
ENGINEERING APPLICATIONS OF NEURAL NETWORKS

Training echo state networks for rotation-invariant bone marrow
cell classification

Philipp Kainz1,2 • Harald Burgsteiner3 • Martin Asslaber4 • Helmut Ahammer1

Received: 16 January 2016 / Accepted: 7 September 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The main principle of diagnostic pathology is

the reliable interpretation of individual cells in context of

the tissue architecture. Especially a confident examination

of bone marrow specimen is dependent on a valid classi-

fication of myeloid cells. In this work, we propose a novel

rotation-invariant learning scheme for multi-class echo

state networks (ESNs), which achieves very high perfor-

mance in automated bone marrow cell classification. Based

on representing static images as temporal sequence of

rotations, we show how ESNs robustly recognize cells of

arbitrary rotations by taking advantage of their short-term

memory capacity. The performance of our approach is

compared to a classification random forest that learns

rotation-invariance in a conventional way by exhaustively

training on multiple rotations of individual samples. The

methods were evaluated on a human bone marrow image

database consisting of granulopoietic and erythropoietic

cells in different maturation stages. Our ESN approach to

cell classification does not rely on segmentation of cells or

manual feature extraction and can therefore directly be

applied to image data.

Keywords Computer-assisted pathology �
Histopathological image analysis � Bone marrow cell

classification � Echo state networks � Reservoir computing

1 Introduction

The initial step of diagnostic work in histopathology is the

assessment of cellularity in context of tissue architecture.

Especially the diagnosis of bone marrow specimen requires

a valid interpretation of different cell types with respect to

their local distribution. Cell types of hematopoiesis, the

process of blood stem cell maturation, are categorized into

granulopoiesis, erythropoiesis, and megakaryopoiesis,

which refer to maturation of white blood cells (WBC), red

blood cells (RBC), and megakaryocytes, respectively [2].

In healthy individuals, hematopoiesis mainly occurs in

bone marrow, whereas extramedullary hematopoiesis is

observed during fetal development, or may indicate

pathological alterations [28]. In bone marrow specimen,

several thousands of cells of multiple classes in different

maturation levels have to be interpreted by the

hematopathologist, and the class distributions need to be

reported. This qualitative and semi-quantitative classifica-

tion is usually performed on Hematoxylin and Eosin

(H&E) stained tissue sections. The correct classification,

based on cell morphology and spatial cell distribution,

heavily dependents on the observer’s experience, since in

hematopoiesis disparities between subsequent development

stages are frequently indistinct and even equal maturation

levels of different myeloid progenitor cells share morpho-

logical characteristics, cf. Fig. 1.

As a consequence, both inter- and intra-observer vari-

ability can be considerable, affecting the accurate diagnosis

of reactive or even premalignant, and early malignant
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changes. Thus, automated image recognition systems

exhibiting low variance, high classification accuracy, and

predictable error are highly desirable for repeatable quan-

titative diagnostics [16]. Since virtual microscopy using

whole slide images scanned at high magnification is

emerging to a standard in pathology departments [1],

computer-aided pathology using automated image analysis

systems can easily be implemented in the routine diag-

nostic process.

1.1 Related work

Over the recent years, a remarkable amount of research has

been conducted on blood cell counting, segmentation, and

classification in histopathological images for various

applications. Motivated by the aggressiveness of blood

cancer and the requirement for early diagnosis, most works

were related to leukemia research, in particular identifying

different types of leukemia by classifying WBC from

histopathology images of peripheral blood smear [5, 17,

27, 36, 39, 40, 42–44, 48, 52] or bone marrow, obtained by

aspiration [12, 35, 38, 41, 46, 49–51, 59, 60] and trephine

biopsy [3]. Particularly, some work focused on classifica-

tion of WBC in healthy tissue [5, 20, 39], while others

dealt with detecting pathological alterations from mor-

phological characteristics of cells [12, 41, 43, 59, 60].

Notably, a vast majority follows a conventional pattern

recognition approach and used distinct steps for cell

detection, segmentation, extraction of rotation and trans-

lation invariant features, and classification. Some studies

mainly addressed detection and segmentation and relied on

standard image processing techniques such as Hough space

analysis [52], watershed transform, Gabor filters and

adaptive thresholding [20], or intensity clustering [59, 60].

