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Abstract
Background: Post-translational modifications have a substantial influence on the structure and
functions of protein. Post-translational phosphorylation is one of the most common modification
that occur in intracellular proteins. Accurate prediction of protein phosphorylation sites is of great
importance for the understanding of diverse cellular signalling processes in both the human body
and in animals. In this study, we propose a new machine learning based protein phosphorylation
site predictor, SiteSeek. SiteSeek is trained using a novel compact evolutionary and hydrophobicity
profile to detect possible protein phosphorylation sites for a target sequence. The newly proposed
method proves to be more accurate and exhibits a much stable predictive performance than
currently existing phosphorylation site predictors.

Results: The performance of the proposed model was compared to nine existing different
machine learning models and four widely known phosphorylation site predictors with the newly
proposed PS-Benchmark_1 dataset to contrast their accuracy, sensitivity, specificity and
correlation coefficient. SiteSeek showed better predictive performance with 86.6% accuracy, 83.8%
sensitivity, 92.5% specificity and 0.77 correlation-coefficient on the four main kinase families (CDK,
CK2, PKA, and PKC).

Conclusion: Our newly proposed methods used in SiteSeek were shown to be useful for the
identification of protein phosphorylation sites as it performed much better than widely known
predictors on the newly built PS-Benchmark_1 dataset.

Background
Post-translational modifications are observed on almost
all proteins analysed to date. During phosphorylation, a
phosphate molecule is placed on another molecule result-
ing in the functional activation or inactivation of the
receiving molecule. These modifications have a substan-

tial influence on the structure and functions of protein.
Phosphorylation at the serine, threonine and tyrosine res-
idues by enzymes of the kinase and phosphatise super-
families is one of the most frequent forms of post-transla-
tional modifications in intracellular proteins. As phos-
phorylation has a significant impact on diverse cellular
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signalling processes, it is needed in the regulation of cell
differentiation, as a trigger for the progression of the cell
cycle and control of metabolism, transcription, apoptosis,
cytoskeletal rearrangements [1-7] in animals. As impor-
tantly, the phosphorylation of protein is considered as
being a key event in many signal transduction pathways of
biological systems [8]. It is thus important for us to be
able to accurately determine the phosphorylation state of
proteins so as to better identify the state of a cell.

It has been widely reported in literature that a large
number of human diseases are caused by a disruption of
normal cellular phosphorylation events. For example,
phosphorylated tyrosines are recognised by specialised
binding domains on other proteins, and such interactions
are used to initiate intracellular signalling pathways. Aber-
rant tyrosine phosphorylation is a hallmark of many types
of cancer. Tyrosine phosphorylation also plays major
roles in cellular physiology, and functional perturbation
of protein-tyrosine kinases and protein-tyrosine phos-
phatases underlie many human diseases [9].

In order to determine phosphoproteins and individual
phosphorylation sites, various experimental tools have
been used. However, in vivo or in vitro identification of
phosphorylation sites is labour-intensive, time-consum-
ing and often limited to the availability and optimisation
of enzymatic reactions [7,8,10]. Several large-scale phos-
phoproteomic data using the mass-spectrometry
approach have been collected and published [11-13] but
are still not helpful in distinguishing the kinase-specific
sites on substrates. For example, mass spectrometry meth-
ods have been shown to be disfavourable in the identifi-
cation of phosphate-modified residues, leading to an
underestimation of the extent of phosphorylation
presents in vivo [14].

Due to the practical limitations and complexities of the
previously-mentioned methods, many scientists have
turned to computer-based methods. Computer-based
methods can efficiently handle massive amounts of pro-
tein data, determine phosphoprotiens and identify indi-
vidual phosphorylation sites from one dimensional
atomic coordinates with high precision. Several compu-
ter-simulated machine learning techniques such as Artifi-
cial Neural Networks (ANNs) and Support Vector
Machines (SVMs) have been extensively used in various
biological sequence analyses as well as phosphorylation
site prediction. These methods are built based on the
assumption that neighbouring residues to the phosphor-
ylated site represents the main determinant for kinase spe-
cificity [10,15].

Although a large number of machine learning based
methods have proved to be effective in the prediction of

phosphorylation sites, several important issues that could
potentially degrade the performance of machine learning
or statistical-based methods have been largely ignored.
The high dimensionality of protein sequence data not
only causes a dynamic increase in computational com-
plexity but also creates an overfitting/generalisation prob-
lem for non-parametric methods. With machine learning
models, better generalisation and faster training (compu-
tationally efficient) can be achieved when they have fewer
weights to be adjusted with fewer inputs.

This study aims to develop an accurate and stable phos-
phorylation site predictor. Our proposed model named,
SiteSeek uses a semi-parametric form of a state-of-the-art
machine learning model dubbed, Adaptive Locality-Effec-
tive Kernel Machine (Adaptive-LEKM). In addition, with
the boosting algorithm, it adaptively combines the learn-
ers to find an optimised fit for the given phosphoprotiens.
To efficiently capture suitable information from protein
sequences, it uses a newly developed Compact Evolution-
ary and Hydrophobic Profile (CEH-Profile) built on Posi-
tion Specific Scoring Matrix (PSSM) and Simultaneously
Axially and Radially Alignment Hydrophobicity
(SARAH1) Hydrophobicity scale. In our experiments, the
SiteSeek excels in efficiently processing high dimensional
protein data with a more accurate and stable predictive
performance than currently existing models. The novel
feature of this study is the use of a new machine learning
based semi-parametric model, a newly developed profile
(CEH-Profile) and the use of unique training dataset (PS-
Benchmark_1) that contains experimentally verified
phosphorylation sites manually extracted from major pro-
tein sequence databases and the literature.

Results
Our experiments consist of four consecutive steps. First,
we demonstrate the usefulness of our proposed CEH-Pro-
file by comparing its prediction accuracy with four other
well-known amino acids encoding methods. Second, the
predictive performance of our proposed machine learning
model, Adaptive-LEKM, specially designed for the high
dimensional problem of protein sequence data is com-
pared with other nine contemporary machine learning
models for prediction accuracy, sensitivity, specificity, cor-
relation-coefficient, type I and type II errors on newly
built PS-Benchmark_1 dataset. Next, we analyse the result
from SiteSeek which uses the novel Adaptive-LEKM and
the CEH-Profile when tested on four main kinase groups
and four main kinase families. We then compare those
results with the consensus results from literature. Lastly,
the predictive performance of SiteSeek is directly com-
pared with thee of the most widely known contemporary
phosphorylation site predictors on PS-Benchmark_1 data-
set.
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Compact evolutionary and hydrophobicity profile
In order to prove the usefulness of CEH-Profile, the suita-
bility of the newly proposed profile to the prediction of
phosphorylation sites is compared with other four most
widely used encoding schemes (PSSM, SARAH1, Hydro-
phobicity Scale and Orthogonal Encoding). As shown in
Table 1, the CEH-Profile and CompactPSSM showed fairly
improved performance for the prediction of phosphoryla-
tion sites. With CompactPSSM, we obtain 3% increased
prediction accuracy than the widely used PSSM. Further-
more, CEH-Profile which additionally uses hydrophobic-
ity in the format of effective 5 bit binary representation
(SARAH1 Scale) has a better accuracy at 5.1% – 6.5% than
original PSSM. The sensitivity of CEH-Profile has signifi-
cantly increased by 5% from the original PSSM. It seems
that with CEH-Profile, we can combine the advantage of
using both PSSM and SARAH1 profiles as SARAH1 pro-
vides a good model sensitivity level of 0.80.

