC). However, the importance
of DNA methylation in the early-stage liver fibrosis remains unclear.

Methods: To address this issue, we used a pathological mouse model of early-stage liver fibrosis that was induced
by treatment with carbon tetrachloride (CCl4) for 2 weeks and performed a genome-wide analysis of DNA
methylation status. This global analysis of DNA methylation was performed using a combination of methyl-binding
protein (MBP)-based high throughput sequencing (MBP-seq) and bioinformatic tools, IPA and Oncomine. To
confirm functional aspect of MBP-seq data, we complementary used biochemical methods, such as bisulfite
modification and in-vitro-methylation assays.

Results: The genome-wide analysis revealed that DNA methylation status was reduced throughout the genome
because of CCl4 treatment in the early-stage liver fibrosis. Bioinformatic and biochemical analyses revealed that a
gene associated with fibrosis, secreted phosphoprotein 1 (Spp1), which induces inflammation, was hypomethylated
and its expression was up-regulated. These results suggest that DNA hypomethylation of the genes responsible for
fibrosis may precede the onset of liver fibrosis. Moreover, Spp1 is also known to enhance tumor development.
Using the web-based database, we revealed that Spp1 expression is increased in HCC.

Conclusions: Our study suggests that hypomethylation is crucial for the onset of and in the progression of liver
fibrosis to HCC. The elucidation of this change in methylation status from the onset of fibrosis and subsequent
progression to HCC may lead to a new clinical diagnosis.

Background
Fibrosis is one of the most severe systemic diseases and
is characterized by excessive accumulation of fibrous
connective tissues, such as collagen, induced by acute or
chronic injury [1]. Fibroproliferative diseases occur
throughout the body, including in the lungs, kidneys,
and liver. The progression of fibrosis leads to the failure
of the physiological functions of tissues. Liver fibrosis, in
particular, has been extensively investigated because its
progression results in hepatocellular carcinoma (HCC),
which is the fifth most common cancer worldwide [2,3].

Currently, liver fibrosis is known to be a part of the
dynamic process of continuous extracellular matrix
(ECM) remodeling in chronic liver injury [4]. In liver
fibrosis, a liver injury activates the Kupffer cells–resident
macrophages of the liver sinusoids–thereby inducing
inflammation [5]. This inflammatory response triggers
the activation of hepatic stellate cells (HSCs), which play
a key role in fibrogenesis by transdifferentiating into
myofibroblasts [1]. The proliferation of myofibroblasts
and stimulation of ECM synthesis, ultimately results in
liver fibrosis.
Recently, the progression of liver fibrosis has been

reported to be associated with hypermethylation of
DNA [6]. HSC activation is inhibited by 5’-Azacytidine
(5’-Aza), a DNA methylation inhibitor, resulting in the
transdifferentiation of HSCs to myofibroblasts [7].
Furthermore, in other tissues such as renal, several
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studies using heterozygous mice revealed that the DNA
methyltransferase Dnmt1 and its inhibitor 5’-aza amelio-
rate renal fibrosis by inhibiting proliferation of myofi-
broblasts [8,9]. These results indicate the pivotal role of
DNA hypermethylation in the progression of both liver
and renal fibrosis. However, the importance of DNA
methylation in early-stage liver fibrosis remains unclear.
Here, we performed a global analysis of DNA methy-

lation during the onset of liver fibrosis. A mouse model
treated with carbon tetrachloride (CCl4) was used as a
model of liver fibrosis. Analysis of the CCl4-treated
mouse livers revealed symptoms of early-stage liver
fibrosis. To analyze the genome-wide DNA methylation
profile of this CCl4-induced early-stage liver fibrosis, we
used a combination of methyl-binding protein (MBP)-
based precipitation (MBP-IP) and high-throughput DNA
sequencing (MBP-seq). This genome-wide analysis can
reveal hypo- and hypermethylated sites (125 and 88,
respectively) in the genomic DNA. Analyzing the MBP-
seq data, we revealed that the DNA methylation status
was reduced throughout the genome, and that the
enhancer of secreted phosphoprotein 1 (Spp1), also
known as osteopontin, was hypomethylated. Two bioin-
formatics tools, IPA and Oncomine, indicated that Spp1
is related to liver fibrosis and inflammation. Using bio-
chemical methods, such as bisulfite modification and in-
vitro-methylation assays, we confirmed that the hypo-
methylation of Spp1 enhancer up-regulates its mRNA.
These results clearly indicate that hypomethylation of
the genome may precede the onset of liver fibrosis.
Moreover, Spp1 enhances tumor development. This sug-
gests that hypomethylation during the early-stage liver
fibrosis may be important in the development of the pri-
mary liver cancer HCC, which is an end-stage liver
disease.

