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Abstract The mean dynamic topography (MDT) can be
computed as the difference between the mean sea level
(MSL) and a gravimetric geoid. This requires that both data
sets are spectrally consistent. In practice, it is quite common
that the resolution of the geoid data is less than the resolution
of the MSL data, hence, the latter need to be low-pass filtered
before the MDT is computed. For this purpose conventional
low-pass filters are inadequate, failing in coastal regions
where they run into the undefined MSL signal on the conti-
nents. In this paper, we consider the use of a bandlimited, spa-
tially concentrated Slepian basis to obtain a low-resolution
approximation of the MSL signal. We compute Slepian func-
tions for the oceans and parts of the oceans and compare the
performance of calculating the MDT via this approach with
other methods, in particular the iterative spherical harmonic
approach in combination with Gaussian low-pass filtering,
and various modifications. Based on the numerical experi-
ments, we conclude that none of these methods provide a low-
resolution MSL approximation at the sub-decimetre level. In
particular, we show that Slepian functions are not appropriate
basis functions for this problem, and a Slepian representation
of the low-resolution MSL signal suffers from broadband
leakage. We also show that a meaningful definition of a low-
resolution MSL over incomplete spherical domains involves
orthogonal basis functions with additional properties that
Slepian functions do not possess. A low-resolution MSL
signal, spectrally consistent with a given geoid model, is
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obtained by a suitable truncation of the expansions of the
MSL signal in terms of these orthogonal basis functions. We
compute one of these sets of orthogonal basis functions using
the Gram–Schmidt orthogonalization for spherical harmon-
ics. For the oceans, we could construct an orthogonal basis
only for resolutions equivalent to a spherical harmonic degree
36. The computation of a basis with a higher resolution fails
due to inherent instabilities. Regularization reduces the insta-
bilities but destroys the orthogonality and, therefore, pro-
vides unrealistic low-resolution MSL approximations. More
research is needed to solve the instability problem, per-
haps by finding a different orthogonal basis that avoids it
altogether.

Keywords Slepian basis · Geoid · Mean sea
level · Mean dynamic topography · Filtering · Spectral
consistency · Gram–Schmidt · Orthogonal basis functions

1 Introduction

Since ocean currents are nearly in geostrophic balance on
time scales longer than a few days and spatial scales longer
than a few tens of kilometers, the velocity of the surface geo-
strophic current is proportional to the gradient in the aver-
age height of the sea surface expressed relative to the geoid
(Wunsch and Gaposchkin 1980). This so-called mean
dynamic topography (MDT) can be computed by subtract-
ing a gravimetric geoid from an altimetric mean sea level
(MSL) model, provided that both are expressed relative to
the same reference ellipsoid and in the same permanent tide
system. However, especially in the open ocean, the alti-
metric MSL has a much higher spatial resolution than the
gravimetric geoid. Consequently, the apparently straightfor-
ward computation of the MDT becomes problematic since
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610 D. C. Slobbe et al.

the high-frequency part that is lacking from the geoid can-
not be subtracted from the MSL. This causes a non-random
error that can be misinterpreted as a part of the MDT (Losch
et al. 2002; Albertella and Rummel 2009). Before the MDT is
computed by taking the difference between altimetric MSL
and gravimetric geoid, the latter two have to be made “spec-
trally consistent”: they have to cover the same spectral range.
Hence, a suitable low-pass filter has to be applied to the alti-
metric MSL.

The problem of ensuring spectral consistency between
two signals before combining them is more general in nature
than the specific context in which it appeared above. Indeed,
it arises whenever different data sets and/or models with
various spatial or temporal resolutions are to be merged
for interpretation e.g. in seismology and geomagnetic stud-
ies (Trampert and Snieder 1996; Boschi and Dziewonski
1999; Schachtschneider et al. 2010; Schott and Thébault
2011).

To derive the MDT of the North Atlantic Ocean, Jayne
(2006) applied a Hamming window smoother in the spatial
domain on both geoid and the MSL. However, since low-
pass filtering results in the replacement of the original sig-
nal by its weighted spatial average, this operation fails in
coastal regions, because the MSL is not defined on land.
Alternatively, adaptive filters based on principal component
analysis (PCA) over the domain of interest might be used.
For example, Vianna et al. (2007) used a singular spectrum
analysis (SSA) expansion to filter noise in a GRACE-based
MDT for the South Atlantic region. SSA could also be used
to obtain spectral consistency of altimetric MSL and gravi-
metric geoid.

On the other hand, we might make use of the fact that
geoid models are bandlimited, i.e., they are expressed as a
set of spherical harmonic expansion coefficients, complete
to some degree Lg . Likewise, the altimetric MSL could be
expanded in spherical harmonics complete to some degree
Lr , typically with Lr > Lg . Spectral consistency could then
be obtained by truncating the MSL expansion at degree Lg .
Two problems are inherent in this approach. First, since the
spherical harmonics are not an orthogonal basis over incom-
plete spherical domains like the oceans, the estimation of the
expansion coefficients from radar altimeter data is ill-con-
ditioned (Simons and Dahlen 2006). Second, truncation of
the spherical harmonic expansion beyond degree Lg gives
rise to Gibbs phenomena that can only be suppressed with
appropriate spectral windows.

The first problem, ill-conditioning, is traditionally
addressed by regularized least-squares or truncated singu-
lar value decomposition (SVD) approaches (e.g., Xu 1998).
More recently, truncated Slepian basis representations have
been proposed (Simons and Dahlen 2006), about which more
is to follow below. Alternatively, as advocated by, e.g., Tap-
ley et al. (2003), missing MSL data on land and in uncovered

ocean regions like the polar gaps can be replaced by geoid
information. Rather than estimating the spherical harmonic
coefficients from a signal defined over a subdomain of the
sphere, the estimation is then performed using the combined
whole-sphere signal. The geoid is used to extend the MSL
since the two do not differ more than by about 3 m. Despite
this small difference, discontinuities persist at the coastlines,
introducing Gibbs phenomena. Bingham et al. (2008) sug-
gest to further reduce the Gibbs effects in the MDT using
the same geoid on land as is used to compute the MDT. In
an elaboration of the method (Tapley et al. 2003) discussed
by Albertella et al. (2008), the transition from land to sea
is smoothed by iteratively estimating the spherical harmonic
coefficients of MSL up to degree Lr from the combined land–
ocean data set. In each iteration, the values over land are
replaced by those obtained from a spherical harmonic syn-
thesis of the last derived set of coefficients. This process is
repeated until some pre-defined stopping criterion has been
satisfied. Finally, low-pass filtering is applied to obliterate
the signal above Lg and to reduce Gibbs effects. Albertella
et al. (2008) and Albertella and Rummel (2009) use a Gauss-
ian filter, but other (low-pass) filters may be used as well (for
more details about the Gaussian filter and alternatives, we
refer to, e.g., Jekeli 1981). Generally, however, the low-pass
filtered MSL signal still contains energy above degree Lg

and will thus not be spectrally consistent with the geoid to
which it is compared.

In summary, we might say that no ideal approach currently
exists to obtain low-resolution approximations to MSL that
are spectrally consistent with the geoid. In studying a one-
dimensional version of this problem, Albertella and Rum-
mel (2009) came to the conclusion that extending MSL to
the entire globe using, e.g., geoid information unavoidably
results in a distortion of its spectral content, even if utmost
care is taken to derive smooth transitions from ocean to land.
In contrast, they conclude that representing MSL in a basis
of Slepian functions, which are suitable for signals of limited
bandwidth living on limited intervals (Simons 2010), holds
much promise in solving both problems above. Somewhat
pessimistically, though, they wrote that “it may prove diffi-
cult to apply it to the real world case with the complicated
shapes of ocean basins”.

Since the efficient generation of Slepian functions on
domains of arbitrary geometry, whether in spherical (Simons
et al. 2006) or Cartesian (Simons and Wang 2011) coordi-
nates, presents no intrinsic difficulties, we are here able to
consider their use in the context of the work by Albertella
and Rummel (2009), on which we build. Our main goal is
to design a bandlimited Slepian basis for the ocean basins in
spherical geometry and to evaluate the utility of this basis in
solving the problem stated above, which is to derive suitable
representations of altimetric MSL while maintaining spec-
tral consistency with the gravimetric geoid. Hwang (1991),
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see also Hwang (1993) for a shorter version, used another
set of orthogonal functions on the oceans to represent the sea
surface topography derived from radar altimeter data. This
set of orthogonal basis functions has been generated from
spherical harmonics using the Gram–Schmidt process, see
Golub and van Loan (1996).

In this article, we first summarize some basics about spher-
ical Slepian functions (Sect. 2 and Appendix A). Following
this, we address the problem of spectral consistency and
bandwidth for functions given on a part of the spherical
domain (Sect. 3). Next, we describe the setup of several
numerical experiments, which were designed to investigate
the performance of a Slepian basis representation of the
MSL signal which is spectrally consistent with a given gravi-
metric geoid (Sect. 4). This includes a discussion about
the choice of the optimal number of Slepian basis func-
tions. Thereafter, we present and discuss the results of the
numerical experiments (Sect. 5 and Appendix B). The main
result is that all methods discussed in Sect. 5 fail to pro-
vide a low-resolution MSL signal with an adequate accu-
racy. Therefore, in Sect. 6, we reformulate the problem,
provide a mathematical solution, and discuss its applicabil-
ity to high-resolution data. Finally, we conclude by empha-
sizing the main findings and identifying topics for future
research.