This experiment based on our hypothesis proved that less
discriminatory features that reside in original PSSM can be
replaced by an effective hydrophobicity scale so that a new
profile which contains compact evolutionary information
as well as hydrophobic values can be created. As examined
in Discussion, several limitations of existing PSSM and OE
profiles can be effectively minimised by utilising the novel
CEH-Profile. Evidently, CEH-Profile is more useful than
widely known sequence profiles for protein phosphoryla-
tion site prediction.

Comparison of Adaptive-LEKM with other machine 
learning models
The predictive performance of Adaptive-LEKM was com-
pared with nine other existing state-of-the-art machine
learning models such as General Regression Neural Net-
work (GRNN), Radial Basis Neural Network (RBFN),
Multi-Layered Perceptron (MLP), kernel Nearest Neigh-
bour (kNN), Decision Tree (J48), kernel Logistic Regres-
sion (KLR), and three different transductive SVMs, namely
SVMlight, AdaBoost-SVM and Locality-Effective Kernel
Machine (LEKM). Table 2 shows the evaluation results of
each model in terms of Accuracy (Ac), Sensitivity (Sn),
Specificity (Sp), Correlation-Coefficient (Cc), Variance
(Var) and Time on PS-Benchmark_1 dataset.

As shown in Table 2, one of our models, LEKM success-
fully reached the best model stabilisation (Var: 0.020)
with less computational requirements (Time: 22.421).
However, one of the methods used in LEKM (semi-para-
metric approximation) showed a slightly less accurate
learning. Hence, we utilised AdaBoost algorithm for the
fine tuning of the LEKM and it (Adaptive-LEKM) finally
achieved the best accuracy with a fair level of model sta-
bleness and furthermore reduced complexity. In addition,
Adaptive-LEKM achieved much better model robustness
than other methods with the Cc of 0.39. Our methods
used in Adaptive-LEKM, semi-parametric approximation
and adaptive tuning of the model using AdaBoost were
confirmed to be more suitable in processing high dimen-
sional protein data than other non-parametric models. It
should be noted that the AdaBoost algorithm was also
tested with the original SVM, but no significant improve-
ment was observed (Table 2).

Figure 1 shows the comparison of prediction scores simu-
lated by the Adaptive-LEKM and the original SVM on a
protein chain (Swiss-Prot Entry: O75553). The protein
chain has 588 residues with two tyrosine and one serine
sites at the residue 198, 220 and 524 respectively. As
shown in Figure 1, SVM's signal at the site is generally 0.3
point with many fluctuating neighbouring signals making
the site undistinguished. On the other hand, Adaptive-
LEKM provides very clearer indications of the phosphor-
ylation site at the residue 524 and its signal is generally
stronger than that of other methods (0.37921 point).
Thus, Adaptive-LEKM offers an additional advantage over
other machine learners with a clearer and stronger indica-
tion of site locations.

Predictive performance of SiteSeek on major kinase 
families and groups
Here we look at experimental results obtained by SiteSeek
on four main kinase groups and four main kinase families
in terms of Ac, Sn, Sp, Cc, Type I and Type II ERs. SiteSeek
uses the Adaptive-LEKM and is trained with the novel
CEH-Profile. Table 3 compares the results of SiteSeek with
the consensus results of the literature. In general, SiteSeek
showed a 9% increase in prediction accuracy than the con-
sensus results. As for model stableness, SiteSeek also
achieved a fairly low level of average variance in four eval-

Table 1: Comparison of encoding schemes.

Models Accuracy (Ac) Sensitivity (Sn) Specificity (Sp) Correlation-Coefficient (Cc) Type I ER Type II ER

CEH-Profile 0.75 0.74 0.76 0.52 0.11 0.13
CompactPSSM 0.73 0.71 0.75 0.46 0.13 0.14

PSSM 0.70 0.69 0.71 0.40 0.15 0.15
OE 0.58 0.60 0.56 0.16 0.23 0.19

Hydrophobicity 0.58 0.56 0.61 0.17 0.19 0.23
SARAH1 0.61 0.80 0.42 0.24 0.29 0.10
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uation measures (0.041, 0.074, 0.019, 0.083). The sensi-
tivity of SiteSeek on CDK, PKA and PKC kinase families
are distinguishably higher than the consensus results. This
means that stable prediction capability of our model
comes with effectively reducing the false negative values
(Type I ER). Type I ER indicates experimentally verified
unmodified sites that are predicted (incorrectly) to be
modified.

As for the four main kinase groups (Table 4), the overall
results are somewhat lower than those of kinase families.
The best accuracy was obtained with the CMGC kinase

group (Ac: 0.90) whereas the TK kinase group showed the
lowest accuracy of 0.79. Compared to the experiments on
kinase families, Cc values dropped significantly for 0.9
points. This result may reveal that computational models
are more suitable to find stronger correlations among
same kinase families than those of kinase groups.

Comparison with other contemporary phosphorylation 
site predictors
The predictive performance of our proposed predictor,
SiteSeek which uses above-mentioned Adaptive-LEKM
and CEH-Profile is compared with four contemporary

Table 2: Prediction results of machine learning models on PS-Benchmark_1 dataset.

