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Abstract The paper offers a universal method for finding a unique or multiple DC
operating points of nonlinear circuits. The developed method is based on the theory
known as a linear complementarity problem (LCP) and the homotopy concept. It is a
combination of Lemke’s method for solving LCP and some variant of the homotopy
method. To express the problem of finding DC operating points in terms of LCP,
an appropriate piecewise–linear approximation of diode characteristic is proposed.
Although the method does not guarantee finding all the DC operating points, usually
it finds them. The method is very fast and remarkably efficient. Numerical examples,
including practical BJT and CMOS circuits having a unique or multiple DC operating
points are given.

Keywords DC analysis · Homotopy method · Linear complementarity problem ·
Transistor circuits

1 Introduction

The basic question of the analysis of nonlinear electronic circuits is finding DC op-
erating points (DC solutions) [2, 23]. The circuits having a unique operating point
are usually analyzed using the Newton–Raphson method [2, 10]. Unfortunately, the
method may be divergent or oscillating if the initial guess is not sufficiently close to
the solution. Even if the method gives the solution, the rate of convergence may be
low, in particular for large sized circuits. The Newton–Raphson method is employed
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Fig. 1 A nonlinear dynamic
circuit (a) and the v–i

characteristic of the tunnel
diode (b)

Fig. 2 Resistive circuit
obtained from the circuit shown
in Fig. 1 after removing the
capacitor C

in the SPICE simulator [8, 12], where different concepts and techniques have been
implemented in order to overcome the convergence problems. These modifications
improve the convergence but make the method complex and consuming more CPU
time.

A broad class of electronic circuits has multiple DC operating points. To explain
when and how they exist, we consider a nonlinear dynamic circuit shown in Fig. 1a,
including a tunnel diode, specified by the characteristic depicted in Fig. 1b. The cir-
cuit can be described by the differential equation

dv

dt
= 1

C

(
E − v

R
− g(v)

)
. (1)

To find the equilibrium points of the circuit, we set to zero dv/dt (remove the capac-
itor), obtaining the algebraic equation

g(v) = E

R
− v

R
. (2)

Equation (2) describes the nonlinear resistive circuit shown in Fig. 2. To solve
this equation, we apply the graphical method illustrated in Fig. 3. As a result, we
find three solutions v∗, v∗∗, v∗∗∗, corresponding to the intersection points A, B, C.
The obtained solutions are called DC operating points or DC solutions. The three
solutions occur for certain values of E and R. Figure 3 shows that for larger value Ẽ

of the voltage source the circuit has a unique DC operating point ṽ∗ corresponding to
the intersection point D. Thus, the existence of multiple DC operating points depends
on the circuit topology, circuit elements and values of the sources.

The DC operating points can be considered as the equilibrium points of the dy-
namic circuit shown in Fig. 1a. The equilibrium points of a dynamic circuit can be
stable or unstable in Lapunov’s sense. Having the equilibrium points (the DC oper-
ating points), we can next apply to each of them an appropriate method based on
Lapunov’s concept, e.g. [16, 17] to separate them into stable (asymptotically stable)
and unstable. In the exemplary circuit shown in Fig. 1, the equilibrium points v∗ and
v∗∗∗ are asymptotically stable, whereas v∗∗ is unstable. The question which of the so-
lutions v∗, v∗∗∗ actually occurs depends on initial conditions in the dynamic circuit
(see Fig. 1).
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Fig. 3 Illustration of a graphical method for finding the DC solutions

Finding multiple DC operating points is an even more difficult task in circuit sim-
ulation. Several methods have been recently proposed for solving this problem, e.g.
[4, 6, 9, 11, 13, 15, 19–22, 24, 25]. Not all the methods developed in the above men-
tioned references determine all the DC operating points. The methods that guarantee
finding all the DC operating points are very time consuming and are capable to an-
alyze only small size circuits. Many commonly used methods in this area are based
on piecewise–linear approximations and computation techniques, e.g. [11, 15, 19, 24,
25].