2 The spherical Slepian basis

The functions now named after David Slepian grew out of
the work by Slepian and Pollak (1961) and Landau and Pol-
lak (1961, 1962), who solved a long-standing problem in
information theory, namely, that of optimally concentrating
a given signal in both the time and frequency domains. Since
timelimited functions cannot be simultaneously bandlimited
in the frequency domain, nor vice versa, the optimally con-
centrated signal is considered to be the one with the least
energy outside the interval of interest. The concentration
problem has been extended and generalized for the purpose of
signal estimation, representation and analysis on geographi-
cal domains by Albertella et al. (1999), Pail et al. (2001) and
Simons and Dahlen (2006) in geodesy, and by Wieczorek
and Simons (2007) and Dahlen and Simons (2008) in more
general settings. The quadratic maximization of the spatial
energy of bandlimited functions is one way to achieve local-
ization in one domain while curbing leakage in the other.
Other constructions may have similarly desirable properties,
but even those are often judged on how closely they satisfy
quadratic optimality constraints (e.g. Freeden and Michel
1999; Guilloux et al. 2009). We therefore remain faithful to
the original approach of Slepian, as transformed into spheri-
cal geometry by Simons et al. (2006). Appendix A provides a
review of spherical Slepian functions, limited to those aspects

of the theory which are necessary to understand the remain-
ing sections.

3 Spectral consistency and the choice of the bandwidth

Suppose we have access to a high-resolution MSL model
and a low-resolution geoid model for the oceans or a part of
the oceans, e.g., an ocean basin. Then, spectral consistency
between MSL and geoid is obtained when both are repre-
sented in a bandlimited, spatially concentrated Slepian basis
involving the same set of Slepian basis functions. The choice
of the bandwidth should be dictated by the signal that has
the lowest resolution, in our case the geoid, since this is the
resolution at which we need to describe the MSL to compute
the MDT reliably. Geoid information is typically provided in
terms of a spherical harmonic expansion complete to some
maximum degree, say Lg . This maximum degree describes
solely the spatial resolution of the geoid, and, therefore, is
also used as a descriptor of the bandwidth.

According to Eq. (A-15), we can transform any given
spherical harmonic expansion of the geoid complete to
degree Lg into a bandlimited, spatially concentrated Slepian
basis invoving (Lg + 1)2 Slepian basis functions. Therefore,
a natural choice of the bandwidth of the Slepian functions
would be Lg . This is definitely correct as long as the geoid is
considered as a function on the whole domain Ω . However,
when the geoid signal is confined to a part of the domain such
as the oceans or an ocean basin, this definition of the band-
width of the geoid becomes meaningless as we will show
below. Therefore, the choice of the correct bandwidth of the
Slepian basis functions is still open and not necessarily given
by the maximum degree of the spherical harmonic expansion
of the geoid.

In order to investigate the choice of the bandwidth for
a signal given in a region Ω0 of the sphere Ω , we design
the following experiment. We assume that a certain signal is
given in terms of a spherical harmonic expansion complete
to degree Lg = 48. We try to reconstruct this bandlimit-
ed signal from data inside various regions Ω0 of different
size using spherical harmonic expansions complete to degree
L ≤ Lg . In our experiment, the region Ω0 is always a spher-
ical cap; the radius of the cap varies in increments of 10◦
between 10◦ and 180◦. The latter case corresponds to the
choice Ω0 = Ω , the entire sphere. Despite its simplistic
geometry, the simple spherical cap is an appropriate choice
for a trial region. Its advantage is that the Slepian functions
for this particular geometry can be calculated via the pain-
less procedure devised by Grünbaum et al. (1982), as shown
by Simons et al. (2006). Furthermore, for complete general-
ity with respect to where we position the cap in the analysis
we consider a bandlimited white Gaussian stationary process
defined on the region Ω0, i.e.,
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w(x̂) =
{∑Lg

l=0

∑l
m=−l wlm Ŷlm(x̂) if x̂ ∈ Ω0,

unknown if x̂ ∈ Ω − Ω0,
(1)

where

E{wlm}=0, Cov{wlmwl ′m′ }=δll ′δmm′ , 0≤ l, l ′,≤ Lg,

(2)

and E{·} denotes expectation and Cov{·} denotes covariance.
The signal w(x̂) is approximated by a function ŵ(x̂), which
is given by

ŵ(x̂) =
L∑

l=0

l∑
m=−l

ŵlm Ŷlm(x̂), (3)

for some maximum degree L ≤ Lg . For continuous data,
and using the notation established in Eqs. (A-16)–(A-19),
the least-squares estimate of the spherical harmonic coeffi-
cients ŵlm is

ŵL = D−1
L DLg wLg , (4)

where ŵL = (ŵlm : l, m ≤ L)T, wLg = (wlm : l, m ≤ Lg)
T

and DL and DLg are the matrices with entries Dlm,l ′m′ as in
Eq. (A-7) for degrees l = 0, . . . , L and l = 0, . . . , Lg , in
both dimensions or in one of each dimension: DL is square,
DLg is rectangular, respectively.

If the signal is known at M points, collected in a vector
w, we write Eq. (1) as

w = YT
Lg

wLg , (5)

using the notation established in Eqs. (A-16)–(A-19). The
least-squares estimate ŵL is given by

ŵL = (YLYT
L)

−1YLw, (6)

= (YLYT
L)

−1(YLYT
Lg

)wLg , (7)

which is the analogue to Eq. (4) for discrete data. Irrespec-
tively of the radius Θ of the spherical cap, when L = Lg ,
we thus in principle recover the input without bias, i.e.,

ŵLg = wLg , (8)

although the condition number of the normal matrix YLg YT
Lg

in that case will determine how close we can get. The numer-
ical integration error (i.e., the number and spatial distribution
of the samples and the chosen weights) determines how well
ŵL as defined in Eq. (6) matches the elements ŵlm as defined
in Eq. (4). Assuming that the function of interest w(x̂) is
densely sampled inside Ω0, e.g. on the M nodes of a Fibo-

nacci grid (González 2010), where M � |Ω0|
(

Lg
π

)2
, and

the weights are equal to ΔΩ = 4π/M , the normal matrix
should be well approximated by (Simons 2010)

YLYT
L ≈ ΔΩ−1DL . (9)

We also note via Eqs. (A-1) and (A-7) that

DL → I for Θ → 180◦ or Ω0 → Ω, (10)

where I is the (L + 1)2 × (L + 1)2 unit matrix. When
L < Lg , the estimate (7) contains broadband leakage
(Simons and Dahlen 2006): high-degree signal contribu-
tions to the estimated low-degree coefficients. The broadband
leakage is ŵL − wL , which follows from

ŵL = (YLYT
L)

−1YL(Y
T
Lg

wLg ),

= (YLYT
L)

−1YL(Y
T
LwL + YT

→Lg
w→Lg ),

= wL + (YLYT
L)

−1YLYT
→Lg

w→Lg , (11)

where Y→Lg is the lower subblock of the matrix YLg that
complements YL , and w→Lg is the lower subportion of wLg ,
covering the degrees L + 1 → Lg . Hence, the broadband
leakage is

ŵL − wL = (YLYT
L)

−1YLYT
→Lg

w→Lg . (12)

Via Eqs. (9)–(10) we deduce from (12) that

ŵL − wL ≈
{

ΔΩ (YLYT
→Lg

)w→Lg for Θ = 180◦,
ΔΩ D−1

L (YLYT
→Lg

)w→Lg for Θ < 180◦.
(13)

Since the least-squares estimate ŵL for the case Θ < 180◦
depends on the inverse of the localization kernel DL , the
broadband leakage directly depends on the size and shape
of the region of missing data, as well as on the bandwidth
L < Lg of the estimate. In the spatial domain, the broadband
leakage generates a bias, which Simons and Dahlen (2006)
refer to as broadband bias.

In practice, it is hard to find a stable inverse of DL , since
for Ω0 ⊂ Ω , the matrix DL tends to be poorly conditioned.
This problem can be solved either by utilizing a regularized
least-squares approach or by using a truncated Slepian basis.
The latter refers to a Slepian basis with less than (L + 1)2

basis functions, which improves the condition number of the
normal matrix. The former may be obtained by a truncated
SVD of the matrix YT

L (Xu 1998; Simons 2010). Here we
solve Eq. (6) as

ŵL =
(
YT

L

)+
w, (14)

where(
YT

L

)+ = VΣ+UT, (15)

and the truncation is accomplished via

Σ+
i i =

{
Σ−1

i i for |Σi i | > δ,

0 otherwise.
(16)
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Fig. 1 Reconstruction, via Eq. (14), of a Lg = 48 bandlimited white
signal, as defined in Eqs. (1)–(2), from a set of observations made on a
Fibonacci grid inside north-polar spherical caps of various radii Θ , for
various spherical harmonic reconstruction bandwidths L . a shows the
root mean squared (rms) error normalized by the rms strength of the

signal inside the cap. Note that the rms values are computed at points
confined to the cap that are different from the data points. b shows the
inverse of the condition number of the matrix YL in Eq. (6). The black
curves and the markings on the right axis represent the fractional area
of the spherical caps, |Ω0|/(4π)

The SVD of matrix YT
L = UΣVT, δ = εM max(Σi i ), and ε

is the machine epsilon. This is in fact implemented in Mat-
lab’s pinv routine (MATLAB 7.10.0.499, R2010a). Both
the regularized least-squares approach and the truncated Sle-
pian approach introduce a bias in the solution, but lower its
variance if there is noise (Simons and Dahlen 2006). This
so-called truncation bias is the third source of misfit in the
approximation.

The propagation of errors in ŵL to the spatial domain for
each combination of bandwidth L and cap size Θ is expressed
in terms of the rms error (rmse), which is computed as the rms
difference between the original signal and its least-squares
estimate at a set of points inside Ω0 that are different from
the points used in the inversion. This metric, normalized by
the rms signal, is shown as a function of Θ and L in Fig. 1a.
For all spherical cap radii Θ the rmse decreases if the band-
width L increases to meet the original Lg , to relative values
on the order of 10−5 for radii Θ 
 180◦ and 10−14 for
radii Θ ≈ 180◦. This decrease is in line with what we could
expect, since increasing the bandwidth means that more basis
functions are used to approximate the signal.