Others pursued supervised learning-based cell detection

approaches using feed-forward neural networks (FF-

NN) [45], fuzzy cellular neural networks [44], and random

forests (RFs) [26]. Several approaches used statistical

pattern recognition and classification techniques [22] such

as support vector machines (SVM) [9, 17, 35, 46], FF-

NN [17, 19, 27, 31, 36, 49–51], and Bayesian classi-

fiers [6, 42, 43] to learn feature vectors representing indi-

vidual cell objects. Decision tree-based methods such as

regression trees [3], hierarchical trees using genetic algo-

rithms for node optimization [56], or RFs [7, 12, 41] were

used as well as k-nearest neighbor [37, 38, 41, 43], or

heterogeneous classifier ensembles [12, 37]. Employing

hierarchical models has been shown to be more powerful

than using single-stage classifiers [46, 48].

Features related to shape and texture of cell nuclei were

most frequently used and seemed to provide more dis-

criminative power than statistical features from intensity

histograms. This is reasonable, since—despite proper

histopathological staining protocols—nuclei of different

cell classes share very similar intensity patterns after

staining [40], cf. Fig. 1. However, the choice and impor-

tance of features depend on the application. For instance, it

was shown that features computed from cytoplasm can

even be omitted for WBC classification and that the

problem can be downscaled to using features from cell

nuclei only [50]. In the context of another application,

using features from both nuclei and cytoplasm resulted in

higher classification performance [13]. Recent work of

Reta et al. [41] on bone marrow cells concluded that fea-

tures extracted from nuclei and cytoplasm separately are

more discriminative than features from entire cells. In

previous studies, the total number of features varied from a

small set of four to over 190, comprising object-level

features as well as global image features such as wavelet

coefficients [36]. Nevertheless, handcrafting features from

images require prior knowledge and experience, they are

not easily transferable to other problems and may as well

remove significant information, or introduce non-discrim-

inative information. Thus, authors of previous papers fre-

quently extracted feature candidates and applied automatic

feature selection procedures to extract the most significant

subset and hence compress the available information to

achieve a better generalization performance [17, 37,

39, 42]. It has been shown that this strategy generally

improved the classification results compared to using all

available features [35, 42, 46] on specific problems. On the

other hand, working directly on image intensity data pro-

vides a directly observable object representation that is not

influenced by errors of preceding segmentation steps that

Fig. 1 Samples of hematopoietic cell nuclei in the human bone

marrow at 40� magnification and stained with Hematoxylin–Eosin

(H&E). Subsequent maturation stages of a granulopoietic cell:

a myelocyte, b metamyelocyte, and c band cell. Especially in early

stages, where the cells are not fully differentiated, different cell

lineages share morphological characteristics: d myelocytes and

e orthochromatic normoblasts (erythropoietic cells)
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are frequently inevitably to extract object-level features.

Nevertheless, only a minority of previous work focused on

learning a classifier from raw cell images [17, 44, 58], but

reported promising results.

Very little work has been reported on quantitative

analysis of bone marrow trephine biopsy images [3], or

quantification of blood cell maturation [20]. Tissue micro-

architecture is usually well preserved after histological

preparation in bone marrow trephine biopsy samples. At

the proper magnification, and using suitable histological

staining protocols, this enables to inspect the morphologi-

cal differences among subsequent maturation stages, but

also introduces and emphasizes background structures

irrelevant to cell classification. The most common stains

used for tissue specimen were May–Grünwald–Giemsa

(MGG), H&E (bone marrow), and Wright (peripheral

blood), since morphological characteristics of objects of

interest can be well represented. Feature-based discrimi-

nation of cells is usually less complicated in smear images

depicting differentiated cells than in trephine biopsies:

segmentation methods can more easily be applied to the

cell objects without getting distracted by heterogeneous

background. Despite the efforts of previous work, several

issues have not yet been addressed, and the quantification

of blood cell maturation in the bone marrow has not been

sufficiently studied yet.

1.2 Goals and organization of this paper

In this paper, we propose an alternative approach to bone

marrow cell classification based on the direct application of

a recurrent neural network (RNN) to images of H&E-

stained images of bone marrow trephine biopsy. Under the

conceptual framework of reservoir computing, two related

effective training methods for an RNN have been devel-

oped independently: echo state networks (ESN) [21] and

liquid state machines (LSM) [34]. Both approaches use a

randomly and recurrently connected pool of hidden units

and learn to classify the observed temporal activities by

adapting the readout weights only. While LSMs are con-

sidered as a biologically more realistic model, applying

ESN is usually easier due to a reduced number of hyper-

parameters. Face recognition using a combination of ESN

and FF-NN has been presented by Woodward and Ike-

gami [55], where the ESN extracts features, and inference

is performed by the FF-NN. However, their approach did

not yet consider any rotational invariant aspect.