Methods
Animal models
Five-week-old male C57BL/6 wild-type mice were pur-
chased from CLEA Japan Inc. To induce liver fibrosis, 2
ml/kg CCl4 mixed with olive oil was intraperitoneally
administered 3 times per week for 2 weeks. All animal
husbandry and animal experiments were performed in
accordance with the guidelines of the University of Tsu-
kuba’s Regulation of Animal Experiments Committee.
Enzymatic activities of the serum proteins, alanine ami-
notranferease (Alt) and aspartate aminotransferase (Ast),
were measured using the Fuji dri-chem 3000 analyzer
(Fuji Film).

Cell culture
Mouse liver cell line, Hepa1-6 cells were maintained in
Dulbecco’s modified Eagle’s medium supplemented with
10% fetal bovine serum (FBS). Buffalo Rat liver cell line,

BRL-3 A were maintained in Ham’s F12 medium with
10% FBS. 3uM of the 5-Aza deoxy derivative, 5-dAza-C,
were treated with BRL-3 A for 36hr, and then harvested
for indicated experiments.

Histopathological examination
After 2 weeks with or without CCl4 treatment, liver tis-
sues were fixed with formalin. Formalin-paraffin livers
were cut into 5 μm thick. Hematoxylin and Eosin
(H&E) staining, Masson’s trichrome (MT) staining and
Sirius red staining were performed according to the
manufacturer’s protocol.

Methyl-binding protein (MBP)-based high throughput
sequencing (MBP-seq)
The genomic DNA from each of 4 mouse livers treated
with 2 ml/kg CCl4 for 2 weeks were pooled. The geno-
mic DNA from 3 mouse livers treated with olive oil for
2 weeks was pooled and used as control. The genomic
DNA purified from the CCl4-treated mouse liver speci-
mens was randomly fragmented into 50-350 bp lengths
as described in the SOLiD 5500xl fragment library pro-
tocol. The fragmented DNA was then subjected to the
MethylMiner methylated DNA enrichment kit according
to the manufacturer’s protocol. These methylated frag-
ments were eluted with 1000 mM NaCl and used to
construct standard fragment libraries using a combina-
tion of adaptor ligation and nick translation (SOLiD
Fragment Library Construction Kit, Invitrogen). Each
DNA library was selected on the basis of size (inserts
were approximately 500 bp) by AgencourtAMPure XP
(Beckman) before PCR amplification, bead attachment,
and emulsion PCR. Libraries were sequenced on a
SOLiD 5500xl Analyzer (Applied Biosystems). The
resulting tag sequences and quality files were mapped
onto the mouse genome (NCBI Build 37, UCSC mm9)
using Lifescope version 2.0 (Life Technologies), and
peaks were detected using the Genomics Workbench
version 4.7.2 (CLC Bio). Parameters for peak mapping
and detection are described for details below. Gene
annotation of sequence peaks was performed through
the BioMart website version 0.7 (http://www.biomart.
org). The chromosomal distribution of the MBP-seq
peaks was described using R version 1.4 (http://www.r-
project.org). UCSC Genome Browser (http://genome.
ucsc.edu) [10] was used to obtain data on the epigenetic
markers and to display epigenetic features around the
target genome locus.

In silico functional analysis and network prediction by
ingenuity pathway analysis (IPA)
The bioinformatics tool IPA version 1.0 (http://www.
ingenuity.com) was used for in silico analysis of the
MBP-seq data in the context of known functions and
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pathways using the Ingenuity Pathways Knowledge Base
as a reference set, filtering for molecules and relation-
ships associated with physiological and pathological pro-
cesses of the liver. For the in silico functional analysis, a
right-tailed Fisher’s exact test was used to calculate the
p-value determining the probability that the hepatotoxic
function assigned to that data set was owing to chance
alone.