Models Accuracy (Ac) Sensitivity (Sn) Specificity (Sp) Correlation-Coefficient (Cc) Var. Time

Ada-LEKM 0.823 0.801 0.845 0.646 0.022 35.745
Ada-SVM 0.791 0.776 0.806 0.583 0.031 51.593

SVM 0.798 0.787 0.809 0.596 0.030 32.886
LEKM 0.783 0.773 0.792 0.565 0.020 22.421
kNN 0.767 0.753 0.781 0.534 0.032 35.630

GRNN 0.759 0.724 0.793 0.518 0.041 85.422
MLP 0.752 0.715 0.789 0.505 0.046 180.344

RBFN 0.737 0.685 0.788 0.475 0.044 68.654
DT (J48) 0.732 0.718 0.747 0.465 0.025 8.393

KLR 0.726 0.682 0.772 0.456 0.038 156.690

Prediction scores simulated by Adaptive-LEKM and SVMFigure 1
Prediction scores simulated by Adaptive-LEKM and SVM.
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phosphorylation site predictors on same testing dataset,
PS-Benchmark_1. DISPHOS [16] is trained on over 2000
non-redundant experimentally confirmed protein phos-
phorylation sites and uses position-specific amino acid
frequencies as well as disorder information to improve the
discrimination between phosphorylation and non-phos-
phorylation sites. The prediction accuracy of DISPHOS
reaches 81.3% for Serine, 74.8% for Threonine, and
79.0% for Tyrosine. However, DISPHOS provides little
information about the corresponding protein kinases for
the predicted phosphorylation sites. Scansite [17] identi-
fies short protein motifs that are recognised by phosphor-
ylation protein serine/threonine or tyrosine kinases. Each
motif used in Scansite was constructed from a set of exper-
imentally validated phosphorylation sites and was repre-
sented as a position-specific scoring matrix. NetPhosK
[18] is an enhanced version of NetPhos uses an artificial
neural network and incorporates the functionality of pro-
viding protein kinases (PKs) information for 17 PKs. In
the identification of protein kinase A (PKA) phosphoryla-
tion sites, NetPhosK achieves 100% sensitivity and 40%
specificity. Finally, PredPhospho [19] uses support vector
machine and demonstrates a superior predictive perform-

ance of 83–95% at the kinase family level, and 76–91% at
the kinase group level.

Table 5 shows the comparison of our proposed model
with the above-mentioned four contemporary phosphor-
ylation site predictors on the PS-Benchmark_1 dataset.
SiteSeek has shown the best overall accuracy amongst the
state-of-the-art predictors by reaching a prediction accu-
racy of 86.6%. Interestingly, the sensitivity of SiteSeek was
far more superior to other predictors with 84.4%. In addi-
tion, its model robustness was again confirmed as Cc
value showed 8.3 points higher than widely known Scan-
site. This result corresponds with the previous experimen-
tal results in that the newly proposed CEH-Profile
provides more useful information to the predictors for
kinase family level prediction. In addition, the results give
evidence that the semi-parametric approach of Adaptive-
LEKM which brings a more stable prediction is a better for
phosphorylation site prediction than current existing
methods. The prediction ability of the proposed model,
which sustains its stability, was again proved with PS-
Benchmark_1 dataset.

Table 3: Prediction results of Adaptive-LEKM for the four kinase families.

K-Families Accuracy (Ac) Sensitivity (Sn) Specificity (Sp) Correlation-Coefficient (Cc) Type I ER Type II ER

CDK 0.909 0.895 0.921 0.817 0.043 0.046
0.777 0.455 0.992 0.900

CK2 0.918 0.881 0.948 0.835 0.029 0.051
0.840 0.765 0.888 0.660

PKA 0.891 0.843 0.929 0.779 0.039 0.069
0.816 0.561 0.987 0.640

PKC 0.827 0.731 0.903 0.650 0.053 0.118
0.726 0.475 0.898 0.420

Avg. 0.886 0.838 0.925 0.770 0.041 0.071
0.790 0.564 0.941 0.655

Var. 0.041 0.074 0.019 0.083 0.010 0.032
0.050 0.142 0.056 0.196

The experimental results of SiteSeek are written in bold and others are the consensus results of literature obtained by Kim et al 2004.

Table 4: Prediction results of Adaptive-LEKM for the four kinase groups.

K-Gruops Accuracy (Ac) Sensitivity (Sn) Specificity (Sp) Correlation-Coefficient (Cc) Type I ER Type II ER

AGC 0.862 0.796 0.913 0.719 0.048 0.090
CAMK 0.821 0.721 0.900 0.638 0.056 0.123
CMGC 0.900 0.891 0.907 0.796 0.054 0.046

TK 0.792 0.667 0.892 0.580 0.060 0.148

Avg. 0.844 0.769 0.903 0.683 0.055 0.102
Var. 0.047 0.097 0.009 0.094 0.005 0.044
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Discussion
Over the past decades, many computational prediction
algorithms have been developed for various proteomic
studies. They have evolved from simple linear statistics to
complex machine learners. However, the most significant
breakthroughs were the incorporation of new biological
information into an efficient prediction model and the
development of new models which can efficiently exploit
suitable information from its primary sequence. For
example, the exploitation of evolutionary information
that is available from protein families has brought signif-
icant improvements in the prediction of protein second-
ary structure (about 6–8%) [20-24].

Compared to protein structure predictions, a small
number of studies to find suitable information/represen-
tations for phosphorylation site prediction have been
reported. Like protein secondary structure prediction,
most of the phosphorylation site prediction methods also
use the evolutionary information in the format of PSSM
(sequence profile) [16-18,25]. The theory behind using
the sequence profile is based on the fact that the sequence
alignment of homologous proteins accords with their
structural alignment and aligned residues usually have
similar structures. Thus, the sequence profile can provide
more information about structure than the single
sequence to its learner.

Although the sequence profile provides more structural
information, the structural information that resides in the
sequence profile may not be a significant importance in
the case of phosphorylation site prediction. It has been
observed that approximately only ten neighbouring resi-
dues are major determinants of phosphorylation sites.
Many models have been built on this observation and per-
formed reasonably well with a number of specific kinases.
However, the specificity determinants and rules remain
elusive for a large number of protein kinases that display
a number of substrates sharing little or no sequence simi-
larity in the known phosphopeptides [10]. Furthermore,
most databases searched by current alignment tools like
PSI-BLAST not only contain a number of non-phospho-
protiens, but also generate a large numbers of irrelevant
hits from the protein databases [8].

Another commonly used amino acid encoding method is
dubbed orthogonal encoding, also known as the binary
representation or the distributed encoding. In orthogonal
encoding, each letter can be represented by a twenty
dimensional binary vector indicating the presence of a
particular amino acid type [26]. The twenty standard
amino acids are ordered one through twenty, and the ith

amino acid has the binary codeword of twenty bits with
the ith bit set to "1" and all others to "0"s, for i = 1, 2,..., 20.
For example, 'Alanine' is expressed by 0000000000
00000000001, 'Cysteine' is encoded as 0000000000
0000000010 and so on. Among the first twenty units of
the vector, each unit stands for one type of amino amid.
In order to allow a window to extend over the N terminus
and the C terminus, the 21st unit has to be added. A resi-
due with window size n is encoded in 21*(2n+l) bits with
the binary code-words of amino acids concatenated based
on their order in the window [27]. It has been one of the
most widely adopted methods as it does not introduce
any artificial correlations between the amino acids.