The main motivation for this work is based on the fact

that cells can appear under varying in-plane rotations. In a

conventional rotation-invariant supervised learning setting,

one could train exhaustively on samples representing

independent rotations of the cell without taking into

account the relations among consecutive rotations. Moti-

vated by how RNN can capture appearance information in

temporal features, we propose a rotation-invariant learning

scheme for cell classification using pure ESN, as can be

seen in Fig. 2. This work shows that it is possible to train

an ESN with standard ridge regression directly on raw

image data in a way that its classification accuracy is

completely independent from the rotation of the cell. While

previous work heavily relied on explicit feature extraction

from segmented cells, nuclei. or cytoplasm, our approach

does not include such steps and can be applied on cell

image patches directly. We can omit a dedicated segmen-

tation step of cell nuclei, and cytoplasm, which in fact is

not always possible in our cell samples, cf. Fig. 1. Based
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Fig. 2 Proposed rotation-invariant multi-class ESN training scheme.

Counterclockwise rotations of a cell patch a cause reservoir activity

(i.e., feature computation) over time b. c For each class, a set of

readout weights is learned. d The readout unit with the highest mean

output (green curve) over the image presentation time finally

determines the class. The blue dashed curve is the binary target

function, which is set to one for the correct class and zero everywhere

else. The red curve is the actual network output (color figure online)
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on results from our earlier work [24, 25], where a similar,

but only binary cell recognition problem was considered,

we also explored the extension of this approach to a multi-

class problem [23]. In addition to [23], this contribution is

extended by providing a direct comparison with an RF [7]

image classifier that was trained the conventional way to

achieve rotation-invariance. An RF is an ensemble of de-

correlated, binary decision trees that are individually

trained and produce a consolidated prediction. In machine

learning and computer vision, forests are well known for

their efficiency and good generalization ability without the

tendency to overfit the data [11, 18]. Further, they perform

well on unbalanced and small datasets, have become a key

ingredient in patch-based medical image analy-

sis [10, 14, 30, 57], and have recently shown state-of-the-

art performance on similar bone marrow data [26]. Further,

this work discusses strengths and weaknesses of both

approaches.

In the subsequent sections, we elaborate on the novel

rotation-invariant training scheme for ESN, provide the

outline of our experimental setups, and present the results.

The findings are discussed and an outlook to future work is

given in the final section.

2 Methods

We propose an ESN approach for rotation-invariant blood

cell maturity recognition in the human bone marrow. An

overview of our classification scheme starting with the

biological sample is illustrated in Fig. 3. Our supervised

learning system is trained with image patches, which are

first labeled by an experienced pathologist as one of mul-

tiple foreground classes, or background. We omit auto-

matic cell detection in this work and focus on classifying

manually cropped image patches. Nevertheless, we discuss

a potential cell localization method in Sect. 5 that will

eventually be required when considering this approach in

an integrated system.

2.1 Multi-class echo state networks

Echo state networks (ESNs) are a way to train RNNs for

temporal prediction tasks [21]. Many different ESN

architectures have been proposed [33], but in this work we

focus on the classical architecture [21]. The reservoir, a

randomly connected RNN composed of N units, models

short-term memory and nonlinear input expansion. Reser-

voirs in ESNs have to ensure the ‘echo state’ property to be

an universal function approximator. Hence, the recurrent

reservoir weights W 2 RN�N must be scaled, such that the

spectral radius qðWÞ\1 [21]. In practice, the spectral

radius is a global control parameter that defines how fast

the reservoir activity vanishes [32]. Hence, a larger spec-

tral radius results in slower decay and longer interaction of

reservoir activity.

Figure 4 shows the architecture of a multi-class ESN.

The L-dimensional input at particular point in time t, given

by uðtÞ ¼ ½u1ðtÞ; u2ðtÞ; . . .; uLðtÞ�T, and a bias unit is con-

nected to the reservoir units via the input weights

Win 2 RN�ð1þLÞ. When an input is presented to the input

layer, it causes nonlinear activity in the reservoir. This

activity represents the (temporal) features, the recurrent

reservoir units compute from the input stimulus at each

observable time step. The weights Win and W may be

sparse and remain fixed after random initialization and

meeting task-specific scaling criteria [53].

A binary classification task can already be performed by

a single readout unit. Given a training set of one positive

class and one negative class, the unit is trained to recognize

samples belonging to the positive class and ignore the

negative samples. This simple scheme can easily be

extended to solve multi-class problems: each class Cc; c 2

Fig. 3 Overview of the cell recognition pipeline. Biological tissue

specimen is prepared in the histopathology laboratory according to

standard protocols for H&E staining. The sections are digitized to

RGB whole slide images, and regions of interest (ROIs) containing

healthy tissue are cropped. Typical bone marrow cells of four classes

are labeled as ground truth by an expert pathologist. For this work,

single-cell RGB patches are manually extracted as part of the ground

truth labeling, converted to gray-scale, and resized. A temporal input

data stream is generated by rotating the incircle-masked static images,

which is then fed into the ESN classifier, cf. Fig. 2. During training,

ridge regression determines a set of weights that can be used to

predict the class label of a test patch using a threshold-based inference

scheme
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f1; . . .;Kg is represented by a single readout unit, which is

trained in the one-versus-all scheme.