Oncomine data analysis
The web-based human cancer microarray database
Oncomine (https://www.oncomine.com) was used to
analyze the mRNA expression of target genes associated
with HCC identified in three studies [11-13]. Details of
standardized normalization techniques and statistical cal-
culations can be found on the Oncomine website
(https://www.oncomine.com) [14]. In brief, Student’s t-
test was performed to generate a p-value indicative of the
significance of an observation. The lower the p-value, the
more confidence in the difference between the groups.
The Student’s t-test statistic provided for the Oncomine
visualizations reflects the magnitude of the difference
between groups. Fold change is the magnitude of differ-
ence between the primary class and the other control
classes, shown on a linear scale. An over-expression fold
change is designated with a positive number.

MBP-based precipitation and quantitative PCR (qPCR) of
methylated DNA using MBD-IP
The purified genomic DNA from the mouse livers was
randomly fragmented into 50-350 bp lengths as described
in the SOLiD 5500xl fragment library protocol. The frag-
mented DNA was then subjected to the MethylMiner
methylated DNA enrichment kit, according to the manu-
facturer’s protocol (Invitrogen). qPCR was then per-
formed to amplify and quantify fragments representative
of the methylated genome using the Thermal Cycle Dice
TP800 (TaKaRa) and SYBR Premix Ex Taq (TaKaRa).
The primer sequences and genome locus used for MBP-
IP are summarized in Additional file 1.

Quantitative PCR (qPCR)
qPCR was performed as described previously [15]. Tis-
sues were homogenized in 1 ml of Sepazol and total
RNA was extracted according to the manufacturer’s
instructions (Nacalai Tesque). cDNA was synthesized
from total RNA using RevatraAce reverse transcriptase
(TOYOBO) and oligodT primer. qPCR was performed
to amplify and quantify fragments representative of the
indicated mRNA expression using a Thermal Cycle Dice
TP800 (TaKaRa) and SYBR Premix Ex Taq (TaKaRa).
Cyclophilin and Gapdh was used as the normalization
control (Additional file 2). The primer sequences for
qPCR are summarized in Additional file 1.

In-vitro-methylation assay
The DNA fragments encoding Spp1 enhancer region
(chr5:104846058-104846328) was amplified by PCR. The
Spp1 enhancer fragment was methylated by the DNA
methylase Sss1 (2U enzyme/10ug DNA), and then
cloned into a pGL3-basic reporter plasmid. Each plas-
mid harboring methylated or unmethylated fragment
was directly transfected into Hepa1-6 cells by Lipofecta-
mine 2000 (Invitrogen), according to the manufacturer’s
instruction. Twenty-four hours after transfection, luci-
ferase assays were performed by Dual-Luciferase Repor-
ter 1000 Assay System (Promega), according to the
manufacturer’s instruction. phRG-TK (Promega) was
used as a reference plasmid to normalize transfection
efficiency.

Bisulfite modification assay
The purified genomic DNA from the mouse livers were
denatured in 0.3M NaOH for 20min at 37°C. Then 3.6N
sodium bisulfite and 10mM hydroquinone solution were
added. Samples were incubated in 1min at 95°C then
12hr at 50°C. Salts were removed using the Wizard
DNA Clean-Up System (Promega) and desulfonated in
0.3M NaOH at room temperature for 5 min. Then, the
Spp1 enhancer region was amplified by PCR and cloned
into pGEM-T Easy Vector System (Promega). The
inserts were sequenced to identify the methylated and
unmethylated sites. The primer sequences used for
amplification are summarized in Additional file 1.

Data access
Sequence data of CCl4-treated and control samples from
this study has been deposited to the NCBI Sequence
Read Archive (http://www.ncbi.nlm.nih.gov/sra) under
accession no. SRA048978 and SRA048984, respectively.

