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Abstract

In this paper, we propose two mixed-effects models for Genetic Analysis Workshop 18 (GAW18) longitudinal blood
pressure data. The first method extends EMMA, an efficient mixed-model association-mapping algorithm. EMMA
corrects for population structure and genetic relatedness using a kinship similarity matrix. We replace the kinship
similarity matrix in EMMA with an estimated correlation matrix for modeling the dependence structure of repeated
measurements. Our second approach is a Bayesian multiple association-mapping algorithm based on a mixed-effects
model with a built-in variable selection feature. It models multiple single-nucleotide polymorphisms (SNPs)
simultaneously and allows for SNP-SNP interactions and SNP-environment interactions. We applied these two methods
to the longitudinal systolic blood pressure (SBP) and diastolic blood pressure (DBP) data from GAW18. The extended
EMMA method identified a single SNP on Chr5:75506197 (p-value = 4.67 × 10−7) for SBP and three SNPs on
Chr3:23715851 (p-value = 9.00 × 10−8), Chr 17:54834217 (p-value = 1.98 × 10−7), and Chr21:18744081 (p-value = 4.95 ×
10−7) for DBP. The Bayesian method identified several additional SNPs on Chr1:17876090 (Bayes factor [BF] = 102),
Chr3:197469358 (BF = 69), Chr15:87675666 (BF = 43), and Chr19:41642807 (BF = 33) for SBP. Furthermore, for SBP, we
found a single SNP on Chr3:197469358 (BF = 69) that has a strong interaction with age. We further evaluated the
performances of the proposed methods by simulations.

Background
Genome-wide association studies (GWAS) have been
used for examining genetic variants associated with
blood pressure and hypertension [1,2]. Because blood
pressure changes over time, it is important to collect
multiple blood pressure measurements to study time-
dependent genetic effects. Genetic Analysis Workshop
18 (GAW18) data included systolic blood pressure (SBP)
and diastolic blood pressure (DBP) measurements from
a human whole genome sequencing (WGS) study [3].
The study was longitudinal, and the majority of partici-
pants had three measurements collected at approxi-
mately 5-year intervals. This paper proposes two mixed-
effects models for GAW18 longitudinal SBP and DBP
data. The first approach extends the EMMA method [4],
an efficient mixed-model association-mapping algorithm.
EMMA corrects for population structure and genetic

relatedness using a kinship similarity matrix. We replace
the kinship similarity matrix in EMMA with an esti-
mated correlation matrix for the dependence structure
of the multiple measurements from each individual.
With this extended approach, hundreds of thousands or
even millions of association tests can be performed effi-
ciently. However, this approach tests only one single-
nucleotide polymorphism (SNP) at a time and may have
low power to map SNPs that interact with each other.
Furthermore, it is not straightforward to tweak EMMA
software for testing SNP by time interaction, an impor-
tant question that can be addressed through longitudinal
data. To address these concerns, we developed a Baye-
sian method based on the composite model space fra-
mework of Yi et al [5-7]. The proposed method fits
multiple SNPs simultaneously. In addition, it allows for
SNP-SNP interactions and SNP-time interactions.
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Methods
Extended EMMA
For testing association between a given SNP and the
longitudinal phenotype, we fit the mixed-effects model

yi = μi + xei β
e + xgi β

g + ui + ei(i = 1, ...,n) (1)

where yi = (yi1, ..., yini)
T is the ni × 1 phenotype vector

of individual i; μi = μ1ni with μ being the grand mean and
1ni being the ni × 1 vector whose elements are all equal to
1; xei is the design matrix corresponding to nongenetic
covariates (e.g., time), and βe is the associated nongenetic
effects; xgi is the numerically coded genotype of individual i
and βg is the corresponding SNP effect. In the model, we
assume random effect ui ∼ N(0, σ 2

g Ki) where Ki is an
ni × ni matrix, and random error ei ∼ N(0, σ 2

e Ini). The
SNP effect can be tested as H0 : βg = 0 versus H1 : βg �= 0
via the likelihood ratio test. For GWAS or WGS data, this
test needs to be performed with a large number of SNPs,
which can be computationally intensive if we treat Kis as
the unknowns and estimate them jointly with the fixed
effects. EMMA [4] is an efficient algorithm originally
developed for GWAS data in which samples are poten-
tially structured. EMMA models the structure effect via a
similarity matrix. An R package that implements EMMA
can either estimate the similarity matrix using genotype
data or take any similarity matrix provided by users. We
tweak EMMA for our purpose. We provide EMMA with
the following similarity matrix K = diag(K̂1, K̂2, ..., K̂n)
where K̂is are the estimated correlation matrices from
model (1) in which βg is set to 0. The idea of estimating
Kis this way is not new and has been used in EMMAX [8],
a fast version of EMMA. These estimates should be rea-
sonable unless some SNPs have large effects, which is rare
for most complex traits.