We derive insight into the behavior of the rmse shown in
Fig. 1a via b which shows the inverse of the condition num-
ber (an estimate of the ratio of the largest to the smallest
singular value) of YL as a function of Θ and L . For radii
Θ 
 180◦ the condition number is very large and strong
truncation (i.e., regularization) is required to solve Eq. (6).
This explains why the normalized rmse does not drop below
a value of about 10−5 for spherical cap radii significantly
smaller than 180◦ even if a bandwidth L = 48 is chosen.
It is the truncation bias that prevents a significantly smaller
rmse. Vice versa, for spherical cap radii close to 180◦, the

truncation bias is negligible, and the rmse is at the level of
numerical round-off errors.

Figure 1a also reveals that the rmse as a function of the
bandwidth L drops more rapidly for smaller values of the
spherical cap radius Θ ( i.e. for smaller regions Ω0). For
example, when Θ = 10◦ and L = 22, we achieve already
a very small normalized rmse of 10−4. For larger spherical
cap radii, say, Θ > 90◦, a similar reduction of the rmse can
only be observed if L = 48 is chosen. In general, for large
regions Ω0, the rmse decreases very little if the bandwidth is
increased, with an abrupt drop at the transition to full band-
width.

Counter-intuitive is the behavior of the rmse as function
of the spherical cap radius Θ for fixed degree L (cf. Fig. 1a).
The smaller the spherical cap radius, the smaller the rmse.
That is, the bandlimited signal (bandwidth L = 48) can be
approximated very well by a low-degree (L < 48) spheri-
cal harmonic expansion provided that the data area is suf-
ficiently small. For fixed degree L , the rmse increases with
increasing size of the region Ω0. This suggests that we have
a considerable degree of freedom in fitting data from a high-
bandwidth model, sampled inside a small region Ω0, with a
low-bandwidth approximation. The smaller the area is, the
more freedom we have. This counter-intuitive result is fur-
ther illustrated in Fig. 2. We observe that the least-squares
approximation complete to degree and order L is closer to
the original signal (complete to degree and order Lg) than
the original signal truncated at degree L .

From this experiment, we conclude that in case a spheri-
cal harmonic expansion is fitted to data given on a part of the
sphere, the optimal bandwidth to carry out this procedure is
no longer a measure for the spatial resolution of the data set.
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614 D. C. Slobbe et al.

Fig. 2 The original,
bandlimited signal complete to
degree 48 (black), the original
signal truncated at degree L
(red), and the least-squares
estimate complete to degree L
(blue) for a meridional arc
crossing a spherical cap of
radius Ψ . From top to bottom:
L = 2, Ψ = 10◦, L = 22, Ψ =
20◦, L = 40, Ψ = 50◦, and
L = 48, Ψ = 100◦. The thin
black lines indicate the
boundary of the spherical cap.
Note that within the spherical
cap no differences between the
original signal and the
least-squares approximation are
visible for degrees L ≥ 22. The
labels indicate the rms error of
the differences between the
original, bandlimited signal
complete to degree 48 on the
one hand and the original signal
truncated at degree L (left) or
the least-squares approximation
complete to degree L (right) on
the other hand, normalized by
the rms strength of the signal
inside the cap
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The smaller the area covered with data is, the larger the dif-
ference between the optimal bandwidth and the “true” band-
width. In general, we can expect that the optimal bandwidth
is always smaller than the “true” one.

Note that we would come to the same conclusion if we
used an actual signal rather than white noise, data with much
higher spatial resolution, a different data distribution rather
than a Fibonacci grid or a different region rather than a spher-
ical cap centred at the North Pole. The conclusion also does
not change if we repeat the experiment on the circle using
series expansions in Legendre polynomials.

The major implication for the main objective of this study
(i.e., to get a MSL that is spectrally consistent with a given
geoid) is that depending on how closely we want to represent
the geoid within a region Ω0 ⊂ Ω , a bandwidth L smaller
than the nominal value Lg may be appropriate, depending on
the size of the region. Hence, the bandwidth of the Slepian
basis functions should be set equal to this optimal bandwidth
L instead of the nominal bandwidth Lg . This is contrary to the
approach of Albertella and Rummel (2009), who maintained
Lg as the bandwidth. In practical applications, the choice
of the optimal bandwidth L will also depend on the com-
mission error. That is, there is no need to obtain an ‘exact’
representation of the given geoid in the presence of noise; any
approximation will do as long as the approximation error is
smaller than the commission error. This further reduces the

optimal bandwidth L to the benefit of a reduced numerical
complexity for the computation of the Slepian basis functions
and the least-squares estimation of the Slepian basis function
coefficients.

Another implication of this experiment is that it will be
very difficult if not impossible to extract a low-resolution sig-
nal from high-resolution data given on a part of the sphere.
As pointed out before, if a low-resolution spherical harmonic
expansion is fitted to data given on a part of the sphere by
least-squares, the fit of the model to the data is optimized
according to the least-squares principle. Hence, the coef-
ficients representing the low-resolution approximation will
explain as much of the signal as possible at the complete set
of frequencies to minimize the residual sum of squares, and
therefore will not provide a good representation of the true
low-resolution signal. In Sect. 5, we will investigate whether
Slepian functions offer a solution to this problem and, if not,
what the alternatives are.

4 Experimental setup

In this section, we discuss the setup of the numerical experi-
ments related to the use of a Slepian basis to extract a low-res-
olution signal from high-resolution data given on a part of the
sphere. This comprises the choice of the concentration region

123



The Slepian basis, as a means to obtain spectral consistency 615

and the construction of the Slepian functions, the generation
of the sampled geoid, the truncation level in the inversion,
and the criteria we use to assess the quality of the results,
which are to be presented in Sect. 5.

4.1 Concentration region

In the numerical experiments, we consider two concentra-
tion regions: (i) a spherical cap with radius 40◦ centred in the
Pacific Ocean and (ii) the union of the world’s ocean basins as
defined next. Due to the non-polar orbits of all radar altim-
eter satellites, caps centered on both poles are left without
data coverage and therefore are not part of the concentration
region. For the TOPEX/Poseidon satellite, the radii of these
polar gaps are approximately 24◦. For other radar altime-
try missions this radius may be smaller, but in our exper-
iments we define Ω0 as the part of the oceans covered by
TOPEX/Poseidon, i.e:

Ω0 = Ω − Ω̄0, (17)

where Ω̄0 is the union of Eurasia, Africa, North and South
America, Antarctica, Greenland, and Australia as defined and
shown individually by Simons et al. (2006, 2009) and Simons
(2010), with the subsequent addition of New Guinea, Borneo,
Madagascar, Sumatra, Honshu, the United Kingdom, and the
further exclusion of the two polar gaps. The fractional area of
this region on the unit sphere is |Ω0|/(4π) ≈ 0.67. Because
the bandwidths that we will use to construct the “true” MSL
signal and its approximation are relatively small, all islands
smaller than 200,000 km2 are in fact neglected in the local-
ization kernel D. The latter is computed as the difference
of the localization kernel for the latitudinal belt exclusive
those continents that are partly located inside the latitudinal
belt minus the localization kernels for individual continental
regions completely located inside the latitudinal belt.

Spatial expansions of some of the eigenfunctions of D
that result from this procedure, for a bandwidth L = 36,
are shown with their eigenvalues λ in Fig. 3. These are the
Slepian functions that we will use as a spatiospectrally local-
ized basis in the forthcoming analysis.

4.2 Construction of the sampled geoid and MSL signals

Samples of the geoid and MSL signals are derived from avail-
able spherical harmonic models. They are evaluated at a set of
M points of a Fibonacci grid, which provides a homogeneous
sampling of the region of interest, Ω0. In order to avoid sam-
pling errors, M is chosen sufficiently large so that the distance
between the sample points does not exceed half of the shortest
wavelength contained in the signal. The global geoid signal is
derived from the Earth gravitational model EGM2008 (Pavlis
et al. 2008) truncated at degree Lg . The MSL signal is defined
as the sum of the MDT model DOT2008A (U.S. National

Geospatial-Intelligence Agency EGM Development Team
2010) and the geoid model EGM2008, both truncated at
degree Lr , where Lr > Lg . In the experiments of Sect. 5,
we choose Lr = 48, Lg = 36, M ≈ 10,000 (if no land
data are used), and M ≈ 13,000 (otherwise). The number of
control points which are used to assess the quality of the var-
ious solutions is about 55,000 randomly distributed over the
target area Ω0. The MSL that is spectrally consistent with
the geoid is referred to as the “true” low-resolution MSL.
It is defined as the sum of the DOT2008A MDT and the
EGM2008 geoid both truncated at degree Lg = 36, as dis-
played in Fig. 4.

4.3 Optimal truncation level

To compute the MDT as the difference between the MSL
(bandwidth Lr ) and the geoid (bandwidth Lg) given on Ω0,
where Lr > Lg , we need to find a suitable representation of
the MSL, which is spectrally consistent with the geoid sig-
nal. A Slepian basis with bandwidth Lg comprising (Lg+1)2

basis functions provides such a representation. However, as
mentioned in Appendix A, the number of Slepian basis func-
tions required to obtain a faithful approximation of a given
signal on a subdomain of the sphere may be smaller than
(Lg + 1)2. Simons and Dahlen (2006) have shown that in
the presence of noise the optimal number of Slepian basis
functions is determined by the signal-to-noise ratio of the
data from which the expansion coefficients are derived by
inversion, provided this is numerically feasible. In our exper-
iments, however, the sampled geoid and MSL signals are
assumed to be noise-free and numerical considerations do
come into play. Therefore, we follow another strategy to
determine the optimal truncation level Jo. We evaluate the
spherical harmonic expansion of the “true” low-resolution
MSL signal at the M points of the Fibonacci grid (these
samples serve as data) and at a set of different control points
which, however, both cover the target area Ω0. Then, we fit
a Slepian basis function representation comprising J basis
functions to the data by least-squares. J is varied between
the Shannon number K , defined in Eq. (A-14), and the max-
imum number of Slepian basis functions, (Lg + 1)2. The
optimal number Jo is found to be the one which minimizes
the rms difference between the least-squares solution and
the “true” low-resolution MSL signal evaluated at the con-
trol points. In the following, the above is referred to as “the
Slepian approach”, whether data are used on the entire globe
Ω or on a subregion Ω0 will be clear from the context.