However, orthogonal encoding has several widely known
drawbacks. Firstly, the dimension of residue vector can
increase rapidly as n increases, it may lead to large compu-
tational cost and model complexity (a typical input win-
dow of 13 residues requires 567 = (21*(2*13+1) input
nodes and connecting weights), and recognition bias.
Thus, it can cause poor performance of the classifiers [28-
30]. Secondly, the use of Euclidean space has no theoretic
foundation in biology or chemistry and hence might
reduce the accuracy of a model. According to the numeri-
cal assignment in the distributed method, the distance

between any two different amino acids is  and would
conflict with reality in biology [29].

The encoding methods discussed above are employed by
most well-known protein structure predictors and are
shown to be useful as they sufficiently contain informa-
tion required for general protein structure prediction
tasks. However, as phosphorylation site prediction does
not only involve various chemical interactions but also is
known as a non-structural prediction task, the above-

2

Table 5: Predictive performance of phosphorylation site predictors.

Accuracy (Ac) Sensitivity (Sn) Specificity (Sp) Correlation-Coefficient (Cc) Type I Error Type II Error

SiteSeek 0.866 0.844 0.885 0.730 0.063 0.071
PredPhospho 0.843 0.821 0.862 0.684 0.076 0.079
NetPhosK 0.836 0.790 0.876 0.670 0.066 0.099
Scansite 0.827 0.755 0.883 0.647 0.066 0.107
DISPHOS 0.805 0.773 0.827 0.601 0.092 0.106

Although each predictor was trained using its own training dataset, they all were tested on same benchmark dataset, (PS-Benchmark_1) which 
contains 1,668 polypeptide chains (Refer to Section "PS-Benchmark_1).
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mentioned encoding methods may not be suitable for this
problem. In this study, we observed that widely known
sequence profile contains irrelevant features which
impede accurate recognition by the learner. We thus
developed a new profile that replaces the prediction irrel-
evant features by hydrophobic information represented in
SARAH1 scale. This method when used in CEH-Profile
showed reasonable improvement over existing profiles.

In the literature, the number of encoding schemes pro-
posed for phosphorylation site prediction is far less than
the ones for other proteomic applications. As discussed
above, existing methods have shown several critical draw-
backs for phosphorylation site prediction. Hence, we
emphasise that researchers should devote their effort to
seeking a suitable representation of amino acids for phos-
phorylation site prediction to reach the upper boundary
of prediction accuracy.

Several considerable issues have been inevitably raised in
this study. Most importantly, the training set used in this
study may contain a certain amount of incorrect informa-
tion as some of non-site residues can be determined as
site-residues in the future. The prediction accuracy for gen-
eral machine learning (non-parametric) models is highly
dependent on the quality of the input/training dataset. If
the dataset were to contain inaccurate information, it can
significantly affect the learning process thus predicting
sites incorrectly. The use of a semi-parametric model in
this study takes upon assumptions that are stronger than
those of non-parametric models so that it can more
robustly perform its prediction task on noise-datasets
than pure non-parametric methods. However, even when
the semi-parametric approach was shown to be more
resistant to the noise-data, the problems caused by using
potentially corrupted dataset cannot be resolved com-
pletely unless an experimentally complete and faultless
phosphorylation data is provided.

Despite of our effort to collect high quality phosphoryla-
tion data for all kind of kinase families, each kinase data-
set is excessively biased to a few kinase families. For
example, PKA and PKC kinase family data take approxi-
mately 69% of AGC kinase group dataset. Hence, a learner
trained with AGC kinase group dataset may not perform
well with other kinase families in the AGC kinase group as
it was trained mostly with PKA or PKC kinase family data.
It is ideal if we can collect more experimentally verified
data for those kinase families; however, in the case that
this is not possible, matched sampling methods were
shown to be somewhat effective.

One of the experiments conducted to compare the per-
formance of SiteSeek with other existing phosphorylation
site predictors (Table 5) reveals several considerable

issues. First, the predictive performance of other predic-
tors can be overestimated in that it is almost infeasible to
confirm whether their training datasets contains any of
amino acids sequences in our testing set. The presence of
testing examples in their training dataset not only violates
the assumptions needed for learning but also makes eval-
uation measures unreliable. Hence, this issue should be
taken into account carefully for more accurate evaluation
and comparison of models. It should be noted that as the
seven-fold cross validation was also used for the evalua-
tion of SiteSeek, no redundant data entry for training and
testing sets was found. Second, the window sizes adopted
in this study may not be suitable for kinase family or
group based predictions. In the literature, it has been dis-
cussed that the major determinants for phosphorylation
sites are 9 neighbouring residues for tyrosine and threo-
nine; 11 for serine [15]. Several studies using computa-
tional methods recently have shown that the optimal
window sizes are found to be different depending on
types of kinase families. However, no wet-lab research has
validated the kinase family based optimal window sizes to
date. Hence, further research should be carried out so as
to provide for a more accurate evaluation and prediction
of phosphorylation sites.

Conclusion
This paper identified the effectiveness and utility of our
newly proposed machine learning based predictor, Site-
Seek for phosphorylation site prediction. This study
addressed two important issues in the computational pre-
diction of protein phosphorylation sites. Current encod-
ing schemes like PSSM and Orthogonal Encodings do not
provide sufficient information for accurate prediction of
phosphorylation sites using existing computational mod-
els. Our approach uses compact PSSM with efficient
hydrophobicity scale proves to be more effective in the
prediction of phosphorylation sites. Next, for a given set
of high dimensional protein data, the combination of a
parametric local model with a non-parametric global
model provided a way of fine-tuning the model by the
adjustment of a single smoothing parameter σ as well as
providing efficient semi-parametric approximation. This
was demonstrated by our above four consecutive experi-
ments. The semi-parametric approach used in Adaptive-
LEKM was shown to be effective by finding an optimal
trade-off between parametric and non-parametric models
with significantly reduced computations. When tested
with the newly built PS-Benchmark_1 dataset, SiteSeek
which uses the Adaptive-LEKM and CEH-Profile achieved
the best prediction accuracy when compared with con-
temporary phosphorylation site predictors. Thus, allow-
ing us to accurately predict phosphorylation sites in
proteins so as to better understand their functions in bio-
logical systems.
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(page number not for citation purposes)



BMC Bioinformatics 2008, 9:272 http://www.biomedcentral.com/1471-2105/9/272
Methods
PS-Benchmark_1 dataset
The fair comparison and assessment of phosphorylation
site predictors is complicated as all use different phospho-
rylation site datasets in the literature. In this study, we use
a newly developed comprehensive dataset, namely PS-
Benchmark_1 for the purpose of benchmarking sequence-
based phosphorylation site prediction methods. It is
widely known that accurate classification is highly
dependent upon the quality of data sets of both positive
and negative examples. However, such a golden standard
datasets are not yet available for protein phosphorylation
site prediction. PS-Benchmark_1 contains experimentally
verified phosphorylation sites manually extracted from
major protein sequence databases and the literature. The
dataset comprises of 1,668 polypeptide chains and as
shown in Table 6, the chains are categorised in four major

kinase groups, namely cAMP-dependent protein kinase/
protein kinase G/protein kinase C extended family
(AGC), calcium/calmodulin-dependent kinase (CAMK),
cyclin-dependent kinase-like kinase (CMGC) and tyrosine
kinase (TK) groups. The dataset comprises of 513 AGC
chains, 151 CAMK chains, 330 CMGC chains, and 216 TK
chains. The dataset is non-redundant in a structural sense:
each combination of topologies occurs only once per
dataset. Protein sequences are taken from the Protein Data
Bank (PDB) [31], Swiss-Prot [32], Phospho3D [10], Phos-
pho.ELM [33] and literature.