Thus, different methods and computation techniques can be used depending on
whether the analyzed circuit has a unique or multiple DC operating points. Unfor-
tunately, this question is usually not known in advance and a universal method is
usually required, enabling us to efficiently perform the DC analysis in any case.

Numerous papers devoted to the DC analysis of nonlinear circuits have employed
different variants of the homotopy method, also known as the continuation method,
e.g. [7, 9, 18, 24]. The method deforms the equations describing the circuit by embed-
ding a parameter λ that varies tracing a solution path. Each intersection of this path
with λ = 1 plane is a solution of the equations. The homotopy method is a powerful
tool for finding a unique or multiple DC operating points.

Another interesting approach to the analysis of nonlinear DC circuits is based on
the theory known as a linear complementarity problem (LCP) [3, 5]. To find DC op-
erating points, the circuit is described in the form of LCP and solved using Lemke’s
method. References [15, 25] show some applications of this approach to the DC anal-
ysis of different classes of nonlinear circuits.

In this paper, the problem of finding a unique or multiple DC operating points
of BJT and CMOS circuits is expressed in terms of LCP and solved using an algo-
rithm being a combination of Lemke’s method and some variant of the homotopy
method [3, 5]. The algorithm is easy for computer implementation, very fast and re-
markably efficient. This approach is entirely different than the method proposed in
[22], for finding multiple DC operating points, being a combination of deflation tech-
nique, enabling us to avoid the solutions earlier determined, with some variant of the
Newton–Raphson nodal analysis.

Consider a circuit consisting of bipolar transistors, diodes, resistors and voltage
sources. The transistors are characterized by the Ebers–Moll model composed of two
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Fig. 4 Ebers–Moll model for a npn transistor

Fig. 5 A piecewise–linear
diode characteristic

Fig. 6 Ideal diode characteristic (a) and a model of the diode having the characteristic shown in Fig. 5(b)

diode–controlled source combinations and the emitter, base, and collector resistors
[2] (see Fig. 4). A simple two-segment piecewise-linear characteristic of each diode
included in the Ebers–Moll model or acting alone is shown in Fig. 5.

The characteristic is synthesized using an ideal diode, having the characteristic
shown in Fig. 6a, a voltage source and two resistors as depicted in Fig. 6b. Note that
the reference direction of the voltage v across the ideal diode in Fig. 6 is different
than the reference direction of the voltage vd (see Fig. 5).

A more accurate characteristic of a diode consists of three (or generally m) linear
segments (see Fig. 7a). It can be synthesized by the circuit shown in Fig. 7b.

To describe the circuit, we replace all the diodes by the model shown in Figs. 6b
or 7b and extract the ideal diodes from the circuit. As a result an n-port is created,
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Fig. 7 Three-segment
characteristic of a diode (a) and
its model (b)

consisting of resistors, independent voltage sources and current–controlled current
sources (see Fig. 8). Using the admittance representation of the n-port, we write

i = Gv + b, (3)

where i = [i1 · · · in]T,v = [v1 · · ·vn]T are vectors of the port currents and voltages,
b = [b1 · · ·bn]T is a source vector, G = [gij ]n×n is the short-circuit admittance ma-
trix. The reference directions of the port voltages and currents are as shown in Fig. 8.
Then, the ideal diodes terminating the n-port are described as follows:

ij ≥ 0, vj ≥ 0, ij vj = 0, j = 1, . . . , n. (4)

Thus, the circuit depicted in Fig. 8 has the description

i = Gv + b,
(5)

v ≥ 0, i ≥ 0, iTv = 0.

The problem specified by (5) is called a linear complementarity problem (LCP) [3, 5].
To formulate this problem in a standard form we denote: i = z = [z1 · · · zn]T,v =
x = [x1 · · ·xn]T,b = q = [q1 · · ·qn]T,G = M = [mij ]n×n. Then the LCP is stated as
follows.

Find a vector x ∈ Rn such that for

z = q + Mx (6)

we have

x ≥ 0, z ≥ 0, zTx = 0.

We term xi the complement of zi and vice versa (i = 1, . . . , n).