4.4 Quality assessment

In order to assess the quality of the Slepian approach we
first compute statistics of the differences with respect to the
known “true” low-resolution MSL as defined in Sect. 4.2.
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Fig. 3 Slepian functions that are bandlimited to L = 36 but optimally
concentrated within the oceanic concentration region Ω0 as computed
via Eqs. (A-4)–(A-7). We integrated Eq. (A-7) using Gauss–Legen-
dre quadrature over the colatitudes and analytically over longitudes. A
selection of eigenfunctions gα is shown with their concentration fac-
tors λα , as labeled. The rounded Shannon number, from Eq. (A-14),
is K = 918. Every function was normalized to max(abs(function)).

Values smaller than 0.01 on this scale are rendered white. The sign
of an eigenfunction is arbitrary since the concentration is quadratic.
Altogether the Slepian functions form a complete basis for bandlimited
processes anywhere on the sphere. The first K functions provide an
approximate basis for bandlimited signals concentrated in the oceanic
region Ω0, as discussed in the text

Fig. 4 The “true”
low-resolution MSL signal used
in the experiments to be
presented in Sect. 5. It is the
sum of the EGM2008 geoid and
the DOT2008A mean dynamic
topography both truncated at
degree 36
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Table 1 Experiment I: statistics of the differences between “true” and
approximated low-resolution MSL signal, evaluated at a set of con-
trol points in the target area Ω0 (columns 2–5) and the rms difference
between data and approximated low-resolution MSL signal in the tar-

get area Ω0 (column 6). Lr = 48, Lg = 36. The “true” low resolution
MSL signal is the sum of the EGM2008 geoid and the DOT2008A
mean dynamic topography both truncated at degree 36 (cf. Fig. 4). The
domain Ω0 comprises the world’s oceans defined in Sect. 4.1

Method Control points Data points

Rms (m) Min (m) Max (m) Mean (m) Rms difference (m)

Iterative SH, L = Lr ,
geoid data outside, Gaussian filter

0.660 −4.76 3.79 −0.017 0.499

Iterative SH, L = Lr ,
geoid data outside, ideal low-pass filter

0.071 −0.963 0.526 0.000 0.859

Direct SH, L = Lr ,
no data outside Ω0, Gaussian filter

0.660 −4.76 3.79 −0.017 0.499

Direct SH, L = Lr ,
no data outside Ω0, ideal low-pass filter

2.71 × 10−5 −1.06 × 10−4 7.27 × 10−5 −2.27 × 10−6 0.872

Direct SH, L = Lg ,
geoid data outside Ω0

0.230 −1.50 2.96 0.016 0.773

Direct SH, L = Lg ,
no data outside Ω0

0.596 −5.38 7.78 0.030 0.610

Slepian functions (bandwidth Lg),
no data outside Ω0, Jo = 1,180

0.508 −4.40 6.04 0.025 0.685

Slepian functions (bandwidth Lg),
geoid data outside Ω0, Jo = 1,322

0.230 −1.50 2.96 0.016 0.772

MSL signal in the band 37 ≤ l ≤ 48 0.874 −7.15 6.46 −0.040

We also compare the estimated Slepian representation of
the low-resolution MSL with a low-resolution MSL model
obtained using the iterated spherical harmonic and Gauss-
ian smoothing approach. The latter is reported by Albertella
et al. (2008) as providing the best results in their experi-
ments. This iterative spherical harmonic approach consists
of five steps:

1. A global data set is formed using samples of the high-res-
olution MSL signal inside the region Ω0 and samples of
the low-resolution geoid in the complementary domain
Ω̄0.

2. A spherical harmonic analysis using the data from step 1
is performed complete to degree Lr .

3. The solution of step 2 is synthesized at the data points in
the domain Ω̄0 and a new data vector is formed.

4. Steps 2 and 3 are repeated until convergence to within
error.

5. A Gaussian low-pass filter with correlation length Ψo is
applied to the final set of spherical harmonic coefficients
to remove the contributions from the degrees Lg + 1 →
Lr and to reduce ringing effects. In the experiments, we
use an optimal correlation length, Ψo, of the Gaussian fil-
ter, which is empirically derived by minimizing the rms
difference between the “true” low-resolution MSL signal
and the smoothed MSL signal inside the domain Ω0.

5 Experimental results and discussion

We refer to Table 1 for an overview of the statistics of the
differences between the “true” and the “approximated” low-
resolution MSL signal. The computations in the Slepian basis
have been done using open source software provided by the
second author; see http://www.frederik.net.

5.1 Experiment I

In Experiment I, the concentration region Ω0 is identical to
the oceans as defined in Sect. 4.1. Figure 5a shows the MSL
in the band 37 ≤ l ≤ 48, i.e. the difference between the
“high-resolution” MSL signal and the “low-resolution” MSL
signal. This is exactly the signal that we want to eliminate
before computing a reliable MDT.

Using the iterative spherical harmonic approach (with
geoid data on land in the first iteration at step 1), 10,303
iterations are required to reduce the maximum absolute resi-
due to 0.01 m. To extract the low-resolution MSL signal, we
apply a Gaussian filter with Ψo = 170 km (cf. Sect. 4.4).
Evaluated at a set of random locations, the rms approxima-
tion error equals 0.660 m; pointwise errors attain extreme
values of several metres (see Table 1 for more statistics).
Hence, the iterative spherical harmonic approach fails to
provide a representation of the low-resolution MSL signal
with an accuracy of a few centimetres. Figure 5b shows a
geographic map of the approximation errors. They strongly
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Fig. 5 a Shows the differences
between high-resolution and
low-resolution mean sea level
(MSL), i.e. the MSL in the
spherical harmonic band
37 ≤ l ≤ 48. b Shows the
differences between the iterative
spherical harmonic
approximation to the
low-resolution MSL, with geoid
data over the continents and
with Gaussian filtering, and the
“true” low-resolution MSL
shown in Fig. 4. c Shows the
differences between the
1,180-term Slepian
approximation of the
low-resolution MSL and the
“true” low-resolution MSL
shown in Fig. 4. d Shows the
differences between the
1,322-term Slepian
approximation of the
low-resolution MSL, obtained
using geoid data on land, and
the “true” low-resolution MSL
shown in Fig. 4
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correlate with the MSL signal in the band 37 ≤ l ≤ 48,
Fig. 5a. This is mainly due to the weak performance of
the Gaussian filter, which is unable to extract the low-res-
olution MSL signal from the high-resolution (bandwidth
48) least-squares solution. Too much signal from the band
37 ≤ l ≤ 48 is left after filtering. This is confirmed by the
rms difference between data and the approximated low-res-
olution MSL signal (last column of Table 1): the rms dif-
ference is 0.499 m, which is not close to the 0.874 m rms
MSL signal in the band 37 ≤ l ≤ 48, which indicates a leak-
age from the band 37 ≤ l ≤ 48 into the low-resolution MSL
solution.

Using the iterative spherical harmonic approach with
geoid data on land but replacing the Gaussian filter with a
boxcar low-pass filter in the frequency domain (i.e., hard
truncation at degree Lg = 36) provides a much better approx-
imation of the low-resolution MSL signal: the rms approxi-
mation error improves from 0.660 to 0.071 m (cf. Table 1). A
look at the rms difference between the data and the approx-
imated low-resolution MSL signal confirms this result: it
is 0.859 m, close to the 0.87 m rms MSL signal in the
band 37 ≤ l ≤ 48. Hence, almost no signal in the band
37 ≤ l ≤ 48 leaks into the estimated coefficients. This is
explained by the fact that Ω0 covers about 67% of the whole
sphere. The main error contributors are the geoid data on
land, which are used to initially allow for a global spherical
harmonic analysis. Although the rms approximation error is
only 0.071 m, the maximum pointwise error is about 1 m,
which is far above the target accuracy of a few centime-
tres. Finally, we will show in Sect. 5.3 that hard truncation
performs very poorly if the size of Ω0 is a much smaller
fraction of the whole sphere than the entirety of the ocean
basins. Therefore, an ideal low-pass filter cannot generally
be the method of choice.

For the Slepian approach that uses only MSL data over
the oceans, the rms approximation error of the low-resolution
MSL signal is 0.508 m. A spatial rendition of the approxima-
tion errors is shown in Fig. 5c. This figure represents the opti-
mal solution in the sense explained in Sect. 4.3 whereby Jo =
1,180 Slepian basis functions. The optimal bandwidth in the
sense in which it appeared in Sect. 3 for the oceans is found
to be L = 36 (i.e., identical to the maximum degree of the
global geoid model), which corresponds to 1,369 basis func-
tions and an rmse of 0.596 m (see Table 1). We explain the fact
that less than the total number of Slepian basis functions pro-
vides the smallest rms approximation error by invoking the
partial cancellation of truncation error and broadband bias. At
0.596 m the rms approximation error for 1,369 Slepian basis
functions is only slightly higher than the 0.508 m obtained
for Jo = 1,180 Slepian basis functions. A positive effect of
using fewer Slepian basis functions is a significant improve-
ment of the condition number of the normal matrix: from 108

(with 1,369 terms) to only 10 (with 1,180 terms).