When stimulating the reservoir, the state update equa-

tion at time step t þ 1 is given as

xðt þ 1Þ ¼ ð1� aÞxðtÞ þ atanhðWin½1; uðtÞ� þWxðtÞÞ;
ð1Þ

where xðtÞ denotes the state vector at the previous time step t.

The leaking rate a defines the short-term memory capacity,

i.e., how strong the reservoir activity at time step t influences

activity at t þ 1. The ESN can be set to a generative mode,

where the input uðtÞ is switched off. We use the term gen-

erative mode here to avoid confusion with the very similar

pattern generator principle [32]. The difference is thatwe do

not use output-to-reservoir feedback or apply the output at t

as input at t þ 1, but compute the state updates purely from

the remaining activity within the reservoir using

xðt þ 1Þ ¼ ð1� aÞxðtÞ þ atanhðWxðtÞÞ: ð2Þ

During a recording time W, input and state vectors are

concatenated in a large state matrix X 2 Rð1þLþNÞ�W.

Using a single reservoir facilitates automatically capturing

the activities caused by multiple classes. The individual

readout weights Wout
c 2 Rð1þLþNÞ for Cc are learned via

ridge regression with Tikhonov regularization

Wout
c ¼ Ytarget

c XTðXTXþ bIÞ�1; ð3Þ

where Ytarget
c 2 RW denotes the desired target function of

class Cc, X
T the transpose of the state matrix, and I the

identity matrix. The Tikhonov regularization coefficient is

fixed to b ¼ 10�2.

A piece-wise constant target function is regressed for

each class Cc at a recorded time step t, which is given by

ytargetc ðtÞ ¼ 1 if uðtÞ 2 Cc

0 otherwise

�
: ð4Þ

Each readout unit produces an output Yc ¼ Wout
c X, and

a score over a predefined inference period X, computed as

the mean output (score)

�yc ¼
1

jXj
XX=2

t¼�X=2

ycðtÞ: ð5Þ

The unit with the highest mean score subsequently

determines the winner class

c� ¼ argmax
c

f�ycg: ð6Þ

2.2 Rotation-invariant cell classification

Given an image patch IðxÞ centered on a single cell at an

image location x ¼ ðx; yÞ, we need to transform it into

time-dependent input for the ESN classifier. In order to

generate temporal input from IðxÞ, we take advantage of

the fact that cells can occur in arbitrary rotations within

tissue. Figure 5 illustrates the generation of a temporal

input stream Hi for a cell by concatenating subsequent

rotations of the patch Iðx;uÞ. While rotating by an angle u,
we ignore the patch corners and just consider the pixels

within the incircle radius r. For this purpose, a receptive

field V of radius r is defined as the input layer and forwards

the pixel intensities into the reservoir. All patches are

required to be normalized to a fixed size of 2r � 2r

beforehand.

Rotation-invariance is achieved by letting the reservoir

to generate features for each Iðx;uÞ, u ¼ 0�; . . .; 359�,
starting at an arbitrary angle u0 that relates to a cell’s

arbitrary orientation in a slide. These reservoir states are

harvested by evaluating Eq. (1), and the target function is

approximated at each recorded time step. After the network

saw all Iðx;uÞ, the final class is determined with Eq. (6).

... ...

u1(t)
bias

u2(t)

uL(t)

y1(t)

y2(t)

yK(t)

Win

KWout

+1

Fig. 4 Multi-class ESN architecture. At each time step t, L linear

input units (green) feed input uðtÞ into the reservoir via input weights

Win. Each of the K linear readout units (blue) corresponds to a

specific class. The reservoir consists of N (internal) units with

hyperbolic tangent (tanh) activation function. Readout-to-reservoir

feedback connections are omitted in our architecture. The input layer

is fully connected to each readout unit, symbolically illustrated for

one unit by the gray dashed arrow at the bottom. This provides

contextual information on the original input in parallel to the temporal

features. After learning readout weights Wout
c , the output ycðtÞ is

determined for the readout units (color figure online)

>
φ=359°

φ=45°

φ=0°

V

Θ}
I(x)

x=(x,y)

r
I(x,φ)

i

Fig. 5 Illustration of the input stream generation for the rotation-

invariant learning scheme. A patch containing a single cell is

extracted from a virtual slide. It is then normalized to a predefined

size 2r � 2r to fit a receptive field V. A static image patch IðxÞ is

transformed into a stream Hi by concatenating subsequent rotations

Iðx;uÞ. For each rotation, V forwards the pixel intensity within the

incircle of Iðx;uÞ into the reservoir
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The generative mode of ESNs also enables skipping Du
rotations after receiving external input Iðx;uÞ. Due to the

memory and decaying reservoir activity we are still able to

obtain discriminative features using Eq. (2), even without

external input driving the reservoir. The reservoir activity

usually approaches a resting state without external input

and thus a properly selected qðWÞ ensures that there is

enough activity left before the next input Iðx;uþ DuÞ is

presented.