Compact evolutionary and hydrophobicity profile
One of our preliminary experiments showed that the less
discriminative features residing in the original sequence
profile can diminish the predictive performance of the
learners. So, we utilise the non-linear auto-associative net-

Table 6: Four main kinase groups.

AGC Group CAMK Group TK Group CMGC Group Other Group

DMPK_group CaM-KIalpha Abl CDK_group CK2 alpha
GRK_group CaM-KI_group ALK CDK1 CK2 beta
GRK-1 CaM-KII_group Axl CDK11 CK2_group
GRK-2 CaM-KIIalpha Csk CDK2 N/A
GRK-3 CaM-KIV EGFR CDK4
GRK-4 CaM-Kkalpha EphA2 CDK5
GRK-5 CaM-Kkbeta EphA3 CDK6
GRK-6 CDPK EphA4 CDK7
NDR1 CHK1 EphA8 CDK9
NDR2 CHK2 EphB1 CLK1
PDK1 DAPK_group EphB2 DYRK1A
PDK2 DAPK1 EphB3 DYRK1B
PDK_alpha DAPK2 EphB5 DYRK2
PKA_group DAPK3 FAK DYRK3
PKA alpha MAPKAPK2 Fer GSK-3_group
PKB_group MARK_group FGFR_group GSK-3alpha
PKB beta MLCK_group FGFR1 GSK-3beta
PKC_group PHK_group FGFR3 MAPK_group
PKC alpha Pim-1 FGFR4 MAPK1
PKC beta PKD1 JAK_group MAPK10
PKC delta PKD2 JAK1 MAPK11
PKC epsilon PKD3 JAK2 MAPK12
PKC eta RSK_group JAK3 MAPK13
PKC gamma RSK-1 Met MAPK14
PKC iota RSK-2 PDGFR_group MAPK3
PKC theta RSK-3 PDGFR alpha MAPK4
PKC zeta RSK-5 PDGFR beta MAPK6
PKG N/A Ret MAPK7
PKG1 Src MAPK8
PKG1A Src_group MAPK9
PKG1B Syk PRP4
PKG2 Tec N/A
RSK_group Tie2
RSK-1 TRKA
RSK-2 TRKB
RSK-3 N/A
RSK-5
SGK_group
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work to filter the less-discriminative features in the data-
set. In the process of the filtering, the model finds the
optimal data dimension for more accurate prediction. As
shown in Figure 2, the reduced data dimension of 17
(dm_17) provides better evaluation measures than its
original data dimensions of the sequence profile
(dm_20). The best data dimension (dm_17) observed in
this experiments divulge that not all the information in
the sequence profile is useful for accurate prediction. In
other words, some amounts of less-discriminative features
that can impede recognition of the learner exist in the pro-
file. Hence, it is imperative that to reach the upper bound-
ary of the prediction accuracy, additional informative
features from other sources should be added.

The promising additional information can be sought from
the widely known hydrophobicity scales. A number of
researchers selected hydrophobicity as the main feature
among many other physicochemical properties for pro-
tein structure prediction (such as polarity, charge or size)
[34-36]. More importantly, several recent studies reported
that protein hydrophobicity can be affected by the level of
phosphorylation or vice versa [37-39]. Hydrophobicity is
a very important factor in protein stability. The "hydro-
phobic effect" is believed to play a fundamental role in the
spontaneous folding of proteins. It can be expressed as the
free energy (kilocalories per mole) of transfer of amino
acid side chains from cyclohexane to water. The amino
acids with positive values of free energy in transferring
cyclohexane to water are hydrophobic and the ones with
negative values are hydrophilic [34]. Table 7 shows hydro-
phobicity scales, and the hydrophobicity matrix can be
formulated using the following function.

Given:

Amino_Acid [] = {C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y,
V,...} and

Hydrophobicity_Index [] = {1.28, -5.54, -6.81, 0.94, -
4.66, 4.92, 4.92, -5.55, 2.35, 2.98, 4.04, -3.40, -2.57, 2.33,
-0.14, 4.04,...},

where the denominator 20 is used to convert the data
range into [0, 1]. Hydrophobicity matrix [3,4] means the
absolute value of the difference of the hydrophobicity
indices of two amino acids E (-6.81) and G (0.94). With
the range adjustment, now we obtain 0.2935.

In the case of structure/function families classification of
protein sequences, various hydrophobicity scales were
thoroughly examined by David [40]. He showed the effec-
tiveness of numerous hydrophobicity scales, and con-
cluded that the Rose scale [41] was superior to all others
when used for protein structure prediction. The Rose scale
is correlated to the average area of buried amino acids in
globular proteins and is shown in Table 8[41]. However,
Korenberg et al. [36], stated several key drawbacks with

hydrophobicity matrix i j
abs hydrophobicity index i hy

_ [ ][ ]
( _ [ ]= − ddrophobicity index j_ [ ])

20

Comparison of different data dimensionsFigure 2
Comparison of different data dimensions.

Table 7: Hydrophobicity Scale: Nonpolar → Polar distributions 
of amino acids chains, pH7 (kcal/mol) [54].

Amino Acid Feature Value Amino Acid Feature Value

1 I 4.92 11 Y -0.14
2 L 4.92 12 T -2.57
3 V 4.04 13 S -3.40
4 P 4.04 14 H -4.66
5 F 2.98 15 Q -5.54
6 M 2.35 16 K -5.55
7 W 2.33 17 N -6.64
8 A 1.81 18 E -6.81
9 C 1.28 19 D -8.72
10 G 0.94 20 R -14.92

Table 8: Rose hydrophobicity scale [55]

Amino Acid Amino Acid Feature Value

1 A 0.74 11 L 0.85
2 R 0.64 12 K 0.52
3 N 0.63 13 M 0.85
4 D 0.62 14 F 0.88
5 C 0.91 15 P 0.64
6 Q 0.62 16 S 0.66
7 E 0.62 17 T 0.70
8 G 0.72 18 W 0.85
9 H 0.78 19 Y 0.76
10 I 0.88 20 V 0.86
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Rose scale. As it is not a one-to-one mapping, different
amino acid sequences can have identical hydrophobicity
profiles. Also, the scale covers a narrow range of values,
while causing some amino acids to be weighted more
heavily than others. To overcome these problems, the
SARAH1 scale, five bits "state" representation for amino
acid was introduced by Korenberg et al.