2 Finding Multiple DC Operating Points Using LCP

To solve the linear complementarity problem, we apply the homotopy approach com-
bined with Lemke’s algorithm [3, 5] as described in the sequel.

First we chose a positive vector d = [d1 · · ·dn]T ∈ Rn such that d + q > 0 and
define the homotopy

zTx = 0, x ≥ 0, z ≥ 0,
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Fig. 8 The circuit with
extracted ideal diodes

z = p − λd + Mx, (7)

where p = [p1 · · ·pn]T = (d + q) > 0 and λ is a real variable. At λ = 0 equation (7)
reduces to z = p + Mx and the solution x = 0 of the homotopy system is obtained.
At λ = 1 we have the original LCP (6).

To create vector d the following heuristic procedure is applied. Find the minimal
value q− , the maximum value q+ of the set {q1, . . . , qn} and the mean value s of
{|q1|, . . . , |qn|}. Next form the interval [d−, d+], where

d− =
{

0.05s − q− if q− < 0,

0.05s if q− ≥ 0,
d+ =

{
1.1q+ if q+ > d−,

1.1(d− + s) if q+ ≤ d−.

Components di(i = 1, . . . , n) of the vector d are obtained by random selection from
the interval [d−, d+], assuming uniform distribution.

To trace the homotopy path, we apply the concept of Lemke’s algorithm [3, 5]. Ac-
cording to this algorithm, we designate either xi or zi to be zero for each i throughout
any step. At each step there are n + 1 zero variables, i.e. for some i both xi = 0 and
zi = 0. One of these variables, called a distinguished variable, is increased by adjust-
ing another variables and λ.

2.1 Sketch of the Algorithm

We start from the solution x = 0 of the homotopy system corresponding to λ = 0 and
substitute it into (7)

z = p − λd, (8)

where p > 0,d > 0 and for λ = 0,z = p. Then we find

λ(1) = min

{
pi

di

}
, i = 1, . . . , n.

Assume that a week condition called a regularity condition [5] is satisfied: for all
solutions (x, λ) to the homotopy system at least n−1 of the variables x,z are greater
than zero. If λ(1) corresponds to i = l, we obtain the point of minimum, such that
zl = 0 and zi > 0 for i = 1, . . . , l − 1, l + 1, . . . , n. Let us take into account lth scalar
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equation of (7), solve it for xl (the complement of zl) and substitute into the other
scalar equations of (7). As a result we have

xl = dl

mll

λ − pl

mll

+ zl

mll

−
n∑

j=1,j �=l

mlj

mll

xj ,

zi =
(

−di + mil

mll

dl

)
λ +

(
pi − mil

mll

pl

)
+ mil

mll

zl (9)

+
n∑

j=1,j �=l

(
mij − mijmlj

mll

)
xj , i = 1, . . . , l − 1, l + 1, . . . , n.

The set of (9) is equivalent to (7) and for λ = λ(1) has the solution: xi = 0, i =
1, . . . , n, with zl = 0, and zi > 0 for i = 1, . . . , l − 1, l + 1, . . . , n. Thus, (x = 0, λ =
λ(1)) is a break-point of the homotopy path. Substituting zl = 0, xj = 0, j =
1, . . . , l − 1, l + 1, . . . , n into (9) yields

xl = dl

mll

λ − pl

mll

, (10)

zi =
(

−di + mil

mll

dl

)
λ +

(
pi − mil

mll

pl

)
, i = 1, . . . , l − 1, l + 1, . . . , n. (11)

We eliminate λ from (11) using (10), obtaining after simple manipulations

zi =
(

pi − di

dl

pl

)
+

(
mil − di

dl

mll

)
xl, i = 1, . . . , l − 1, l + 1, . . . , n, (12)

where zi > 0 for xl = 0. Now xl is increased from zero and suppose that for some
positive value of xl a variable zi becomes zero. To find this variable, a set J of the
subscripts i is formed so that

mil − di

dl

mll < 0. (13)