The performance of the Slepian approach is not much bet-
ter than for the iterative spherical harmonic approach (rms
error of 0.508 m as compared to 0.660 m). The reason for
the poor performance of the Slepian approach is the pres-
ence of broadband leakage (frequency domain) and broad-
band bias (spatial domain). Though Slepian functions with
the same bandwidth are orthogonal on Ω0, this does not apply
to Slepian functions of different bandwidths. The similarities
between the error pattern shown in Fig. 5c (Slepian approach)
and Fig. 5a (MSL signal in the band 37 ≤ l ≤ 48) are evi-
dence for the presence of broadband bias and leakage, as they
were for the iterative spherical harmonic approach shown in
Fig. 5b.

The quality of the Slepian approach improves if MSL
data on the oceans are complemented by geoid data on land.
Then, the solution with minimum rms approximation error
is obtained with 1,322 Slepian basis functions. Figure 5d
shows a geographic map of the approximation errors in that
case, whose rms approximation error has been reduced from
0.508 to 0.230 m. Note, however, that this approach is almost
identical to a direct least-squares fit to the global data of a
spherical harmonic model complete to degree 36 (rms error
0.230 m), which can be understood from the fact that almost
all Slepian basis functions are used.

A simple alternative to the approaches discussed so far
is a direct least-squares fit of a spherical harmonic expan-
sion complete to degree Lr = 48 to the data (no data are
used outside Ω0) followed by a hard truncation at degree
Lg = 36. The extreme values of the low-resolution MSL
approximation error are −1.06 × 10−4 and 7.27 × 10−5 m,
respectively, i.e. at the sub-millimetre level and the rmse is
2.71 × 10−5 m (cf. Table 1). This approach performs by far
the best for the current test setup. However, extensive sim-
ulations with different target areas Ω0 and different band-
widths Lr (not shown here) reveal that the performance of this
straightforward approach depends critically on (i) the size
of the domain and (ii) the bandwidth of the signal. The smaller
the domain, the larger the approximation error. Moreover, the
larger the bandwidth and the smaller the target area, the larger
the condition number of the normal matrix. Then, regulari-
zation is indispensable, which introduces an additional bias
and reduces the quality of the solution. Therefore, this simple
approach works for the oceans in combination with low-reso-
lution MSL data as used here (Lr = 48), but fails for smaller
target areas and/or MSL data with a higher resolution.

From the results shown in Table 1, we can also con-
clude that the iterative spherical harmonic approach does
not depend on the data used on land provided that enough
iterations are performed. This has been verified in several
numerical simulations. In the limit, it is equivalent to a
direct least-squares fit of a high-resolution spherical har-
monic model (i.e., complete to degree Lr = 48) to the ocean
data followed by Gaussian filtering in reaching an rmse of
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0.660 m. Expressed differently, neither iteration nor infor-
mation on land is needed to match the performance of the
iterative spherical harmonic approach proposed by Albertella
et al. (2008). From Table 1, we also conclude that the quality
of the iterative spherical harmonic approach and the direct
spherical harmonic approach that estimates coefficients com-
plete to degree Lr = 48 is solely determined by the perfor-
mance of the filter. A Gaussian filter is definitely not the
preferred choice; we expect that the use of other filters may
reduce the errors but will not reduce them down to the level
of several centimetres.

5.2 Experiment II

Experiment I has demonstrated that the Slepian approach
fails to recover the low-resolution MSL with adequate accu-
racy. This has been explained by broadband leakage and trun-
cation bias. Trampert and Snieder (1996) have proposed a
method to suppress leakage, which in fact uses a different
cost function than the one being used in the classical least-
squares solution. For details about the implementation, the
setup of the numerical experiment, and the results, we refer
to Appendix B. In summary, the method works perfectly for
very low-resolution data, e.g., Lr = 18 and Lg = 12. How-
ever, already for moderate resolutions such as Lr = 36 and
Lg = 48 and for higher resolutions, the performance is not
better than the one presented in Sect. 5.1 for both the direct
spherical harmonic approach with only MSL data and the
Slepian approach.

The results for the direct spherical harmonic approach
with only MSL data are not in line with the findings of Tram-
pert and Snieder (1996). We explain this by the fact that
Trampert and Snieder (1996) consider a non-homogeneous,
but global data distribution, whereas in our experiment we
lack data on the continents, which can be considered as an
example of an extremely non-homogeneous global data dis-
tribution. For more details, we refer to Appendix B. We con-
jecture that the method of Trampert and Snieder (1996) will
always fail if the diameter of the area without data is large
compared to the spatial resolution we aim at. A more precise
analysis of the relation between approximation error, spatial
resolution, and size of the data gaps requires further research
and is beyond the scope of this paper.

5.3 Experiment III

In Sect. 5.1, we found that a direct least-squares fit to data
over all of the oceans of a spherical harmonic expansion com-
plete to degree Lr = 48 allows an almost perfect recovery
of the low-resolution (degree Lg = 36) MSL signal if an
ideal low-pass filter in the frequency domain is applied. The
question is whether this also applies to smaller areas. Fur-
thermore, we found that for the oceans as target area, almost

all Slepian basis functions are needed to obtain a good fit
to the data. Using all (Lg + 1)2 Slepian functions, however,
is equivalent with a spherical harmonic expansion complete
to degree Lg . In that case, however, using a Slepian basis
does not offer any advantage compared to spherical harmon-
ics. Moreover, the condition number of the normal matrix
increases exponentially with increasing bandwidth Lg both
for Slepian functions and spherical harmonics, which makes
regularization indispensable, at the cost of additional bias.
If significantly less than (Lg + 1)2 Slepian functions allow
a good least-squares fit to the data, this would reduce the
computational costs compared to spherical harmonics and
would also reduce the condition number, thus making regu-
larization superfluous. In order to answer these questions, we
repeat Experiment I with a smaller target domain Ω0, which
is now a spherical cap of radius 40◦ in the Pacific Ocean
centered at 210◦ longitude and 5◦ southern latitude.

Table 2 summarizes the main results. First of all, we
observe that a direct least-squares fit of a spherical harmonic
expansion complete to degree Lr = 48 followed by a trun-
cation at degree Lg = 36 now has an rms of 0.369 m and
thus fails to recover the low-resolution MSL signal with an
accuracy of a few centimetres. This is completely different
from the results of Experiment I, but in line with what could
be expected based on the experiment in Sect. 3. If the size
of the domain Ω0 decreases, the distribution of the energy
over the spherical harmonic coefficients is no longer pre-
served because the spherical harmonics are not orthogonal
over Ω0. Therefore, a hard truncation of the expansion at
degree Lg does not allow to recover the original spectrum at
degrees l ≤ Lg , which explains the poor performance of this
approach for domains significantly smaller than the whole
sphere. The fact that this method still performs better than
the iterative spherical harmonic approach and the Slepian
approach is due to the fact that a spherical cap of radius 40◦
is large enough to allow for this. However the performance of
this approach will further decrease if the size of Ω0 decreases.

When using Slepian functions, we obtain the lowest rms
approximation error if significantly less than the total num-
ber of basis functions, which is 1,369 for Lg = 36, are used.
The optimal number of Slepian functions turned out to be 289
if only MSL data inside Ω0 are used and 1,179 if the MSL
data are complemented by geoid data outside Ω0. Note that
the Shannon number of the 40◦ spherical cap is K = 161.

The attempted recovery of a signal complete to degree
Lg = 36 on a spherical cap of radius 40◦ from data com-
plete to degree Lr = 48 is an unstable problem no matter
what basis functions are used and what approach is followed.
Strong regularization was necessary in all cases to obtain a
solution. We always used a truncated SVD for regulariza-
tion, which may not be the optimal choice due to its global
character. A better choice could be a regularization scheme
which constrains the MSL variance over land as used by
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Table 2 Experiment III: statistics of the differences between “true”
and approximated low-resolution MSL signal, evaluated at a set of
control points (columns 2–5) and the rms difference between the
data and the approximated low-resolution MSL signal (column 6).

Lr = 48, Lg = 36. The “true” low resolution MSL signal is the sum
of the EGM2008 geoid and the DOT2008A mean dynamic topography
both truncated at degree 36 (cf. Fig. 4). The domain Ω0 is a spherical
cap with radius 40◦

Method Control points Data points

Rms (m) Min (m) Max (m) Mean (m) Rms difference (m)

Iterative SH, L = Lr ,
geoid data outside, Gaussian filter

0.462 −1.66 2.14 0.006 0.317

Iterative SH, L = Lr ,
geoid data outside, ideal low-pass filter

0.153 −0.572 0.589 −0.001 0.525

Direct SH, L = Lr ,
no data outside Ω0, Gaussian filter

0.462 −1.67 2.14 0.006 0.316

Direct SH, L = Lr ,
no data outside Ω0, Ideal low-pass filter

0.369 −1.37 1.35 0.000 0.637

Direct SH, L = Lg ,
no data outside Ω0

0.342 −3.91 1.90 0.000 0.430

Slepian functions (bandwidth Lg),
no data outside Ω0, Jo = 289

0.499 −3.83 4.31 0.000 0.311

Slepian functions (bandwidth Lg),
geoid data outside Ω0, Jo = 1,179

0.342 −3.91 1.90 0.000 0.430

MSL signal in the band 37 ≤ l ≤ 48 0.874 −7.15 6.46 −0.040

Kusche and Schrama (2005). The condition number will fur-
ther increase if higher resolutions are aimed at, with the risk
of a larger regularization bias, and, therefore, a reduced accu-
racy of the recovered low-resolution MSL signal. For com-
pleteness we want to remark that also Experiment II has been
executed for the spherical cap of 40◦ radius. However, the
main conclusions are the same as for the world’s oceans.

6 Reformulation and solution of the problem

So far we defined the MSL data on the domain Ω0 in terms
of a spherical harmonic expansion complete to degree Lr .
The “true” low-resolution MSL signal on the domain Ω0 has
been identified with the same spherical harmonic expansion,
but now truncated at degree Lg < Lr , where Lg is the maxi-
mum degree of the expansion of the global geoid in spherical
harmonics. Several statistics of the differences between the
methods designed to recover the low-resolution MSL signal
from the MSL data inside Ω0 were used to assess the quality
of the solutions. We found that more or less all methods fail
in the sense that point-wise errors exceed the level of sev-
eral metres, whereas in practice we would like to recover the
low-resolution MSL with errors comparable to the errors in
the MSL data and the geoid model, which are at the level of
a few centimetres.