SARAH1 assigns each amino acid a unique five-bit signed
code where exactly two bits are non-zero. SARAH1 ranks
twenty possible amino acids according to the Rose hydro-
phobicity scale (Table 8). Each amino acid is assigned a
five bit code in descending order of the binary value of the
corresponding code. One of the benefits to using the five-
bit code is that the complexity of the classifier can be sig-
nificantly reduced and can arrange these numbers in
thirty-two possible ways (25 = 32). If the representations
with no or all ones, and those with 1 or 4 ones are
removed, there are exactly twenty representations left.
This leaves just enough representation to code for the
twenty amino acids. In the case of window size five, a res-
idue vector has 5*11 = 55 dimensions, which leads to less
model complexity than the residue vector using orthogo-
nal encoding (20*11 = 220 dimensions) [27].

The resulting scale in Table 9, where the right half is the
negative mirror image of the left half, is referred to as
SARAH1. The ten most hydrophobic residues are positive,
and the ten least hydrophobic residues are negative. Kore-
nberg et al [36]. indicated that while the above scales carry
information about hydrophobicity, scales can similarly be
constructed to embed other chemical or physical proper-
ties of the amino acids such as polarity, charge, α – helical
preference, and residue volume.

In order to create a new profile, we use the idea above in
addition to the existing sequence profile generated by PSI-
BLAST. As suggested in Figure 2, the less-discriminatory
features in the sequence profile are removed by using the
auto-associative network in order to prevent some possi-
ble problems that may be caused by the high complexity

of the learner. Finally, CEH-Profile which contains
selected evolutionary information and SARAH1 hydro-
phobicity scale is created.

Learning in high dimensional space
Protein sequence data can be mathematically viewed as
points in a high dimensional space. For example, a
sequence of 10 amino acids represents a search space of
2010 possibilities and requires a network of 200 inputs. In
many applications, the curse of dimensionality is one of
the major problems that arise when using non-parametric
techniques [42].

Learning in the high dimensional space causes several
important problems. First, the good data fitting capacity
of the flexible "model-free" approach often tends to fit the
training data very well and thus, have a low bias. How-
ever, the potential risk is the overfitting that causes high
variance in generalisation. In general, the variance is
shown to be a more important factor than the learning
bias in poor prediction performance [43]. Second, with
the high dimensional data, as the number of hidden
nodes of the network is severely increased, it eventually
leads to an exponential rise in computational complexity.
A high complexity model generally shows a low bias but
a high variance [44]. On the other hand, a model with low
complexity shows a high bias but a low variance. Hence, a
good model balances well between model bias and model
variance. This problem is generally regarded as the term
"bias-variance tradeoff".

Semi-parametric modelling for the bias-variance tradeoff
One of the solutions to the problems above is so-called
semi-parametric modelling. Semi-parametric models take
assumptions that are stronger than those of non-paramet-
ric models, but are less restrictive than those of parametric
model. In particular, they avoid most serious practical dis-
advantages of non-parametric methods at the price of an
increased risk of specification errors.

The proposed model, Adaptive-LEKM takes a form of the
semi-parametric model and it finds the optimal trade-off
between parametric and non-parametric models. Thus, it
can take advantages of both models while effectively
avoiding the curse of dimensionality. The Adaptive-LEKM
contains the evolutionary information represented within
the local model. Its global model works as a collaborative
filter that transfers the knowledge amongst the local mod-
els in formats of the hyper-parameters. Here, as a local
model of Adaptive-LEKM, an effective data compression
technique is used for the data localisation. The local
model contains an efficient vector quantisation method.

Table 9: SARAH1 Scale.

Amino Acid Binary Code Amino Acid Binary Code

1 C 1, 1, 0, 0, 0 11 G 0, 0, 0, -1, -1
2 F 1, 0, 1, 0, 0 12 T 0, 0, -1, 0, -1
3 I 1, 0, 0, 1, 0 13 S 0, 0, -1, -1, 0
4 V 1, 0, 0, 0, 1 14 R 0, -1, 0, 0, -1
5 L 0, 1, 1, 0, 0 15 P 0, -1, 0, -1, 0
6 W 0, 1, 0, 1, 0 16 N 0, -1, -1, 0, 0
7 M 0, 1, 0, 0, 1 17 D -1, 0, 0, 0, -1
8 H 0, 0, 1, 1, 0 18 Q -1, 0, 0, -1, 0
9 Y 0, 0, 1, 0, 1 19 E -1, 0, -1, 0, 0
10 A 0, 0, 0, 1, 1 20 K -1, -1, 0, 0, 0
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Vector quantisation for locality-effectiveness
Vector Quantisation (VQ) is a lossy data compression
technique based on the principle of book coding. Its basic
idea is to replace with key values from an original multi-
dimensional vector space into values from a discrete sub-
space of lower dimension. The lower-space vector requires
less storage space and the data is thus compressed.

Consider a training sequence consisting of M source vec-
tors, T = {x1, x2,..., xm}. M is assumed to be sufficiently
large and so that all the statistical properties of the source
are captured by the training sequence. We assume that the
source vectors are k-dimensional, Xm = (xm,1, xm,2,..., xm, k),
m = 1, 2,..., M. These vectors are compressed by choosing
the nearest matching vectors and form a codebook con-
sisting the set of all the codevectors. N is the number of
codevectors, C = {c1, c2,..., cn} and each codevector is k-
dimensional, cn = (cn,1, cn,2,..., cn, k), n = 1, 2,..., N. The rep-
resentative codevector is determined to be the closest in
Euclidean distance from the source vector. The Euclidean
distance is defined by:

where

xj = the jth component of the source vector,

cij = the jth is components of the codevector ci.

Sn is the nearest-neighbour region associated with code-
vector cn, and the partitions of the whole region are
denoted by P = {S1, S2,..., SN}. If the source vector Xm is in
the region Sn, its approximation can be denoted by Q(Xm)
= cn, if Xm ∈ Sn. The Voronoi region is defined by:

Vi = {x ∈ Rk: ||x - ci|| ≤ ||x - cj||, for all j ≠ i}

As depicted in Figure 3, the training vectors falling in a
particular region are approximated by a red dot associated
with that region. To find the most optimal C and P, vector
quantisation uses a square-error distortion measure spec-
ifying exactly how close the approximation is. The distor-
tion measure can be given as:

If C and P are solution to the above minimisation prob-
lem, then it must satisfy two conditions namely nearest
neighbour and centroid conditions. The nearest neigh-
bour condition indicates the sub-region Sn should consist

of all vectors that are closer to cn than any of the other
codevectors. It is written as:

Sn = {x: ||x - cn||2 ≤ ||x - cn'||2 ∀ n' = 1, 2,..., N}

The centroid condition requires the codevector cn should
be average of all those training vectors that are in its Voro-
noi Region Sn.