Next we find

xl = min
i∈J

{
− pi − di

dl
pl

mil − di

dl
mll

}
> 0, (14)

and choose the subscript i corresponding to the minimum, say i = k. Then zk = 0 and
its complement xk becomes the new distinguished variable which is to be increased.
Using (10) we find the new value of λ

λ(2) = pl

dl

+ mll

dl

xl. (15)

Thus, x = [0 · · ·0 xl 0 · · ·0]T and λ(2) form a subsequent break-point of the homotopy
path. We continue the described approach, taking into account the new distinguished



440 Circuits Syst Signal Process (2013) 32:433–451

Fig. 9 Circuit for Example 1

variable. The values of λ(i) and the corresponding solutions form break-points of a
homotopy path. When the path intersects λ = 1 plane, then the solution corresponding
to λ = 1 is the solution of the original LCP (6).

If the circuit has a unique DC operating point, the tracing of the homotopy path
is carried out until it crosses the λ = 1 plane. This point determines the solution. If
the circuit has multiple DC operating points, however, the above described algorithm
should be continued as long as it is possible, allowing to increase or decrease λ, to
find other intersection points of the homotopy path with the λ = 1 plane. Each of
these points leads to a solution. The approach is visualized in Example 1 (Figs. 10,
11), where the algorithm gives three DC operating points.

If the algorithm fails at some stage of the procedure, it is terminated and started
again using a different vector d obtained by random selection of its components from
the interval [d−, d+], according to the procedure developed in this section.

3 Numerical Examples

The proposed method was implemented in MATLAB 2009b and tested using several
circuits. The calculations were executed on a computer with the processor Intel (R)
Core (TM) i7 Q820@1.73 GHz.

3.1 Example 1

To explain in detail the method proposed in Sect. 2, we consider a very simple BJT
circuit shown in Fig. 9. The transistors are characterized by the Ebers–Moll model
(Fig. 4) having the following parameters: αF = 0.99, αR = 0.5, IES = 7.139 fA,
ICS = 14.136 fA, VT = 25.86 mV, RE = RC = 10 �, RB = 3 �.

To find the DC operating points of this circuit, we apply the method developed in
Sect. 2. For this purpose the emitter and collector diodes are modeled by the circuit
shown in Fig. 7b, with the following parameters:

Emitter diode

R1 = 28.88 �, R2 = 5.192 �, R3 = 1 G�, V
(1)
0 = 0.630 V,
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V
(2)
0 = 0.688 V,

Collector diode

R1 = 24.547 �, R2 = 5.498 �, R3 = 1 G�, V
(1)
0 = 0.620 V,

V
(2)
0 = 0.669 V.

At first the representation (3) of the circuit is created using a computer program
written in Delphi. Next, the vector d is generated by the procedure described in
Sect. 2 and the homotopy (7) is formulated. The method starts from x = 0, λ = 0
and traces the homotopy path that intersects the λ = 1 plane at three points, corre-
sponding to three DC operating points, leading for each of the points to voltages and
currents of the ideal diodes. They enable us to find voltages across the piecewise-
linear diodes, modeled by the circuit shown in Fig. 7b, and next, voltages across the
resistors RE,RC , and RB of the transistors. As a result we obtain the BE and BC
voltages.

As a result we find

ṽ∗ =

⎡
⎢⎢⎣

0.763
0.634
0.181

−3.342

⎤
⎥⎥⎦ , ṽ∗∗ =

⎡
⎢⎢⎣

0.729
−0.075

0.729
−0.075

⎤
⎥⎥⎦ , ṽ∗∗∗ =

⎡
⎢⎢⎣

0.181
−3.342

0.763
0.634

⎤
⎥⎥⎦ , (16)

where the elements of these vectors correspond to the voltages v1, v2, v3, and v4, in
volts, indicated in Fig. 9.

Figure 10 shows the projection of the obtained homotopy path on the plane λ−x3,
where x3 is the voltage across the ideal diode included in the model of the collector
diode of the transistor T1. The plots of λ and x3 against the numbers of the computa-
tion steps are shown in Fig. 11.