This definition of the “true” low-resolution MSL signal
is in line with what other authors also used in similar stud-
ies (e.g. Tapley et al. 2003; Albertella et al. 2008; Bingham
et al. 2008). From the viewpoint of a “globalized” MSL sig-
nal (using geoid information on land) this may be justified.
If, however, the MSL is considered to be signal which is
only defined on a part of the sphere, this definition needs

to be reconsidered as the results presented in Sect. 3 have
shown. The reason is that on a domain smaller than the whole
sphere, the degree of the spherical harmonic representation of
a global signal is no longer a measure of its resolution. Usu-
ally, a spherical harmonic representation of a lower maximum
degree is adequate to reproduce the data within acceptable
error bounds. The smaller the size of Ω0, the lower the max-
imum degree needed to represent a given signal.

Moreover, when we want to extract a low-resolution sig-
nal from high-resolution data given on a domain Ω0 ⊂ Ω ,
we need to represent the data in a basis orthogonal on Ω0.
We also showed that not every orthogonal basis is equally
well suited for this. In particular Slepian functions, which
are designed to maximize the concentration of bandlimited
functions in a spatial domain Ω0, are not appropriate here,
because every Slepian basis function depends on all spheri-
cal harmonics. According to Eq. (A-10), the transformation
of a spherical harmonic basis (collected in a vector ŷ) into
the Slepian basis (collected in a vector g) is given by

g = QS ŷ, (18)

where the matrix QS is a full unitary matrix. Hence, every
Slepian basis function is a linear combination of all spheri-
cal harmonics up to the bandwidth L , and all basis functions
have the same bandwidth, which is equal to the maximum
degree of the spherical harmonic basis. This is why we can-
not obtain a low-resolution approximation of a signal repre-
sented in a Slepian basis simply by a truncation of the Slepian
representation. To obtain such an approximation requires
the use of a Slepian basis with a smaller bandwidth, which
involves spherical harmonics of a lower maximum degree.
These low-bandwidth Slepian functions are, however, not
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orthogonal to the Slepian functions representing the full sig-
nal. Moreover, the approximation of a high-resolution signal
using a low-resolution (i.e., low bandwidth) Slepian basis
always causes broadband leakage, which is another conse-
quence of the fact that the Slepian transform matrix QS is a
full matrix.

A suitable orthogonal basis on Ω0 is found if the
well-known Gram–Schmidt orthogonalization procedure is
applied to spherical harmonics (e.g., Golub and van Loan
1996). Let L be the maximum degree of the spherical har-
monic expansion. Then, the new basis functions, which are
orthogonal on Ω0, are related to the spherical harmonics as

qα(x̂) =
L∑

l=0

l∑
m=−l

qlm α Ŷlm(x̂), α = 1, . . . , (L + 1)2,

(19)

where

qlm α = 0 for all l ≥ α. (20)

In matrix-vector notation, this is written as

q = QGS ŷ, (21)

where, due to Eq. (20), QGS is a lower triangular matrix. To
compute the coefficients {qlm α}, we only need to compute
the Cholesky decomposition of the Gram matrix of the basis
functions {Ŷlm}, which is proportional to the matrix D from
Eqs. (A-6)–(A-7), namely

1

|Ω0| D = RRT. (22)

Then,

QGS = R−1, (23)

where R is the lower triangular Cholesky factor. A lower tri-
angular matrix QGS implies that a basis function qα depends
only on spherical harmonics of degree 0 ≤ l ≤ α − 1.
This is a property Slepian basis functions do not possess (cf.
Eq. A-10). It has an important practical implication for the
problem at hand. Suppose the restriction of the geoid to Ω0

is represented in terms of spherical harmonics complete to
degree L (note that commonly L < Lg as shown in Sect. 3,
where Lg is the maximum degree of the global representation
of the geoid in spherical harmonics). Then,

s(g)(x̂) =
Lg∑

l=0

l∑
m=−l

s(g)

lm Ŷlm(x̂)

=
N∑

α=1

s(g)
α qα(x̂), x̂ ∈ Ω0, N = (Lg + 1)2. (24)

In the same way, the MSL data can be written as

s(MSL)(x̂) =
Lr∑

l=0

l∑
m=−l

s(MSL)
lm Ŷlm(x̂)

=
M∑

α=1

s(MSL)
α qα(x̂), x̂ ∈ Ω0, M = (Lr + 1)2.

(25)

Due to property (20), the low-resolution MSL signal that is
spectrally consistent with the restriction of the geoid to Ω0

is

s(MSL)
lr (x̂) :=

N∑
α=1

s(MSL)
α qα(x̂), x̂ ∈ Ω0. (26)

Hence, the MDT can be computed as

s(MDT)(x̂) = s(MSL)
lr (x̂) − s(g)(x̂)

=
N∑

α=1

(
s(MSL)
α − s(g)

α

)
qα(x̂), x̂ ∈ Ω0. (27)

Note that the coefficients {s(MSL)
α } can be computed from

the given MSL data by least-squares. Compared to a least-
squares fit of a Slepian representation, the least-squares fit of
a representation in the basis {qα} does not suffer from broad-
band leakage, which is a direct consequence of Eq. (20).

Table 3 shows the result of Experiment I (cf. Table 1)
with the difference that now the “true” low-resolution MSL
is defined in the basis {qα} with N = 1,369. A geographi-
cal plot of the differences between the “true” low-resolution
MSL signal of Fig. 4, which is used as reference in Table 1,
and the “true” low-resolution MSL signal in the orthogonal
basis {qα}, which is used as reference in Table 3, is shown in
Fig. 6. Note that if Ω0 is identical to the oceans as defined in
Sect. 4.1, the restriction to Ω0 of a global geoid model com-
plete to degree 36 requires (36+1)2 = 1,396 basis functions.
That is why N = 1,369.

For most methods, the fit to the new low-resolution MSL
signal s(MSL)

lr , Eq. (26), is not better than to the low-resolution
MSL signal used in Sect. 5 (compare Table 1 with Table 3).
However, a direct least-squares fit of a spherical harmonic
expansion complete to degree Lg = 36 to the MSL data pro-

vides an almost perfect fit to s(MSL)
lr . The same is valid for

a least-squares fit of 1, 369 Slepian functions of bandwidth
L = 36, because both solutions are equivalent. This surpris-
ing result implies that the unavoidable broadband leakage
in the spherical harmonic solution and the Slepian solution,
respectively, is negligible for the chosen experimental setup.
That is, almost no signal from bandwidth 37 ≤ l ≤ 48 leaks
into the solution, though spherical harmonics are not orthog-
onal over Ω0, and the Slepian solution suffers from broad-
band leakage as shown in Sect. 2. We suppose that this is due
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Table 3 Experiment I (repeated): statistics of the differences between
“true” and approximated low-resolution MSL signal, evaluated at a set
of control points (columns 2–5) and the rms difference between data and

approximated low-resolution MSL signal (column 6). Lr = 48, Lg =
36. The “true” low-resolution MSL is defined in Eq. (26). The domain
Ω0 comprises the world’s oceans defined in Sect. 4.1

Method Control points Data points

Rms (m) Min (m) Max (m) Mean (m) Rms difference (m)

Iterative SH, L = Lr ,
geoid data outside, Gaussian filter

0.537 −7.23 4.08 −0.047 0.499

Iterative SH, L = Lr ,
geoid data outside, ideal low-pass filter

0.577 −7.67 5.34 −0.030 0.859

Direct SH, L = Lr ,
no data outside Ω0, Gaussian filter

0.537 −7.14 4.10 −0.047 0.499

Direct SH, L = Lr ,
no data outside Ω0, Ideal low-pass filter

0.596 −7.78 5.38 −0.030 0.872

Direct SH, L = Lg ,
no data outside Ω0

1.40 × 10−8 −5.29 × 10−8 5.77 × 10−8 1.57 × 10−9 0.610

Slepian functions (bandwidth Lg),
no data outside Ω0, Jo = 1,369

1.20 × 10−9 −7.87 × 10−9 1.19 × 10−8 2.94 × 10−11 0.685

Slepian functions (bandwidth Lg),
geoid data outside Ω0, Jo = 1,322

0.457 −6.49 4.48 −0.014 0.772

MSL signal in the band 37 ≤ l ≤ 48 0.874 −7.15 6.46 −0.040

Fig. 6 Difference between the
“true” low-resolution MSL
signal used in the experiments of
Sect. 5 (cf. Fig. 4) and the “true”
low-resolution MSL signal in
the orthogonal basis {qα}
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to the fact that in our experiment the “true” low-resolution
MSL signal has a moderate maximum degree (Lg = 36)
and, at the same time, the target area Ω0 constitutes a sig-
nificant part of the whole sphere. We expect, however, that
broadband leakage will become significant for larger spher-
ical harmonic degrees Lg . The latter is relevant for practi-
cal applications, because state-of-the-art global geoid mod-
els based on data of the dedicated gravity missions CHAMP,
GRACE, and GOCE will be complete to degree 200–250.
Therefore, we expect that the direct least-squares fit of a
spherical harmonic expansion complete to degree Lg and
the equivalent Slepian approach using all (Lg + 1)2 basis
functions do not provide an accurate enough approximation
to the low-resolution MSL signal s(MSL)

lr , Eq. (26), for spatial
resolutions relevant in practical applications.