Kernel machine as an collaborating filter
As a key collaborator of Adaptive LEKM, we use an effec-
tive kernel classifier to construct the global model. SVM
can be seen as a set of related supervised learning and gen-
eralised linear classifiers. The key features of SVMs are the
use of kernels, the absence of local minima, the sparseness
of the solution and the capacity control obtained by opti-
mising the margin [45]. A significant advantage of SVMs
is that whilst ANNs can suffer from multiple local
minima, the solution to an SVM is global and unique
[45,46]. SVMs are known as maximum margin classifiers
since they classify their objects by minimising the empiri-
cal generalisation error and maximising the geometric
margin simultaneously. Where the two classes are not sep-
arable, they map the input space into a high-dimensional
feature space (where the classes are linearly separable) by
using a non-linear kernel function. The kernel function
calculates the scalar product of the images of two exam-
ples in the feature space. Given a d-dimensional input vec-
tor, xi = (x1, x2,..., xn) with two labels, yi ∈ {+1, -1} (i = 1,
2,..., N), the hyperplane decision function of binary SVM
with kernel method is written as:
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Two dimensional LBG Vector QuantisationFigure 3
Two dimensional LBG Vector Quantisation.
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and the following quadratic program:

maximise 

subject to ai ≤ 0, i = 1,..., �, and .

where � is the number of training patters; ai are the param-
eters of the SVM; k(·,·) is a suitable kernel function, and
b is the bias term.

The SVM used in the Adaptive-LEKM is the modified ver-
sion of SVMlight package. It uses an RBF kernel for the clas-
sification and the hyperparameters used in the SVM were
optimised using a 7-fold cross-validation (Refer to Section
Overall Architecture of SiteSeek). In order to find optimal
values for the hyperparameters, a number of values were
considered and tested against the newly built PS-
Benchmark_1 dataset. The optimal values were chosen for
the PS-Benchamrk_1 dataset were C: 1.5, γ: 0.04, and ε:
0.1.

Locality-Effective Kernel Machine
In the literature, it is claimed that one of the most serious
problems with SVMs is the high algorithmic complexity
and extensive memory requirements of the required quad-
ratic programming in large-scale tasks [47]. As observed in
the above equation, SVM extracts worst-case examples xi
and use statistical analysis to build large margin classifi-
ers. However, in Adaptive-LEKM, we use the centroid vec-
tor of each voronoi region which can be expressed as:

To construct a semi-parametric model, we substitute Qi
(X) for each training sample xi used in the SVM decision
function. The Adaptive-LEKM's approximation can be
written as:

and the following quadratic program:

maximise 

subject to ai ≥ 0, i = 1,..., �, and .

The SVM is considered as a purely non-parametric model,
whereas the Adaptive-LEKM can be considered as semi-
parametric model as it adopts the method of grouping of
the associated input vectors in each class i. Hence, the per-
formance of proposed model has some advantages in
comparison to the pure parametric models and pure non-
parametric models in terms of learning bias and generali-
sation variance especially on high dimensional protein
datasets.

As the Adaptive-LEKM uses the centroid vector of each
nearest neighbour region, we can obtain the optimal rep-
resentations by finding right size of each sub regions. In
other words, a good trade-off between parametric and
non-parametric can be found by adjusting the size of each
sub-region. If the feature space is partitioned to too many
sub-regions, the model becomes closer to non-parametric
model. So, it is eventually susceptible to overfitting which
causes high model variance problem. Contrarily, if the
space is divided into too small number of regions, the
codevectors cannot correctly represent the original dataset
(as they miss too much information). And the model
eventually produces high leaning bias. Hence, it is crucial
to find a good trade-off between the parametric and non-
parametric models.

In Adaptive-LEKM, the size of Voronoi regions is continu-
ally changed until they find the most optimal trade-off
between model bias and generalisation variance. Eventu-
ally, the global model is able to transfer the knowledge
amongst the optimised local models in formats of the
hyper-parameters. Our method which includes selection
of the corresponding output yi and the finding optimal
size of the associated input regions in each class i is shown
to be effective in finding an optimal trade-off between
model bias and variance. However, if we assume that a
centroid vector is calculated by its associated cluster and
the cluster contains noise vector, the centroid vector may
incorrectly represent its associated cluster or regions.
Hence, in our method, an auto-associative neural-net-
work [48] is used to perform non-linear mapping from x
to x' to eliminate noise or less-discriminatory features that
can impede recognition.

Auto-associative network for nonlinear dimensionality 
reduction
For the non-linear mapping, we use Scholz's [49] standard
auto-associative network as also widely known as non-lin-
ear principal component analysis (NLPCA). The auto-
associative network contains three hidden layers between
the input and output layers namely encoding, bottleneck
and decoding units. In the hidden units as depicted in Fig-
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ure 4, the input signals are transferred to the "encoding"
neurons in the first hidden units. The hyperbolic tangent
function is used as the transfer function here, and again
when the signal moves from the "bottleneck" neuron in
the second hidden layer to the "decoding" neurons in the
third hidden layer. Data compression is achieved by the
bottleneck, with the single bottleneck neuron giving the
leading non-linear principal component. The numbers of
encoding and decoding neurons are adjustable for the
optimal fit, however, are set the same for simplicity. The
auto-associative network in Figure 4 with 3, 4, 1, 4 and 3
neurons in its 5 layers will be referred to as a 3-4-1-4-3
model.

AdaBoost for the network tuning
In order to maximise the performance of the Adaptive-
LEKM, we utilised a network boosting method called
Adaptive Boosting (AdaBoost). In general, boosting is
known as a technique to improve the performance of any
base machine learning algorithms. The AdaBoost algo-
rithm was proposed by Freund and Schapire [50] and it
was shown to be a solution for many practical difficulties
of previous boosting algorithms. Boosting combines weak
learners to find a highly accurate classifier or better fit for
the training set [51]. In this study, the AdaBoost was mod-
ified for the LEKM for the network boosting. As observed
in our experiments, the modified AdaBoost was tested
with the LEKM and showed that it can fit into its architec-
ture for more accurate prediction of phosphorylation
sites. A standard boosting algorithm can be written as:

Given: (x1, y1),...,(xNV, yNV) where xi ∈ X, yi ∈ Y = {-1, +1}

Initialise D1(i) = 1/NV

For t = 1,...., T:

- Find the classifier ht : X → {-1, +1} that minimises the
error with respect to the distribution Dt

 where 

- Get weak hypothesis ht : X → [0, 1]

- Choose at ∈ R, typically  where εt is the

weighted error rate of classifier ht

- Update:

where

NV = total number of training vectors,

X = a domain or instance space of each xi belong to,

Y = a label set of each label yi,

Zt = a normalisation factor (chosen so that Dt+1will be a
distribution),

R = its sign is the predicted label {-1, +1}.