Results
Mouse model of CCl4-induced early-stage liver fibrosis
To develop early-stage liver fibrosis, mice were adminis-
tered 2 ml/kg CCl4 for 2 weeks (see Methods for
details). To determine whether this treatment induced
liver fibrosis, we used blood samples to investigate two
enzymatic activities of well-known fibrosis-indicative
serum parameters–Alt and Ast. We found that CCl4
treatment increased enzymatic activities of both Alt and
Ast (Figure 1A). Furthermore, we found that well-
known fibrotic markers, such as aSma, Col1a2, and
Timp1, were up-regulated in the CCl4-treated livers
(Figure 1B). To confirm histopathological change in the
livers following CCl4 treatment, we used MT and Sirius-
red staining, which are commonly used to detect col-
lagen accumulation in liver tissue. Although MT stain-
ing did not reveal histological changes, Sirius-red
staining revealed an increased distribution of collagen
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Figure 1 Validation of a mouse model of CCl4-induced early-stage liver fibrosis. (A) The effect of CCl4 treatment on enzymatic activities of
serum Alt and Ast. The vertical axis represents each enzymatic activity (U/I) plus the standard deviation (**p-value < 0.01, n = 3-4). (B) The effect
of CCl4 treatment on mRNA levels of collagen-related genes. mRNA levels of ECM-related genes, such as aSma, Col1a2, and Timp1, were
determined by qPCR. Cyclophilin was used as the normalization control. The vertical axes represent the relative mRNA quantity plus the standard
deviation (**p-value < 0.01, n = 3-4). (C) Histological changes induced by CCl4 in mouse livers. Paraffin-fixed liver section stained with H&E, MT,
and Sirius-red (original magnification ×400).
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(Figure 1C). Given that MT staining is known to detect
continuous ECM whereas Sirius-red staining specifically
detects collagen [16], these results suggest that 2 weeks
of CCl4 treatment induces fiber production, but not
fibroblast growth. This suggests that treatment with
CCl4 induced the development of early-stage liver
fibrosis.

Genome-wide DNA methylation profile of the CCl4-
treated livers
To investigate the effect of CCl4 treatment on DNA
methylation status in early-stage liver fibrosis, we
attempted to profile the genome-wide DNA methylation
of the CCl4-treated liver tissues. The genomic DNA was
fragmented, and the methylated DNA fragment was pre-
cipitated by MBP. The methylated DNA fraction was
then subjected to high-throughput sequencing using a
SOLiD 5500xl. These sequence reads were then mapped
onto the mouse genome (NCBI37/mm9) using the
MethylMiner methylated DNA enrichment kit and Life-
scope. We obtained 7,612,236 reads from the CCl4 sam-
ple, and 24,584,122 reads from the control [17]. To find
the significant peak, these data were further analyzed
using the ChIP-seq tool in Genomics Workbench with
the mouse genome annotated using the BioMart web-
site. The peak-finding algorithm included the following
four steps: 1) Calculate the null distribution of the back-
ground sequencing signal; 2) Scan the mappings to iden-
tify candidate peaks with a higher read count than
expected from the null distribution; 3) Merge overlap-
ping candidate peaks; 4) Refine the set of candidate
peaks based on the count and the spatial distribution of
forward and backward reads within the peaks. The esti-
mate for the null distribution of coverage and the calcu-
lation of the false discovery rate (FDR) were based on
the window size and maximum FDR (%) parameters.
The window size specifies the width of the window that
is used to count reads during estimation of the null dis-
tribution as well as during subsequent scanning for can-
didate peaks. Maximum FDR indicates the maximum
proportion of false positive peaks that are acceptable
among the called peaks. In this study, when only MBP
samples were used, each negative binomial distribution
was fitted to the counts from the low coverage regions.
This distribution was used as the null distribution to
obtain the number of windows with a particular count
of reads expected in the absence of significant binding.
By comparing the number of windows with the specific
count we expected to observe under the null distribu-
tion and the number we actually observed in our data,
we can calculate FDR for a given read count and win-
dow size as the “fraction of windows with a read count
expected under the null distribution/fraction of windows
with the observed read count”. In this study, we set

window size and FDR to 300 bp and 1%, respectively.
We identified 125 and 88 peaks in the CCl4-treated and
control samples, and summarized all peaks with CpG
annotation and several statistic values, including FDR,
normalized difference, and Wilcoxon filter p-value, in
Additional file 3.

Chromosomal distribution and genomic features of the
MBP-seq peaks
The pie chart in Figure 2A indicates the methylated
sites in each genomic element, such as the transcription
regulatory region including the promoter and the 3’
flanking region, the gene body including the exon and
intron, and the intergenic region (See Figure 2A legend
for detail definition of these terms). Methylated sites in
the gene body, the transcription regulatory region, and
the intergenic region, were assigned (23.0/12.0%, 10.2/
9.0%, and 66.0/79.0% in CCl4-treated/control samples,
respectively) (Figure 2A). We found that almost methy-
lated sites are specific to each sample (Additional file 3).
Therefore, we considered CCl4-specific and control-spe-
cific methylated sites as CCl4-induced “hyper” and
“hypo"methylation sites, respectively. The chromosomal
distribution of the MBP peaks revealed that the number
of control-specific methylation peaks was greater than
that of CCl4-specific peaks in most chromosomes (Fig-
ure 2B-D). These results indicate that the onset of CCl4-
induced early-stage liver fibrosis might be associated
with global hypomethylation.