The obtained operating points are approximate, due to piecewise-linear represen-
tations of the diodes. Therefore, next we use each of them in succession as the initial
guess in the Newton–Raphson method. Performing only two iterations in each case,
we obtain the corrected operating points listed below:

v∗ =

⎡
⎢⎢⎣

0.767
0.631
0.188

−3.336

⎤
⎥⎥⎦ , v∗∗ =

⎡
⎢⎢⎣

0.730
−0.075

0.730
−0.075

⎤
⎥⎥⎦ , v∗∗∗ =

⎡
⎢⎢⎣

0.188
−3.336

0.767
0.631

⎤
⎥⎥⎦ . (17)

They are very close to the solutions (16). Also the SPICE (ICAP/4) simulator gives
the same operating points, starting in succession from each of the obtained solutions
(16), rearranged into node voltages. In the SPICE simulations the Gummel–Poon
model of the transistors is employed with the parameters corresponding to the pa-
rameters of the Ebers–Moll model described in this example. In particular, the same
resistors RE,RC , and RB are included and the voltages v1, . . . , v4 consist of the junc-
tion voltages and the voltages across the corresponding resistors (see Fig. 4). Identical
results are obtained applying the exhaustive method which guarantees finding all DC
operating points [20].
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Fig. 10 Projection of the homotopy path on the plane λ–x3

Fig. 11 Plots of λ and x3
against the numbers of the
computation steps k

3.2 Example 2

Let us consider the circuit shown in Fig. 12. The parameters of the Ebers–Moll model
of the transistors are the same as in Example 1. The diode D1 has the parameters:
IS = 7.068 fA, VT = 25.86 mV, RD = 4 �, where RD is the contact resistor. To find
the DC operating points, we apply the method developed in Sect. 2. For this purpose,
the emitter and collector diodes are approximated by the circuit shown in Fig. 7b
with the same parameters as in Example 1. The diode D1 is also approximated by
the circuit shown in Fig. 7b, with the parameters R1 = 33.511 �, R2 = 5.187 �,
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Fig. 12 Circuit for Example 2

R3 = 1 G�, V
(1)
0 = 0.620 V, V

(2)
0 = 0.783 V, and the contact resistor RD = 4 �

connected in series.
The method developed in Sect. 2 gives five the following DC operating points:

ṽ∗ = [0.106 −3.258 0.747 0.641 −0.387 −1.085 0.693 0.636 0.056

−4.943 0.387]T,

ṽ∗∗ = [0.719 −0.057 0.715 −0.071 −0.202 −0.904 0.696 0.635 0.061

−4.939 0.202]T,

ṽ∗∗∗ = [0.744 0.629 0.114 −2.682 0.341 −0.368 0.705 0.632 0.072

−4.927 −0.341]T, (18)

ṽ∗∗∗∗ = [0.744 0.630 0.114−2.740 0.648 −0.016 0.664 −0.038 0.626

−4.374 −0.648]T,

ṽ∗∗∗∗∗ = [0.744 0.630 0.114 −2.742 0.655 0.617 0.038 −0.701 0.731 0.635

−0.655]T,

where the elements of these vectors correspond to the voltages v1, v2, . . . , v11, in
volts, indicated in Fig. 12. The CPU time is 0.022 s.

Using in succession each of the obtained solutions as the initial guess in the
Newton–Raphson method we find the corrected operating points:

v∗ = [0.115 −3.250 0.752 0.636 −0.386 −1.083 0.691 0.637 0.053

−4.946 0.386]T,

v∗∗ = [0.718 −0.055 0.713 −0.072 −0.205 −0.903 0.693 0.636 0.056

−4.943 0.205]T,

v∗∗∗ = [0.748 0.628 0.120 −2.677 0.338 −0.366 0.699 0.634 0.065
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−4.934 −0.338]T, (19)

v∗∗∗∗ = [0.749 0.629 0.119 −2.736 0.649 −0.020 0.669 −0.042 0.627

−3.931 −0.649]T,

v∗∗∗∗∗ = [0.749 0.629 0.119 −2.737 0.658 0.579 0.078 −0.664 0.734

0.635 −0.659]T.