Bayesian multiple QTL mapping
To further identify SNPs interacting with each other and
with other nongenetic factors, such as time, we consider
the following mixed-effects model

yi = μi + xei β
e + xgi β

g + xggi βgg + xgei βge + ui + ei
= μi + xiβ + ui + ei(i = 1, ..., n)

(2)

where xi[= (xei , x
g
i , x

gg
i , xgei )] is the design matrix corre-

sponding to nongenetic factors, p putative SNPs, two-
way interactions between p SNPs (resulting in total of p
(p−1)/2 terms) and other selected SNP-environment
interactions (for GAW18 data, we consider p SNP-age
interactions); β[= (βeT ,βgT ,βggT ,βgeT)T] is the vector of
all fixed effects. We define μi the same way as in model
(1). The random effects ui and ei are also assumed to
follow the same distributions as described in model (1).
Model (2) includes the effects of all putative SNPs; thus,

the number of such effects can be large. To identify
SNPs associated with the trait of interest, we use a Baye-
sian variable selection procedure in which we use a set
of latent binary variables γk(k = 1, ..., q) to indicate which
of the q genetic effects (be they main genetic effects,
epistasis effects and/or SNP by environment interac-
tions) are associated (γk = 1) or not associated (γk = 0)
with the trait.
As in model (1), we assume matrix Ki is known. We

apply the Cholesky decomposition to Ki such that
Ki = MiM

T
i where Mi is the ni × ni lower triangular Cho-

lesky decomposition matrix of Ki. Then model (2) can be
reparameterized as yi = μi + xiβ + σgMibi + ei where
bi = (bi1, ..., bini )

T ∼ N(0, Ini). We use the same prior dis-
tributions for μ, β, γ = (γ1, ..., γq)T, and σ 2

e in Yi et al [7].
We set the prior of σg to N+(mg0, s2g0), where N+(μ0, σ 2

0 )
is the positive truncated normal density with mean μ0

and variance σ 2
0 , and both mg0 and s2g0 are prespecified

hyperparameters. The proposed method has been imple-
mented upon the widely used R package, R/qtlbim [9] for
these GAW18 longitudinal data.

Results and discussion
GAW18 data
The GAW18 data included 849 individuals with both
phenotype and imputed genotype data from 20 extended
pedigrees. Each sample was measured multiple times on
their blood pressures over approximately 5-year intervals.
Among these 849 individuals, 139 were genetically unre-
lated and were measured for age, sex, medication use,
smoking status, and blood pressure. Our analysis was
restricted to the 139 unrelated individuals. The number
of SBP and DBP ranged from one to four for each sam-
ple. WGS data provided by the GAW18 data had
8,348,674 SNPs from odd numbered autosomes. All
SNPs provided passed the initial quality control checking,
but among 2,796,608 SNPs with minor allele frequency
(MAF) greater than 0.05, 17,463 of them failed Hardy-
Weinberg equilibrium (HWE) test (with p-value < 0.05/
2,796,608, a Bonferroni corrected genome-wide thresh-
old). We removed all SNPs with MAFs less than 0.05
plus those not passing the HWE test, resulting in
2,779,145 SNPs for the subsequent analyses.
To check population outliers and potential population

substructure, we generated a subset of SNPs that are not
in high linkage disequilibrium (LD) with each other (i.e.,

r2 < 0.5) and performed the multidimensional scaling
(MDS) analysis in PLINK [10]. Pairwise scatter plots of
the top four MDS scores showed that the 139 individuals
are homogeneous in terms of their ethnicities. However,
two samples, T2DG0400207 and T2DG0400247, have an
estimated IBD value of 0.3 between them, indicating that
they are likely related. In our analysis, we retained all 139
samples because the number of putatively related
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samples is small and their inclusion should have a negli-
gible effect on our analysis results.
We applied the two proposed procedures to these fil-

tered GAW18 data on the two log-transformed pheno-
types, log(SBP) and log(DBP). Five covariates (age, age2,
sex, medication use, and smoking status) were included
for analyses. We fitted these data with different covariance
matrices in SAS 9.2 and selected the spatial power covar-
iance structure for the downstream analysis based on the
AIC criteria. Specifically, we let cov(yij, yij′) = σ 2ρdi,jj′,
where di,jj′ is the time distance between the jth and j′th
examinations for individual i. After obtaining the para-
meter estimate of ρ, ρ̂ from model (1) with βg = 0, we
substituted the kinship matrix K in EMMA by
K = diag(K̂1, K̂2, ..., K̂n)where K̂i = {ρ̂di,jj′ }. Figure 1(a) dis-
plays the Manhattan plots of the two phenotypes
from the extended EMMA model. For SBP, one
SNP on Chr5:75506197 (P = 4.67 × 10−7) reached the
genome-wide significance (p − value < 5 × 10−7, a
cutoff suggested by Burton et al [11]). For DBP, three
SNPs on Chr3:23715851 (p − value = 9.00 × 10−8),
Chr17:54834217 (p − value = 1.98 × 10−7) and Chr21:
18744081 (p − value = 4.95 × 10−7) exceeded the gen-
ome-wide significance.
Because of the limited sample size, it is not feasible to

include all available SNPs in our Bayesian analysis. For
each phenotype, we selected a list of 3000 top-ranked