Instead, the correct solution to the problem at hand needs
to be found as follows: suppose (i) a global geoid model is
given in terms of an expansion in spherical harmonics com-

plete to degree Lg; (ii) MSL data are given on a region Ω0;
(iii) the resolution of the MSL data is higher than that of the
geoid model. Then,

1. Synthesize geoid data on Ω0 and compute a least-squares
fit of a spherical harmonic expansion complete to degree
L . The corresponding spherical harmonic coefficients are
denoted s(g)

lm . Usually, L < Lg , in particular for regions
with |Ω0| 
 4π as found in Sect. 3. The choice of
the maximum degree L depends on how well the model
should fit the data. In practical applications this depends
on the target accuracy of the MDT and/or the accuracy
of geoid and MSL data. If the geoid is not given in terms
of a spherical harmonic expansion, but as a set of scat-
tered or gridded data, the spherical harmonic synthesis is
dropped.

2. Compute the Gram matrix for the spherical harmonics
complete to degree L , Eq. (22).
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3. Compute the Cholesky decomposition of the Gram
matrix: RRT.

4. Invert the lower triangular Cholesky factor: QGS = R−1.
5. Compute the N = (L + 1)2 orthogonal basis functions

according to Eqs. (21) and (23).
6. Compute the N coefficients s(MSL)

α by a least-squares fit
to the given MSL data or by numerical integration.

The representation of the MDT is then given as

s(MDT)(x̂) =
N∑

α=1

s(MSL)
α qα(x̂)

−
L∑

l=0

l∑
m=−l

s(g)

lm Ŷlm(x̂), x̂ ∈ Ω0. (28)

Though the correct solution to the problem at hand has been
found, the question is whether it is useful in practice. The lat-
ter means that it must be possible to construct the orthogonal
basis {qα} using Gram–Schmidt for practically relevant tar-
get regions Ω0 and spatial resolutions. Unfortunately, several
test computations reveal that the construction of the orthogo-
nal basis fails already for moderate spatial resolutions and/or
medium-size target regions Ω0. For instance, for the oceans
as defined in Sect. 4.1 we were able to construct the orthog-
onal basis {qα} for a maximum degree 36. However, the
Cholesky factorization could not be performed anymore for a
maximum degree 48. Test computations for a spherical cap of
radius 40◦ failed already for much lower maximum degrees.
These problems related to the computation of the orthogonal
basis are caused by the ill-conditioning of the Gram matrix,
Eq. (22). The condition number of the Gram matrix grows
exponentially with (a) the maximum degree L and (b) the size
of the target region Ω0. The higher L and the smaller Ω0,
the larger the condition number. Therefore, for all practically
relevant situations, we need to apply regularization to com-
pute the Cholesky factor R and its inverse. We found, how-
ever, that even minimal regularization already destroys the
orthogonality of the basis, and the approximation errors attain
values of several metres or become even meaningless. Note
that Hwang (1991) did extensive numerical experiments for
the construction of an orthogonal basis for the oceans using
Gram–Schmidt orthogonalization for spherical harmonics.
However, successful computations of the basis functions are
documented only up to a maximum degree 28.

7 Summary and conclusions

In this paper, we investigated whether bandlimited, spa-
tially concentrated Slepian functions provide a low-resolu-
tion MSL signal that is spectrally consistent with a given
geoid restricted to an incomplete part of the sphere. The

recovered low-resolution MSL signal should have an accu-
racy that is comparable to the accuracy of the geoid and/or
the MSL data, typically on the order of a few centimetres. In
a number of numerical simulations, we quantified the errors
of the Slepian approach and compared them with errors of
alternative approaches suggested in the literature.

We showed that Slepian functions are not suited to provide
a MSL signal that is spectrally consistent with a given geoid.
Though they are orthogonal on the target domain, they lack
the important property that the matrix, which transforms a
spherical harmonic basis into the Slepian basis, is lower-tri-
angular. Therefore, a least-squares fit of a truncated Slepian
basis to given MSL data suffers from broadband leakage,
hence, is unable to extract the low-resolution MSL signal
with sufficient accuracy.

The iterative spherical harmonic approach proposed by
Albertella et al. (2008) performs slightly worse than the Sle-
pian approach, though the differences are not significant for
practical applications. Moreover, we could show that this
rather time consuming method is equivalent to a direct least-
squares fit of a spherical harmonic representation to the given
MSL data, which is numerically much easier to implement
and less time-consuming. Several variants of the iterative
spherical harmonic approach and the Slepian approach do
not provide significantly better results for the world’s oceans.

We also showed that the definition of the “true” low-reso-
lution MSL signal on a domain Ω0 ⊂ Ω requires some care.
A reasonable definition requires an orthogonal basis on Ω0,
which is linked to the spherical harmonic basis by a lower-tri-
angular matrix. Then, the “true” low-resolution MSL signal
is a truncated version of the series expansion of the MSL
data in the orthogonal basis. This orthogonal basis can be
constructed using Gram–Schmidt orthogonalization. In this
study, we applied Gram–Schmidt to the spherical harmonics.
We showed that the construction of the basis from spherical
harmonics is a highly unstable problem in particular for small
target areas and/or high-resolution geoid data. Consequently,
the Gram–Schmidt orthogonalization for spherical harmon-
ics breaks down already for geoid models of maximum
degree, say, 48. The orthogonality of the constructed basis is
very sensitive to any regularization, which implies that reg-
ularization is not a solution to the instability problem. Using
128-bit arithmetic may allow the Cholesky factorization for
somehow higher maximum degrees, but will not be enough
for the more recent high-resolution GRACE/GOCE-based
geoid models. Whether the application of Gram–Schmidt to
other basis functions allows the construction of an orthogo-
nal basis for high-resolution geoid data remains to be inves-
tigated.
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Appendix A: the spherical Slepian basis

Following the notation of Simons (2010) we use bold, ser-
ifed fonts (e.g., f, D) for vectors or matrices that are entirely
composed of spectral quantities, and bold, sans-serif fonts
(e.g. f, Y) for those that depend on at least one spatial vari-
able. The colatitude of a geographical point x̂ on the surface
Ω of the unit sphere is denoted by ϑ and the longitude by
λ, with 0 ≤ ϑ ≤ π and 0 ≤ λ < 2π . We use Ω0 to denote
a region of Ω , of area |Ω0|, within we seek to concentrate
a bandlimited function of position x̂. Using orthonormalized
real surface spherical harmonics Ŷlm(x̂), whereby∫
Ω

Ŷlm(x̂)Ŷl ′m′(x̂) dΩ = δll ′δmm′ , (A-1)

we can express a square-integrable real function f (x̂) on the
surface of the unit sphere as

f (x̂) =
∞∑

l=0

l∑
m=−l

flm Ŷlm(x̂), flm =
∫
Ω

f (x̂)Ŷlm(x̂) dΩ.

(A-2)

The bandlimited Slepian basis (bandwidth L) that is spatially
concentrated to the region Ω0 is the collection of functions
that have no power outside the spectral interval 0 ≤ l ≤ L
but as much of their power as possible concentrated within
Ω0:

g(x̂) =
L∑

l=0

l∑
m=−l

glm Ŷlm(x̂), glm =
∫
Ω

g(x̂)Ŷlm(x̂) dΩ,

(A-3)

for which the spatial concentration factor

λ =

∫
Ω0

g2(x̂) dΩ∫
Ω

g2(x̂) dΩ

= maximum. (A-4)

Note that by convention, λ is also used to indicate the
longitude. Its exact meaning will be clear from the context.
Maximizing Eq. (A-4) can be achieved in the spectral domain
by solving the algebraic eigenvalue problem:

D g = λg, (A-5)

where g is a (L + 1)2-dimensional vector that represents a
Slepian eigenfunction expressed in spherical harmonics, i.e.
g = (g00 · · · glm · · · gL L)T and D is the (L + 1)2 × (L + 1)2-
dimensional spectral-basis projection operator or localiza-
tion kernel:

D =
⎛
⎜⎝

D00,00 . . . D00,L L
...

...

DL L ,00 . . . DL L ,L L

⎞
⎟⎠ , (A-6)

whose elements Dlm,l ′m′ are given by

Dlm,l ′m′ =
∫
Ω0

Ŷlm(x̂)Ŷl ′m′(x̂) dΩ. (A-7)

As a consequence of the symmetry DT = D, the eigen-
vectors {gα : α = 1, . . . , (L + 1)2} are mutually orthogonal.
When choosing them to be orthonormal, we have

gT
αgβ = δαβ and gT

αD gβ = λαδαβ, (A-8)

where δαβ is the Kronecker delta defined as

δαβ =
{

1 if α = β,

0 otherwise.
(A-9)

The corresponding spatial Slepian functions,

gα(x̂) =
L∑

l=0

l∑
m=−l

glm αŶlm(x̂), α = 1, . . . , (L + 1)2,

(A-10)

are orthonormal over the whole sphere Ω and orthogonal
over the region Ω0.

Rather than determining bandlimited functions that are
concentrated in a spatial region of interest Ω0 we may
also find spacelimited functions h(x̂) that are concen-
trated in a spectral interval 0 ≤ l ≤ L . Instead of
Eq. (A-5), the h(x̂) satisfy the spatial-domain eigenvalue
equation∫
Ω0

D(x̂, x̂′)h(x̂′) dΩ ′ = λh(x̂), for x̂ ∈ Ω0, (A-11)

whose kernel is given by the bandlimited delta function

D(x̂, x̂′) =
L∑

l=0

(
2l + 1

4π

)
Pl(x̂ · x̂′), (A-12)

and where Pl is the Legendre function of degree l. Eqs. (A-5)
and (A-11) have identical eigenvalues λ. In both cases the
eigenvalues are a measure of the quality of the spatiospectral
concentration. In the latter case, λ expresses the spectral con-
centration
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λ =
∑L

l=0

∑l

m=−l
h2

lm∑∞
l=0

∑l

m=−l
h2

lm

= maximum. (A-13)

The sum of the eigenvalues, which is known as the Shannon
number, K , is given by

K =
(L+1)2∑
α=1

λα =
L∑

l=0

l∑
m=−l

Dlm,lm =
∫
Ω0

D(x̂, x̂) dΩ

= (L + 1)2 |Ω0|
4π

. (A-14)

From Eq. (A-4) it follows that the closer an eigenvalue λ is to
1 the better the corresponding Slepian function g(x̂) is con-
centrated within Ω0. If an eigenvalue is small, i.e., λ 
 1,
the corresponding Slepian function is mostly concentrated
in the domain Ω̄0 = Ω − Ω0. Hence, the Shannon number
K , Eq. (A-14), is roughly equivalent to the number of well
concentrated (λ ≈ 1) eigenfunctions.