Output the final hypothesis:
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In the training set, each xi belongs to a domain X, and each
label yi is in a label set Y. Here, the Y should be {-1, +1} as
phosphorylation sites are indicated as positive (+1) or
negative (-1) values only. After selecting an optimal clas-
sifier ht for the distribution Dt, the examples xi that the
classifier ht identified correctly are weighted less and those
that it identified incorrectly are weighted more. Therefore,
when the algorithm is testing the classifiers on the distri-
bution Dt+1, it will select a classifier that better identifies
those examples that the previous classifier missed. At each
iteration, the AdaBoost embedded in Adaptive-LEKM con-
structs weak learners based on this method called weighted
examples.

Overall Architecture of SiteSeek
As illustrated in Figure 4, SiteSeek contains four main
components. First, given amino acids sequences, SiteSeek
utilise PSI-BLAST to generate Position Specific Scoring
Matrix (PSSM) with an e-value threshold for inclusion of
0.001 and six search iterations of non-redundant (nr)
sequence database. The PSSM has 20 × N elements, where
N is the length of the target sequence and each element
represents the log-likelihood of a particular residue substi-
tution based on a weighted average of BLOSUM62 [52]
matrix scores for a given alignment position in the tem-
plate.

Second, compact PSSM is generated by using the standard
auto-associative network. As all the possible less discrimi-
natory features and noises are expected to be eliminated
in this step, it is crucial in generating the optimal code-
book in the following step. To construct CEH-Profile,
SARAH1 scales are computed from the amino acid chains
in PS-Benchmark_1 dataset and are added to the compact
PSSM. The CEH-Profile which contain compact PSSM and
SARAH1 scales was all normalised to fall in the interval [-
1, 1] by using following algorithm.

pn = 2*(p-minp)/(maxp-minp) - 1

where

p = R × Q matrix of input vectors,

minp = R × 1 vector containing minimums for each p,

maxp = R × 1 vector containing maximums for each p.

Third, to find the most optimal parameter C and P as for
the solution of the minimisation problem, vector quanti-

sation uses the given distortion measure (See Section Vec-
tor Quantisation for Locality-Effectiveness). As discussed in
Section Locality-Effective Kernel Machine, the modified vec-
tor quantiser in Adaptive-LEKM finds the most suitable
number of Voronoi regions by considering model bias and
generalisation variance generated in each iteration so that
the codebook is generated for the classification.

Fourth, our kernel machine uses the resulting codebook
and performs its classification tasks. For the fair compari-
son of our proposed model, we adopted a seven fold
cross-validation scheme for the model evaluation. The PS-
Benchmark_1 dataset was divided into seven sub-sam-
ples. One of the sub-samples was used for testing and the
rest six were used for training. The testing was conducted
seven times for each model. When multiple random train-
ing and testing experiments were performed, a model was
formed from the six sub-samples (training samples). The
estimated prediction accuracy is the average of the predic-
tion accuracy over seven different datasets for the models.
We used the window size of 9 for tyrosine and threonine,
and 11 for serine sites [15]. A window size of 9 means 19
amino acids with the tyrosine, threonine or serine site is
located at the centre of the window.

Finally, with the threshold T, the final predictions are sim-
ulated from the raw output generated by Adaptive-LEKM.
During the post-processing of the network output, as the
network generates the raw outputs which have many local
peaks, we modified Liu and Rost's [53] method to filter
these raw outputs. First, we determined the threshold for
each network outputs according to the length (L) of the
protein and to the distribution of raw output values for all
residues in that protein. We compiled the 96th percentile
of the raw output T1 and set the threshold T to

T was set to the threshold that divides phosphorylation
site and others. If the value of a residue is above the
threshold, the residue is regarded as phosphorylation site.
Second, we assigned the central residue as a phosphoryla-
tion site if three or more residues were predicted as a phos-
phorylation site. And all parameters for these filters were
developed using the validation set only.

The performance of SiteSeek is measured by the accuracy
(Ac: the proportion of true-positive and true-negative res-
idues with respect to the total positives and negatives res-
idues), the sensitivity (Sn: the proportion of correctly
predicted phosphorylation site residues with respect to
the total positively identified residues), the specificity (Sp:
the proportion of incorrectly predicted site residues with
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respect to the total number of phosphorylation site resi-
dues) and correlation coefficient (Cc: It balances positive
predictions equally with negative predictions and varies
between -1 and 1.). Cc reflects a situation in that a method
which predicts every residue to be positive, shows predic-
tion accuracy of 100% in detecting positive sites, however
0% accuracy for negative residues. Hence, high value of Cc
means that the model is regarded as a more robust predic-
tion system. In addition to the four measures above, the
performance of each model is additionally measured by
Type I and Type II Error rates as incorrectly predicted resi-
dues can be as valuable as the correctly predicted residues
for further modification of the model. Type I Error means
experimentally verified unmodified sites that are pre-
dicted (incorrectly) to be modified; And Type II Error indi-
cates experimentally verified modified sites that are
predicted (incorrectly) to be unmodified. The Sn, Sp, Ac
and CC can be expressed in terms of true positive (TP),
false negative (FN), true negative (TN) and false positive
(FP) predictions.

and

The stepwise procedure we have performed can be sum-
marised as follows:

(1) Data collection, building a new dataset and pre-
processing datasets.

(2) Profiles construction such as PSSM, Orthogonal
encoding, and Sarah1.

(3) Hold-out method was performed to divide the com-
bined dataset into 7 subsets (training and testing sets).

(4) CEP-Profile construction for each subset using the
auto-associative network.

i. The auto-associative network was built with five layers
in 3-4-1-4-3 model.

ii. Activation Function Selection: Hyperbolic tangent
function.

iii. The original data dimension is reduced into dm_17
(compact_PSSM).

iv. Sarah1 scale is added to the compact_PSSM.

(5) The information obtained in (2) and (3) were com-
bined and normalised to fall in the interval [-1, 1] to be
fed into networks.

(6) Assign target levels in each profile.

i. Positive (1) for phosphorylation site residues and nega-
tive (-1) for non-site residues. (For tyrosine or threonine
sites, nine neighbouring residues are assigned positive (1)
whereas eleven neighbouring resides are positive for ser-
ine sites).

(7) Train each model on training set to create a model

(8) Simulate each model on test set to obtain predicted
outputs.

(9) Post-processing was performed to find predicted phos-
phorylation sites locations.

The procedure from (7) to (9) is performed iteratively
until we obtain the most suitable kernel and the optimal
hyperparameters for Adaptive-LEKM for the given bench-
mark dataset.
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