SNPs that are not highly correlated with each other
(with correlation < 0.95 to avoid multicollinearity) from
the extended EMMA for the Bayesian analysis. We
applied this Bayesian method with the same covariates
used in the extended EMMA method. For all analyses,
the MCMC algorithm ran for 4 × 105 iterations after
the first 1000 burn-in iterations were discarded. The
chain was then thinned for every 40 iterations, yielding

104 MCMC samples for the posterior analysis. Based on
the posterior inclusion probability of each SNP, the
Bayes factor (BF) (see [6,7] for details) was estimated
and used to judge the importance of each SNP. Figure 1
(b) shows the Manhattan plots of 2ln(BF) for the com-
bined genetic effects of each SNP, which include the
main effects, epistasis effects, and SNP-age interactions.
We found several additional SNPs with strong signals
(BF > 30 as suggested by Yandell et al [12]) on
Chr1:17876090 (BF = 102), Chr3:197469358 (BF = 69),
Chr15:87675666 (BF = 43), and Chr19:41642807 (BF =
33) for SBP. No new SNPs were found for DBP. For
SBP, we found one SNP located on Chr3:197469358
(BF = 69) has a strong interaction with age.

Simulations
To evaluate the performances of the proposed methods,
we conducted the following simulations. From the 3000
top-ranked SBP SNPs previously selected, we randomly

Figure 1 Manhattan plots on Genetic Analysis Workshop 18 (GAW18) longitudinal data. (a) Manhattan plots of -log10 (p-value) for systolic
blood pressure (SBP) and diastolic blood pressure (DBP) from the extended EMMA. The two dashed horizontal lines represent the genome-wide
thresholds for suggestive (p-value = 10−5 and significant (p-value = 5 × 10−7) associations. (b) Manhattan plots of 2 in (BF) for the proposed
Bayesian method. Two dashed horizontal lines represent the genome-wide thresholds for moderate (BF = 10) and strong (BF = 30) associations.
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picked up 10 of them that are at least 10 Mb apart as
causal SNPs and called them SNP1,...,SNP10. Among the
10 causal SNPs, we let 7 of them have only main
effects, 2 have an epistasis effect, and 1 have an SNP-
age interaction. The estimated correlation matrix
diag(K̂1, K̂2, ..., K̂n) along with σ 2

g = 0.8 was used to
simulate the random effects uis. We set σ 2

e to 1. Specifi-
cally, we simulated data according to the following
model: yi = (SNP1i + ... + SNP7i + SNP8i · SNP9i)1ni + SNP10i · agei + ui + ei

where ui ∼ N(0, σ 2
g Ki) and ei ∼ N(0, σ 2

e Ini). A total of
100 simulations were performed. We compared the two
proposed methods with each other and with two other
existing methods, the original EMMA and R/qtlbim
methods. The last two methods only work for univariate
data, so we applied them to the simulated data with
only first-time measurements used. To make the meth-
ods comparable, we generated the receiver operating
characteristic (ROC) curve for each method as described
later. For a given cutoff of p-value or BF, we calculated
the true and false positive findings as follows: a signifi-
cant finding is claimed to be a true positive finding if it
is located less than 1 Mb from any one of the simulated
causal SNPs; otherwise the finding is false. The ROC
curves with the false-positive rate less than 0.2 are pre-
sented in Figure 2. Intuitively, our two methods that
used all available data are more powerful than their cor-
responding univariate analysis methods that only used
the first-time data. Furthermore, the Bayesian method is

more powerful than the extended EMMA as expected
because (a) the Bayesian model allows for SNP-SNP and
SNP-age interactions, which are totally ignored by the
extended EMMA, and (b) the Bayesian model jointly
model multiple SNPs, but the extended EMMA only
tests one SNP at a time.

Conclusions
In this paper, we developed two mixed-effects models
for the GAW18 longitudinal blood pressure data. The
first approach extends the EMMA method. We replace
the kinship similarity matrix in EMMA with an esti-
mated correlation matrix for dealing with the dependent
structure of the repeated measurements. The second
approach is a Bayesian method that models multiple
SNPs simultaneously and allows for SNP-SNP interac-
tions and SNP-time interactions. The advantages of the
Bayesian method have been clearly demonstrated by our
simulations. Both methods are currently developed for
unrelated samples. The GAW18 data contained
extended pedigrees. Ideally, we should use all available
data in our analysis. What complicates the analysis on
longitudinal pedigree data is that both the correlation
structure of the repeated measurements and the familial
correlation structure of related individuals should be
considered. We are currently extending the two pro-
posed methods for the GAW18 pedigree data. Further-
more, for both our analyses, we assume that the
covariance matrix is known up to a constant. For the
Bayesian model, this assumption can be relaxed and we
are developing a semiparametric approach where the
covariance matrix is assumed unknown. We estimate
the unknown covariance matrix with a modified Cho-
lesky decomposition [13]. Last, our Bayesian model for
GWAS data relies on a set of preselected putative SNPs.
How to select a good set of putative SNPs, especially
those with low marginal effects but high interactions
with other SNPs or environmental factors is challenging
and deserves further investigations.
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