Also, the SPICE simulator (ICAP/4) gives the same operating points, starting in suc-
cession from each at the solutions (18), rearranged into node voltages. They are close
to the solutions obtained by the proposed method. The same results are obtained using
the exhaustive method that guarantees finding all DC operating points [20].

3.3 Example 3

The circuit shown in Fig. 13 contains 51 transistors and 12 diodes. The parameters of
the Ebers–Moll model of the transistors and the diodes are the same as in Example 2.
The circuit is described by (5) where (3) consists of 114 individual equations.

To apply the method developed in Sect. 2, we approximate the emitter and collec-
tor diodes by the circuit shown in Fig. 6b with the following parameters:

Emitter diode: R1 = 4.539 �,R2 = 1 G�,V0 = 0.678 V,
Collector diode: R1 = 4.572 �,R2 = 1 G�,V0 = 0.660 V.

The diodes D1–D12 are approximated by the same circuit with the parameters:
R1 = 9.144 �,R2 = 1 G�,V0 = 0.660 V and the contact resistor RD = 4 � con-
nected in series.

The method gives a unique DC operating point specified by a vector v consisting
of the voltages v1, v2, . . . , v114. These results enable us to find node voltages in the
circuit. Five of them, at the points A, B, C, D, E, are listed below:

ṽA = −1.999 V, ṽB = 1.960 V, ṽC = 1.920 V, ṽD = −2.041 V,

ṽE = −2.643 V.

The CPU time is 0.162 s.
The Newton–Raphson or SPICE simulator used to correct the solutions lead to the

following node voltages at the same points:

vA = −1.996 V, vB = 1.927 V, vC = 1.855 V, vD = −2.070 V,

vE = −2.734 V.

Note The Newton–Raphson method applied to the circuit shown in Fig. 13, with
the zero initial guess, does not converge in 1000 iterations.

4 Analysis of CMOS circuits

The method proposed in this paper can be extended to CMOS circuits as explained
in the sequel.
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Fig. 13 The circuit for Example 3
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Fig. 14 CMOS circuit for Example 4

4.1 Example 4

Let us consider the circuit shown in Fig. 14. The MOS transistors are represented by
the Shichman–Hodges model [14] built up in Level 1 of SPICE [12] with the fol-
lowing parameters: RD = RS = 16.4 �, RG = 0, LAMBDA = 0, vt0 = 0.5705 V for
NMOS and −0.8351 V for PMOS, Kp = 19.485 µA/V2 for PMOS and 79.173 µA/V2

for NMOS, k = Kp

2
W
L

= 1 mA/V2 for the transistors T4, T12 and k = 0.5 mA/V2 for
the other transistors.

It can be shown [1, 17] that this model for n-channel MOS transistor is equivalent
to the circuit depicted in Fig. 15, where the diodes are specified by equations

i1 =
{

k(vgs − vt0)
2, for vgs ≥ vt0

0, for vgs < vt0,
(20)

i2 =
{

k(vgd − vt0)
2, for vgd ≥ vt0

0, for vgd < vt0 .
(21)

The current ig in the model shown in Fig. 15 is forced to zero due to Kirchhoff’s
Current Law, which applied at node g gives

ig = i1 − 1 · i2 + i2 − 1 · i1 = 0. (22)

Consequently, value of the contact resistor RG does not play any role in DC analysis
and similarly as in IsSPICE we choose RG = 0.