If the first K eigenfunctions g1, g2, . . ., gK are well con-
centrated in the region Ω0, the remaining eigenfunctions
gK+1, gK+2, . . ., g(L+1)2 are well concentrated in the com-
plementary region Ω̄0. From Eq. (A-14) it then follows
that when the area of region Ω0 is a small fraction of the
sphere, K 
 (L + 1)2 holds true. By implication there are
many more eigenfunctions with insignificant eigenvalues
(λ ≈ 0) than well-concentrated eigenfunctions with signif-
icant eigenvalues (λ ≈ 1). If on the other hand the area
|�0| approximates the area of the sphere, K ≈ (L + 1)2,
i.e. there will be many more well concentrated than well-
excluded eigenfunctions.

Bandlimited spatially concentrated Slepian functions
designed for a given domain Ω0 form a basis for bandlimited
signals anywhere on the sphere. When ranked by decreasing
eigenvalue λ, the first J members of such a Slepian basis
provide efficient constructive approximations to bandlimit-
ed functions s(x̂) that are themselves spatially concentrated
inside the same region Ω0:

s(x̂) =
L∑

l=0

l∑
m=−l

slm Ŷlm(x̂) =
(L+1)2∑
α=1

tαgα(x̂)

≈
J∑

α=1

tαgα(x̂), x̂ ∈ Ω0, (A-15)

where tα are the Slepian expansion coefficients. Due to the
characteristic flat, and then rapidly declining, shape of the
eigenvalue spectrum, taking J = K will provide very reason-
able approximations to s(x̂) within the region Ω0. Equality
prevails globally when J = (L+1)2. From an inverse model-
ing standpoint, the optimal (in the mean-squared error sense)
truncation level J in estimating a localized signal from noisy
data over the region is determined by the signal-to-noise ratio.

In the noiseless case, J = (L + 1)2 holds true, while in the
special case of white noise contaminating a white signal, the
optimal value for J is when the corresponding eigenvalue
λJ = N/S, with N the noise variance and S the signal vari-
ance. For more details, see Simons and Dahlen (2006).

In geodetic practice we are likely to have M samples of a
certain signal s(x̂), which, collected in a vector s, allows us
to rewrite Eq. (A-15) as:

s = YT
Ls = YT

LGt = GTt, (A-16)

where s = (s(x̂1) · · · s(x̂ j ) · · · s(x̂M ))T, s = (s00 · · · slm · · ·
sL L)T, and t = (t1 · · · tα · · · t(L+1)2)T, and, following Simons
(2010),

YL =

⎛
⎜⎜⎜⎜⎜⎝

Ŷ00(x̂1) . . . Ŷ00(x̂ j ) . . . Ŷ00(x̂M )

... Ŷlm(x̂ j )
...

ŶL L(x̂1) . . . ŶL L(x̂ j ) . . . ŶL L(x̂M )

⎞
⎟⎟⎟⎟⎟⎠ , (A-17)

G=

⎛
⎜⎜⎜⎜⎜⎝

g1(x̂1) . . . g1(x̂ j ) . . . g1(x̂M )

... gα(x̂ j )
...

g(L+1)2(x̂1) . . . g(L+1)2(x̂ j ) . . . g(L+1)2(x̂M )

⎞
⎟⎟⎟⎟⎟⎠ ,

(A-18)

G =

⎛
⎜⎜⎜⎜⎜⎝

g00 1 . . . g00 α . . . g00 (L+1)2

... glm α

...

gL L 1 . . . gL L α . . . gL L (L+1)2

⎞
⎟⎟⎟⎟⎟⎠ . (A-19)

In this notation, Eq. (A-3) is rewritten as G = GTYL , and the
left-hand side of Eq. (A-8) becomes GTG = I, the identity
matrix.

Appendix B: experiment II

We start with Eq. (5), which we split into a low-degree and
a high-degree portion as

w = YT
Lg

wLg = YT
L wL + YT

→Lg
w→Lg . (B-1)

Instead of using the functional model

w = YT
L wL (B-2)

in combination with the classical least-squares cost function

Φ(w) = (w − YT
L wL)

TCw
−1(w − YT

L wL), (B-3)

where Cw is the data noise variance-covariance matrix, we
use the cost function

123



The Slepian basis, as a means to obtain spectral consistency 627

Φ̃(w) = vTCw
−1v + wT

LCL
−1wL + wT

→Lg
C→Lg

−1w→Lg ,

(B-4)

where

v := w − YT
L wL − YT

→Lg
w→Lg . (B-5)

Here, CL
−1 and C→Lg

−1 define weight matrices in model
(spectral) space. Minimizing Φ̃(w) gives

ŵL =
(
YLC−1YT

L + CL
−1

)−1
YLC−1 w, (B-6)

with the data-space anti-leakage operator

C = Y→Lg C→Lg YT
→Lg

+ Cw. (B-7)

The advantage of the least-squares solution Eq. (B-6) is that
it is not biased by w→Lg (Trampert and Snieder 1996).

In order to investigate the performance of the estimator
Eq. (B-6), we use the same data as in Experiment I. We
define diagonal covariance matrices in the spherical har-
monic domain using Kaula’s rule for degrees l ≥ 2 and the
mean variance per coefficient computed from the data for
degrees 0 and 1. The diagonal covariance matrix CL is prop-
agated into the Slepian domain providing a full covariance
matrix (cf. Eq. B-4). Numerical instabilities did not allow
the computation of a solution for noiseless data. Therefore,
zero-mean white noise with a standard deviation of 0.04 m
was added to the data (0.04 is the accuracy we expect for
MSL from radar altimetry, see e.g., Andersen and Knudsen
2009), and the correct noise-covariance matrix Cw was used.

Scaling factors for all three matrices were computed using
variance component estimation (VCE). For the spherical har-
monic approach, the estimated variance components are 0.99
for the data, 103.1 for the spherical harmonic coefficients
complete to degree 36, and 201.6 for the spherical har-
monic coefficients from degree 37 ≤ l ≤ 48. For the Slepian
approach, 1,346 basis functions gave the best solution. The
corresponding variance components are 0.99 for the data,
2.33 × 104 for the first 1,346 Slepian functions, 3.47 × 107

for the neglected, 23 Slepian functions, and 185.3 for the
spherical harmonic coefficients from degree 37 ≤ l ≤ 48.
Nevertheless, the estimation of the parameters turned out
to be very unstable, and the approximation errors are quite
large. This can be explained by the fact that we were forced
to ignore the correlations among the used and neglected basis
functions.

For the direct spherical harmonic approach with geoid
data on land this can be explained by the Gibbs effects along
the boundary of the domain Ω0. Note that for this particu-
lar experiment the total number of observations was reduced
from 13,000 to 10,000 in order to be able to solve the sys-
tem of equations. For the direct spherical harmonic approach
with only MSL data, there is no straightforward explanation
for the poor performance. It is not caused by leakage from
the signal in the band 37 ≤ l ≤ 48 into the low-resolution
MSL solution as shown in the last column of Table 4: the rms
of the residuals is close to the MSL signal in the bandwidth
37 ≤ l ≤ 48. This is not in line with the findings of Trampert
and Snieder (1996). We explain the discrepancy by the differ-
ent set-up of our experiment compared with the experiment
considered by Trampert and Snieder (1996). The latter is
based on a (moderately) non-homogeneous, but global data
distribution. The lack of data on land and in the polar regions
as considered in our experiment is an example of an extremely
non-homogeneous, global data distribution. Our experiment
indicates that the method of Trampert and Snieder (1996) is
not well suited for this type of data distribution. We also tested
different power laws to describe the signal behavior in the
basis of spherical harmonics, but the quality of the results did
not change significantly. We do wish to mention that when
we repeated this experiment with Lr = 18 and Lg = 12, the
method of Trampert and Snieder (1996) allowed us to per-
fectly recover the low-resolution MSL signal. No instabili-
ties have been observed and we could also compute without
problems a solution with noiseless data. This is in line with
the results obtained with the experiment described in Sect. 3
(cf Fig. 1b): the condition number depends on the size of the

Table 4 Experiment II: statistics of the differences between “true”
and approximated low-resolution MSL, evaluated at a set of control
points and the rms of residuals. All solutions minimize the cost func-
tion Eq. (B-4). The “true” low resolution MSL signal is the sum of the

EGM2008 geoid and the DOT2008A mean dynamic topography both
truncated at degree 36 (cf. Fig. 4). The domain Ω0 comprises the world’s
oceans defined in Sect. 4.1

Method Control points Data points

Rms (m) Min (m) Max (m) Mean (m) Rms of residuals (m)

Direct SH approach, cost function Eq. (B-4),
noisy MSL data, No data on land

0.175 −1.26 1.05 −0.002 0.856

Direct SH approach, cost function Eq. (B-4),
noisy MSL data, geoid data on land

0.080 −0.671 0.446 0.003 0.875

Slepian approach, cost function Eq. (B-4),
noisy MSL data, no data on land

0.262 −2.23 3.52 0.003 0.831

MSL signal in the band 37 ≤ l ≤ 48 0.874 −7.15 6.46 −0.040
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domain Ω0 and on the bandwidth. For a given domain Ω0,
the condition number increases exponentially with increas-
ing bandwidth.
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