In general, two kinds of memory can be observed in an

ESN. Firstly, memory that can be controlled by the leaking

rate parameter a, we name ‘state’ memory in this context.

Secondly, the ‘immutable’ memory, which is inherently

modeled by the recurrent weights W in the reservoir. The

state memory models the influence of previously computed

reservoir states on the current state and therefore controls

smoothing of the temporal features. If a � 1, the internal

states caused by previous rotations may significantly

influence subsequent ones and may cause over-smoothed

states. On the other hand, if a ¼ 1, the state memory is

turned off and features for each observed rotation Iðx;uÞ
are less influenced by previous states. However, setting

a ¼ 1 does not entirely turn off the memory capacity of the

reservoir, since the recurrent connections defined by the

internal weights W are not affected. To find a suit-

able amount of state smoothing, a needs to be chosen

accordingly.

3 Experimental setup

3.1 Bone marrow cell dataset

We challenge our approach on a non-neoplastic human

bone marrow cell dataset composed of three consecutive

maturation stages in granulopoiesis as well as one class

from erythropoiesis, as can be seen in Table 1. Myelocytes,

metamyelocytes, and band cells are three consecutive

maturation stages of WBC in the bone marrow and are

characterized by a high intra-class variability and a small

inter-class distance. Biological samples were taken from

the human iliac crest by trephine biopsy, embedded in

acrylate, cut into slices of 	 2 lm, and stained with H&E.

Cell patches were extracted from virtual slides of two

patients (digitized at 40� magnification using an Aperio

whole slide scanner) and labeled by an expert pathologist.

All cells appeared at the same object scale. Considering the

problem of hematopoietic cell classification without

megakaryocytes, the object scale within a class does not

vary by more than a factor of approximately 
0:2, which

still can be compensated by our approach. The total num-

ber of original patches were extended by a factor of six

using nonlinear warping transformations (circular distor-

tion by 
35�) as well as horizontal flipping, resulting in

744 foreground patches of four classes. Despite this data

augmentation strategy, we ensured that both transformed

and original images were unique, and that rotation of the

extended dataset did not introduce any duplicates. In

addition, we used 200 randomly sampled background pat-

ches from the same virtual slides as control class. With

respect to all positive classes (i.e., foreground classes), the

control class served as negative class. Hence, samples of

this class did not contain any centered cells. It was used to

verify the capability of a classifier to discriminate among

different positive classes, as well as between all positive

classes and the negative class. All patches were converted

to gray-scale by averaging the color channels (RGB mean).

At 40� magnification, the average single-cell patch size in

our dataset was 33� 33 pixels. Hence, we could normalize

the patches to a fixed size of 20� 20 pixels using bilinear

interpolation without losing significant appearance infor-

mation or introducing artifacts. The receptive field of the

ESN was connected to all incircle (r ¼ 10) pixels of that

patch, resulting in L ¼ 332 network inputs. In total, the

Table 1 The non-neoplastic bone marrow dataset used for method evaluations consists of a total of n ¼ 944 patches

Group Name nc Sample patches

C1 Granulopoiesis Band cell 200

C2 Granulopoiesis Metamyelocyte 144

C3 Granulopoiesis Myelocyte 200

C4 Erythropoiesis Orthochromatic normoblast 200

Cbg – Background 200

Total 944
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dataset comprised n ¼ 944 patches, of which 66%

(n ¼ 623) were assigned for training and hyper-parameter

optimization, and 34% (n ¼ 321) were held-out for testing.

3.2 Echo state network

In order to avoid learning the sequence of cell classes

rather than the appearance of each cell, we introduced

periods with zero-input of random length between two

consecutive cell image patches. They were furthermore

required to let the reservoir ‘forget’ about the previous

image and learn each instance separately. Depending on

the spectral radius qðWÞ, the network approximately

required 20–50 time steps to reach the resting state after the

last input stimulus has been presented. Therefore, we ran-

domly sampled the zero-input length in the range

[50, 100]. Please note that this is a different concept than

setting the network to the generative mode after presenting

an image input, because we did not apply another input

stimulus as long as it did not completely reach the resting

state.