A similar model can be created for p-channel MOS transistors.
Since the diodes have the characteristics specified by (20) and (21) which coin-

cide with the 0–v axis for v < vt0 , their piecewise–linear model does not contain the
branch consisting of a resistor only (R2 in Fig. 6b or R3 in Fig. 7b). Thus, the model
consists of two parallel branches, each composed of the ideal diode, a resistor and a
voltage source connected in series. If we add the third branch of the same type we
obtain a model of the diode whose characteristic is approximated by a piecewise–
linear 4-segment function. Such a model is used in this example with the following
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Fig. 15 Model of n-channel MOS transistor

parameters: R1 = 1305 �,V
(1)
0 = 0.5705 V,R2 = 514.6 �,V

(2)
0 = 1.45 V,R3 =

535.2 �,V
(3)
0 = 2.4 V for the NMOS transistor T12; R1 = 2062 �,V

(1)
0 =

0.8351 V,R2 = 616.7 �,V
(2)
0 = 1.45 V,R3 = 503.1 �,V

(3)
0 = 2.4 V for the

PMOS transistor T4; R1 = 2611 �,V
(1)
0 = 0.5705 V,R2 = 1029 �,V

(2)
0 =

1.45 V,R3 = 1070 �,V
(3)
0 = 2.4 V for the NMOS transistors T9–T11, T13–T16;

R1 = 4125 �,V
(1)
0 = 0.8351 V,R2 = 1233 �,V

(2)
0 = 1.45 V,R3 = 1006 �,V

(3)
0 =

2.4 V for the PMOS transistors T1–T3, T5–T8. Consequently, the method proposed
in Sect. 2 can be applied to find DC operating points of the circuit. The method traces
the homotopy path that intersects the λ = 1 plane at three points. As a result we
obtain three DC operating points:

ṽ∗ = [1.941 −0.538 1.941 −2.108 1.941 −2.108 1.941 −0.538

1.941 −2.517 1.941 −0.901 1.941 −0.901 1.941 −2.741

2.461 0.000 2.461 1.569 0.891 0.000 0.891 −1.569

0.891 0.408 0.891 −1.207 2.099 0.000 2.099 1.840]T,

ṽ∗∗ = [1.941 −1.307 1.941 −1.300 1.941 −1.300 1.941 −1.307

1.941 −2.715 1.941 −1.307 1.941 −1.307 1.941 −2.735 (23)

1.693 0.000 1.693 −0.007 1.700 0.000 1.700 0.007

1.700 1.415 1.700 0.007 1.693 0.000 1.693 1.428]T,

ṽ∗∗∗ = [1.941 −2.129 1.941 −0.895 1.941 −0.895 1.941 −2.129

1.941 −2.726 1.941 −1.787 1.941 −1.787 1.941 −2.595

0.871 0.000 0.871 −1.233 2.104 0.000 2.104 1.233

2.104 1.831 2.104 0.891 1.213 0.000 1.213 0.808]T,

where the components of the above vectors are the voltages v1, . . . , v32 in volts, indi-
cated in Fig. 14. The CPU time is 0.16 s. Correcting each of the operating points by
the Newton–Raphson algorithm or SPICE simulator yields the results close to (23):

v∗ = [1.945 −0.544 1.945 −2.159 1.945 −2.159 1.945 −0.544
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1.945 −2.487 1.945 −0.877 1.945 −0.877 1.945 −2.768

2.455 0.000 2.455 1.614 0.840 0.000 0.840 −1.614

0.840 0.328 0.840 −1.281 2.122 0.000 2.122 1.891]T,

v∗∗ = [1.945 −1.318 1.945 −1.318 1.945 −1.318 1.945 −1.318

1.945 −2.703 1.945 −1.318 1.945 −1.318 1.945 −2.723

1.681 0.000 1.681 0.000 1.681 0.000 1.681 0.000 (24)

1.681 1.384 1.681 0.000 1.681 0.000 1.681 1.404]T,

v∗∗∗ = [1.945 −2.167 1.945 −0.875 1.945 −0.875 1.945 −2.167

1.945 −2.755 1.945 −1.896 1.945 −1.896 1.945 −2.618

0.832 0.000 0.832 −1.292 2.124 0.000 2.124 1.292

2.124 1.879 2.124 1.020 1.103 0.000 1.103 0.722]T.

4.2 Example 5

Let us consider the circuit shown in Fig. 16. The MOS transistors are represented as
in Example 4 with the following parameters: k = 1 mA/V2 for the transistors T2,
T5–T10, k = 3.333 mA/V2 for the transistor T1, k = 0.416 mA/V2 for the transistor
T3, k = 8 mA/V2 for the transistor T4.