In silico functional analysis of genes annotated by MBD-
seq
Then, the functions of the genes with methylated sites,
which are assigned to the gene body and the transcrip-
tion regulatory region, are classified using in silico analy-
sis software, IPA (See for details Methods for IPA
analysis, and Discussion for the functional aspect of
methylated sites within intergenic region). We found
that cirrhosis, fibrosis, and HCC were identified only in
the control sample (Figure 3A). Previous studies have
indicated that the progression of liver fibrosis leads to
cirrhosis and eventually to HCC, a primary hepatic can-
cer [18]. Furthermore, it has been known that aberrant
regulation of gene expression is at the basis of many dis-
eases, such as cancer [19]. These results suggest that
aberrant DNA methylation causes dysfunction of gene
transcription and may affect the onset of fibrosis and its
progression to post-fibrotic diseases.
Using IPA, we then re-analyzed the annotated genes

in the promoters, which is important for gene transcrip-
tion. Intriguingly, liver fibrosis was detected as the pre-
dominant hepatotoxic function in the control sample (p-
value = 1.06 × 10-3-6.37 × 10-3) (Figure 3B). Moreover,
none of the liver diseases detected in control samples
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were detected in the CCl4-treated samples. IPA re-analy-
sis revealed that this fibrotic function in the control
sample was associated with one gene–Spp1.
In IPA, the p-value is calculated using a right-tailed

Fisher’s exact test to assess the probability that the asso-
ciation between the focal molecules in the experiment
and a given function is owing to random chance. Smal-
ler the p-value, lesser is the probability of random asso-
ciation. In general, p-values < 0.05 indicate a statistically
significant, nonrandom association. Therefore, these
results suggest that CCl4-induced hypomethylation of a
regulatory region, such as the promoter or enhancer of
Spp1, may result in the onset of liver fibrosis and its
progression to post-fibrotic diseases such as cirrhosis
and HCC through an increase in Spp1 expression.

Epigenetic features and functional validations of the
hypomethylated region upstream of Spp1
The hypomethylation peak was located approximately 18
kbp upstream of the transcription start site (TSS) of
Spp1 (Figure 4A, red). We placed this MBP-seq peak
into the UCSC genome browser and found that the
hypomethylation site upstream of Spp1 has several chro-
matin features identified from studies by other groups,
including: 1) mono- and trimethylation of histone 3
lysine 4 in the liver (H3K4 me1 and H3K4 me3) (Figure
4A, orange) [20]; 2) the binding of RNA polymerase II
and related acetyltransferace p300 in the liver and in the
MEL leukemia cell line (Figure 4A, light blue) [21]; and
3) it is a DNase I hotspot in the liver (Figure 4A, green)
[22]. Previous studies have demonstrated that these epi-
genetic features are observed in the enhancer region
[20,23-25], and that hypomethylation of an enhancer
predominantly induces mRNA expression [26-28]. Thus,
these epigenetic annotations lead to the hypothesis that
this hypomethylated site may function as an enhancer
that regulates Spp1 expression.
To confirm this hypothesis, we performed biochemical

assays. Considering with the technical limitation of
MBD-IP assay, a bisulfite modification assay was carried
out to verify at a single-locus-based resolution (See
Methods for details). Complementary using these assays,
we confirmed that the site annotated by the sequence
database was actually hypomethylated by CCl4 treatment
(Figure 4B and 4C). We then examined whether the
methylation on the upstream of Spp1 TSS will affect
transcriptional activity. Luciferase assay were performed
using in vitro methylated upstream of Spp1 TSS. This
in-vitro-methylation assay revealed that methylation on
upstream of Spp1 TSS down-regulated its mRNA levels
(Figure 5A). We then performed a qPCR assay and
revealed that Spp1 expression was increased by treat-
ment with CCl4 (Figure 5B) and 5-dAza-C (Figure 5C),
both of which induce hypomethylation upstream of

Spp1 TSS. These results allow us to conclude that the
upstream of Spp1 TSS functions as enhancer of Spp1.
These results suggest that CCl4 treatment might up-reg-
ulate Spp1 expression in early-stage liver fibrosis
through hypomethylation of the Spp1 enhancer.