Starting with ESN hyper-parameters for a binary

classification task [24] determined by simulated anneal-

ing [4], we continued with manual fine-tuning. Consid-

ering the influence of the hyper-parameters to achieve

higher performance [32], they were successively opti-

mized for our cell recognition task using tenfold cross-

validation (CV) on the training set (n ¼ 623). Dense

connectivity was used in the input weights Win, while

only 30% of the reservoir connections W were nonzero.

The normalized pixel intensity was bounded within [0, 1],

so we shifted and scaled it to ½�1; 1� to avoid using only

the linear part of the tanh activation function of the

reservoir units. For a presented input IðxÞ, all readout

units showed rather high activity in the first and last few

recording steps. Since these reservoir activities did not

contribute to the actual classification, we bounded the

inference window X to start 5% after the first and to end

5% before the last sample.

3.3 Random forest

The performance of the ESN was compared to a clas-

sification random forest [7]. We trained a standard RF to

solve the same five-class classification problem that was

previously defined for the ESN. In analogy to the ESN

setup, the input data for the RF were the gray-value

single-cell patches. Training a decision tree in a forest is

based on the principle that the dataset arriving at an

internal node j gets split into a left and right subset

based on randomly selected criteria. The optimization

problem at each node is given by maximizing an

objective function to find the best split decision. The

quality of the split decision was evaluated using the Gini

index [8] as the objective function that measures the

‘class purity’ in each of the subsets. Suitable hyper-pa-

rameters such as number of random node tests, number

of samples to test a split, and split functions were

evaluated in tenfold cross-validation experiments. We

used a simple split function that randomly selected two

locations in the image patch and compared the intensity

difference to a randomly selected threshold. A common

rule uses
ffiffiffi
p

p� �
random node tests for each split [18],

where p is the number of features per sample. For 20�
20 pixels images, each pixel being a feature, this results

in only 20 node tests (p ¼ 400). However, we found that

increasing the number of split function tests per node to

100 and comparing each one to 20 random thresholds (in

2000 tests per node) resulted in better performance. Each

split decision was evaluated on 200 samples that were

randomly selected from the data available at a node j. A

terminal (leaf) node was constructed when either the

maximum tree depth was reached or the size of the

dataset arriving at node j was smaller than a predefined

number of 100 samples. Leaf nodes store the class his-

togram of the data. Bagging did not result in higher

performance in the forest training. Hence, each tree was

learned all available training data samples. Once the

trees were constructed, we could propagate an image

patch IðxÞ through the forest and the final ensemble

output was produced by averaging the decisions of the

individual trees, producing a probability distribution

over the class labels.

3.4 Classification performance metrics

Both ESN and RF classification performance were assessed

quantitatively. The overall performance is reported as

mean accuracy (ACC) weighted by the class distribution

ACC ¼ 1

n

X
c

nc TPc; ð7Þ

with n as the total number of samples and nc as the number

of samples in class Cc. TPc denotes true positive, FPc false

positive, TNc true negative, and FNc false negative pre-

dictions for class Cc. In order to observe the performance at

the class level, more detailed measures than the overall

accuracy were required. Class-wise performance is repor-

ted as precision (PRCc), recall (RECc), specificity (SPCc),

and F1-score (F1c):

Neural Comput & Applic

123



PRCc ¼
TPc

TPc þ FPc
; ð8Þ

RECc ¼
TPc

TPc þ FNc

; ð9Þ

SPCc ¼
TNc

TNc þ FPc
; ð10Þ

F1c ¼
2 � PRCc � RECc

PRCc þ RECc

: ð11Þ

Actual values of performance measures are reported as

mean and standard deviation (SD).

3.5 Experiment definitions

We were interested in the performance of the proposed

rotation-invariant approach in terms of overall and class-

wise accuracy under different conditions. Therefore, we

defined the following four experimental settings, where for

each individual cell image 360 reservoir states were col-

lected. We used bilinear interpolation when rotating the

images to reduce artifacts caused by aliasing.

Experiment 1 In the first experiment we were interested

in the general applicability of the proposed

approach to multi-class cell classification.

The ESN was trained on a sequence of all

possible (integer) rotation angles u ¼
0�; . . .; 359� of an individual image patch.

Hence, no generative mode was used

(Du ¼ 0).