The diodes included in the model of MOS transistors (see Fig. 15) are represented
by similar circuit as in Example 4 with the following parameters:

NMOS transistors T2, T6, T8, T10: R1 = 1049 �,V
(1)
0 = 0.5705 V,R2 =

407.7 �,V
(2)
0 = 1.7 V,R3 = 291.6 �,V

(3)
0 = 3 V.

PMOS transistors T5, T7, T9: R1 = 1462 �,V
(1)
0 = 0.8351 V,R2 = 433.5 �,

V
(2)
0 = 1.74 V,R3 = 313.5 �,V

(3)
0 = 3 V.

PMOS transistor T1: R1 = 438.6 �,V
(1)
0 = 0.8351 V,R2 = 125.7 �,V

(2)
0 =

1.74 V,R3 = 102.6 �,V
(3)
0 = 3 V.

PMOS transistor T3: R1 = 3509 �,V
(1)
0 = 0.8351 V,R2 = 1005 �,V

(2)
0 =

1.74 V,R3 = 821.2 �,V
(3)
0 = 3 V.

NMOS transistor T4: R1 = 131.2 �,V
(1)
0 = 0.5705 V,R2 = 50.96 �,V

(2)
0 =

1.7 V,R3 = 36.45 �,V
(3)
0 = 3 V.

The method traces the homotopy path that intersects the λ = 1 plane at three
points. As a result, we obtain three DC operating points:

ṽ∗ = [2.495 2.025 2.500 −2.025 2.495 −2.417 2.500 2.417

0.469 0.469 0.083 −4.912 4.995 4.995 0.000 −4.995

0.000 −4.995 4.995 4.995]T,

ṽ∗∗ = [2.489 2.019 2.500 −2.019 2.489 −2.417 2.500 2.417

0.469 −2.163 0.082 −2.273 2.633 0.000 2.356 0.000
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Fig. 16 CMOS circuit for Example 5

2.633 0.000 2.356 0.000]T, (25)

ṽ∗∗∗ = [2.495 2.025 2.500 −2.025 2.495 −2.417 2.500 2.417

0.469 −4.525 0.083 0.083 0.000 −4.995 4.995 4.995

4.995 4.995 0.000 −4.995]T,

where the components of the above vectors are the voltages v1, . . . , v20 indicated in
Fig. 16. The CPU time is 0.065 s. Correcting each of the operating points by the
Newton–Raphson algorithm or SPICE simulator yields the results close to (25):

v∗ = [2.495 1.950 2.500 −1.950 2.495 −2.426 2.499 2.426

0.544 0.544 0.073 −4.921 4.995 4.995 0.000 −4.995

0.000 −4.995 4.995 4.995]T,

v∗∗ = [2.489 1.941 2.500 −1.941 2.489 −2.426 2.499 2.426

0.547 −2.079 0.073 −2.288 2.626 0.000 2.362 0.000 (26)

2.626 0.000 2.362 0.000 ]T,
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v∗∗∗ = [2.495 1.950 2.499 −1.950 2.495 −2.426 2.499 2.426

0.544 −4.450 0.073 0.073 0.000 −4.995 4.995 4.995

4.995 4.995 0.000 −4.995]T.

5 Conclusion

The method proposed in this paper is universal and enables us to analyze piecewise–
linear BJT and CMOS circuits having a unique or multiple DC operating points.
Since the method operates in succession on individual equations rather than sets of
equations, it is very fast and does not require large computation power. Numerical
examples show that it is remarkably efficient. For different vectors d , obtained using
the procedure described in Sect. 2, different homotopy paths are traced. Occasionally
it may occur that the homotopy path crosses the λ = 1 plane at less number of points
than the number of the solutions. Therefore, if the number of the DC operating points
is not known in advance, we should apply the method at a few different vectors d and
collect all the obtained solutions. However, in the performed numerical experiments
usually all the DC operating points of the circuits were obtained using the vector d

selected for the first time.
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