Functional significance of Spp1 in HCC
In silico analysis and functional validation of hypo-
methylation suggest that Spp1 expression might cause
fibrosis-induced liver diseases, such as those shown in
Figures 3A and 3B; this hypothesis is in agreement with
previous studies [29]. Thus, to obtain functional insight
into Spp1 in the end-stage liver disease HCC, we ana-
lyzed the mRNA level using the human cancer microar-
ray database Oncomine. Analysis of studies by Mas et
al. [11] , Chen et al. [12] , and Wurmbach et al. [13]
revealed that Spp1 expression was higher in HCC than
in normal liver tissues (Figure 6), suggesting that Spp1
might play a crucial role in HCC development as well as
in the onset of fibrosis.

Discussion
The DNA methylation status of well-known genes asso-
ciated with fibrosis progression, such as Rasal1, Fli1, and
Thy1, has been reported to increase along with fibrosis
progression, which induces proliferation of fibroblasts
and the production of collagen [9,30,31]. Furthermore,
5’-Aza, an inhibitor of DNA methylation, reportedly
attenuates the progression of renal and liver fibrosis in
vivo and in vitro [7,8]. These reports indicate the impor-
tance of hypermethylation of the genome in the progres-
sion of liver fibrosis.
In contrast to these previous reports, our analysis

revealed that DNA methylation status was significantly
reduced in CCl4-induced early-stage liver fibrosis.
Detailed analyses revealed that in early-stage liver fibro-
sis, the Spp1 enhancer was hypomethylated and Spp1
expression was up-regulated. Previous findings from
genetically engineered Spp1-knockout mice have shown
that Spp1 plays an important role in both progression
and reduction of liver injury and fibrosis [32,33].
Although the precise mechanism underlying the role of
Spp1 in fibrosis remains unknown, Spp1 is a pivotal
cytokine/chemokine generated by the Kupffer cells in
response to liver damage [34] that induces inflammation
[35], which is a contributing factor in liver fibrosis. Our
results indicate that an epigenetic alteration, DNA hypo-
methylation of the Spp1 enhancer, may precede the up-
regulation of Spp1 expression and induce the onset of
CCl4-induced early-stage liver fibrosis. Spp1 is also a
known enhancer of tumor development and metastasis
[36]. Using the Oncomine microarray database, we
demonstrated that Spp1 expression level is increased in
HCC. It has been documented in primary gastric
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cancers, that major phenotypic change in cancer-asso-
ciated myofibroblasts is a global reduction in DNA
methylation [17]. This may also be indicated in liver, the
importance of hypomethylation of the Spp1 enhancer in
the progression of HCC.
Unlike Spp1, we found that almost DNA hypomethy-

lation induced in early fibrosis was assigned in inter-
genic regions (Figure 2A). Recently, it has been reported
that DNA hypomethylation causes genomic instability

and alteration of gene transcription in several human
cancers (i.e. colorectal and prostatic adenocarcinoma,
breast cancer, intestinal type-gastric carcinoma, and
HCC) [37,38]. These results indicate that DNA hypo-
methylation in intergenic regions may trigger the pro-
gression of cancer through genomic instability of
cancer-related genes in addition to transcriptional regu-
lation of those genes in the onset of liver fibrosis. On
the other hand, 5’-Aza treatment successfully reduces
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cancer in mammals, involving human, suggesting that
carcinogenesis results from DNA hypermethylation as
well as DNA hypomethylation [38-40]. Therefore, how
these distinct DNA modifications commonly progress
cancer is most important study for epigenetic effects on
diseases in the future.

Conclusion
Although hypermethylation occurs during the progres-
sion of liver fibrosis, our results indicate the importance
of hypomethylation in the onset of liver fibrosis.
According to our results as well as other reports, it
appears that DNA methylation status may change from
hypo- to hypermethylation during the progression of
liver fibrosis. Thus, hypomethylation in early-stage liver
fibrosis may contribute to the onset and/or development
of HCC.

Additional material

Additional file 1: Table of primer sets used in this study. These qPCR
primer sets were used in Figures 1B, 5B and C.

Additional file 2: mRNA levels of reference genes. Cyclophilin were
used to normalize genes in Figure 1B and 5B. Gapdh were used to
normalize genes in Figure 5C.

Additional file 3: Statistics and annotation of MBP-seq peaks. This
table was generated by Genomics Workbench, and used in Figures 2, 3,
and 4A.
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