Experiment 2 In the second experiment the generative

mode of the ESN in the context of image

classification was evaluated. In particular,

we focused on whether or not meaningful

features could be computed when we

inserted a predefined stimulus-free period

(‘zero-input’) between showing single

rotations of the image. Instead of having

360 individual inputs from an image, we

skipped five subsequent rotation angles

(Du ¼ 5) and recorded the decaying

reservoir activity. For instance, the input

stimulus sequence for the first 12 time

steps included three actual image inputs at

the rotation angles 0�, 6�, and 12�,
respectively: ½uðt0Þ ¼ Iðx; 0Þ; uðt1;...;5Þ ¼
0; uðt6Þ ¼ Iðx; 6Þ; uðt7;...;11Þ ¼ 0;

uðt12Þ ¼ Iðx; 12Þ; . . .�.
Experiment 3 Here, we increased the duration of the

generative mode and skipped 10 rotation

angles (Du ¼ 10).

Experiment 4 To simulate a concrete real-world

application, the classifier is learned from

scratch on all available training data

(n ¼ 623) and tested on the held-out test

data (n ¼ 321). Further, we used Du ¼ 5

(see also experiment 2) to examine whether

the ESN is able to deal with short

periodical, but different input stimuli, and

compared it to the RF trained the

conventional way to achieve rotation-

invariance. A classifier is considered to be

invariant to rotations, if the very same

object is always labeled with the same

class label under arbitrary in-plane

rotations. Hence we examined, whether

both ESN and RF were able to recognize

the very same cell again under a randomly

selected, different rotation angle. The

number of samples per class in the test set

was n1 ¼ 69, n2 ¼ 56, n3 ¼ 61, n4 ¼ 65,

and nbg ¼ 70, which also approximately

reflected the distribution in the training set.

We did not perform any additional data

augmentation to balance the training set.

Using the settings from experiments 1–3, we examined the

influence of the generative mode on the classification perfor-

manceof theESNin tenfoldCVexperimentson the training set.

The size of the reservoir was varied (N ¼ f200; 500; 1000;
2000; 3000; 4000g) to assess the required memory capacity of

the ESN for the tasks. For each N, the reported values corre-

spond to the best results of the hyper-parameter fine-tuning,

whichwas stopped once the performance reached saturation on

our dataset. A similar approach was carried out for the RF,

where we varied the number of individual trees and their depth

along other hyper-parameters determined by the preceding

search.The samples in thedatasetwere randomly shuffledat the

beginning of the experiments. Despite that the main focus of

this work was set on evaluating the rotation-invariant ESN

classifier,we employed the previously describedRFas baseline

classifiers to validate the results.

4 Results

4.1 Model evaluations

4.1.1 Echo state network

The classification performance of the proposed rotation-

invariant approach was evaluated in terms of weighted

mean overall accuracy (ACC). Five independent tenfold
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CVs were run in experimental settings 1–3, cf. Sect. 3.5. In

order to fix a suitable amount of short-term memory, pre-

vent over-smoothing the state space, and account for proper

reservoir decay, the following parameter tuples

ðDu; qðWÞ; aÞ were used for the ESN experiments:

(0, 0.6, 0.85), (5, 0.8, 0.85), and (10, 0.95, 0.85). We col-

lected 360 reservoir states for each individual cell image

patch, starting at rotation u0 ¼ 0.

Quantitative results of the CVs are reported in Table 2

and visualized in Fig. 6. Obtaining higher performance

generally required larger reservoirs. For instance, to reach

approximately 80% accuracy, it took ten times more

reservoir units to get similar performance in experiment 3

than in experiment 1: (N ¼ 2000, Du ¼ 10) versus

(N ¼ 200, Du ¼ 0), cf. Table 2.

Discriminating subsequent maturation stages of granu-

lopoietic cells (i.e., C1, C2, and C3) was challenging for the

ESN. Taking a closer look at a single CV run from

experiment 1 with N ¼ 1000 and Du ¼ 0, we observed

that this task required larger reservoirs to capture the subtle

differences in the cells’ appearance. Considering the area

under the curve (AUC) in Fig. 7, learning to recognize

band cells (C1) and metamyelocytes (C2) in this setting

seems to be harder than learning the other classes. The

confusion among these classes may be caused by their

indistinct class borders, because we did not observe this

effect among C3 and C4. All samples of the background

class Cbg could be recognized correctly.

4.1.2 Random forest

Similarly, the dataset for the baseline classifier (RF)

experiments was augmented with the same number of

rotations and rotation angles that were available as inputs

to the ESN (i.e., 360=maxfDu; 1g). In a grid search, 16

combinations of two main RF parameters were evaluated:

the number of individual trees, i.e., forest size

¼ f4; 16; 64; 128g, and the maximum tree depth

¼ f2; 4; 8; 12g.
Like for the ESN, five independent tenfold CVs were

run on the training dataset using the RF. Figure 8 illustrates

the results. The classification accuracy could significantly

be improved when larger and deeper forests were used.

However, with respect to higher performance, the depth of

the individual trees was more important than the total

number of trees in the forest.

4.1.3 Classifier comparison

Compared to the ESN, the RF was less sensitive to

omitted rotation angles. The difference between maxi-

mum and minimum mean accuracy among experiment

1–3 was in the range of 0.1–3.3 % for the RF (Fig. 8),

and in the range of 10.5–14.0 % for the ESN. This may

be explained by the fact that in the RF training, each

Table 2 Results of the ESN model evaluations

Exp. Du Reservoir size N

200 500 1000 2000 3000 4000

1 0 ACC 78.85 85.32 89.76 93.63 95.37 96.43

SD (0.75) (0.37) (0.55) (0.51) (0.17) (0.35)

2 5 ACC 70.82 75.85 79.37 84.73 88.39 89.49

SD (0.59) (0.63) (0.27) (1.01) (0.35) (0.22)

3 10 ACC 67.72 72.08 75.82 80.42 83.64 85.96

SD (0.77) (0.53) (0.54) (0.70) (0.22) (0.92)

Five independent tenfold cross-validation experiments were run on

the training dataset. Values are reported in percent as mean weighted

accuracy (ACC) and standard deviation (SD), see also Fig. 6
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Fig. 6 Performance evaluation of the ESN model. Mean weighted

accuracy (ACC) over five independent tenfold CV experiments, error

bars refer to three standard deviations (SD). The longer the ESN is in

generative mode, the more reservoir units are required to generate

sufficient features for classification via linear regression
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Fig. 7 Precision–recall curve for one ESN cross-validation experi-

ment with N ¼ 1000 and Du ¼ 0. The area under the curve (AUC)

for C1 and C2 is lower than for the other classes. With larger

reservoirs even these two classes could obtain higher performance
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rotation was considered as an individual sample, while

the ESN received a continuous stream formed by the

rotations of an image patch and omitting rotations causes

unforeseen interruptions. These interruptions could only

be compensated by larger reservoirs. Conversely, this

also indicates that training a RF on each possible integer

rotation (Du ¼ 0) is not necessary, and using much less

training data already results in similarly high

performance.

4.2 Robustness for random starting angles u0

We have shown in experiment 1 that generalization of an

ESN works well when it is trained on all 360 rotations of an

image patch. Further, it is also capable of learning a clas-

sifier that works with periods of zero-input between two

consecutive rotations (experiments 2–3). The CV experi-

ments suggested that increasing the reservoir size also

increases the classification performance on all classes, cf.

(a) (b) (c)

Fig. 8 Results of the experiments to select the best RF model. In a

grid search, 16 combinations of two main RF parameters forest size,

i.e., the number of trees, and maximum tree depth were evaluated.

Performance values for a Du ¼ 0, b Du ¼ 5 and c Du ¼ 10 are

reported in percent as weighted mean accuracy (ACC) and standard

deviation (SD, in brackets). Higher overall mean accuracy corre-

sponds to green color, where low accuracy is represented by blue

color (color figure online)
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Fig. 9 Classifier performance on the test set in experiment 4 (n ¼ 321,

Du ¼ 5). The top row shows precision–recall curves and the area under

the curve (AUC), the bottom row the confusion matrices. The first

column in a illustrates the results for the ESN classifier trained on the

original initial starting anglesu0 ¼ 0, while the second column refers to

results obtained using a random u0. Similarly, in b the results are

illustrated for the RF classifier. The color bar encodes the class-wise

precision (i.e., the ratio of true positives per predicted class), colors

toward red correspond to higher precision, i.e., less false positives.

While the ESN frequently confused C1 and C2, the predominant

misclassifications of the RF were among C3 and C4. However, the RF

showed better results for C1 and C2 (color figure online)
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Fig. 6. Using u0 ¼ 0 and Du ¼ 5 as reference scheme, we

examined whether the very same cells could be recognized

equally well when the rotation started at a random u0.

Therefore, the best ESN and RF models were selected from

the CVs with respect to experiment 2 (ESN: N ¼ 4000, RF:

forest size ¼ 128, maximum tree depth ¼ 12).

In Fig. 9 we report precision–recall curves, AUCs, and

the confusion matrices on the fixed test set (n ¼ 321) for

both classifiers. Generally, the results were of almost equal

quality with respect to the weighted mean measures for a

patch rotation starting at u0 ¼ 0 and random u0. Consid-

ering precision, the ESN achieved 89.40 and 89.30 %, the

RF 90.50 and 87.60 %, respectively. The recall of the ESN

is constant 88.80 %, but marginally decreases for the RF

from 89.70 to 86.60 %. While only two out of 321 cells

(0.62 %, Fig. 10q, r) were predicted differently by the

ESN, the RF predicted 16 cells (4.98 %, Fig. 10a–p) dif-

ferently. Classification measures reported in Table 3 are

more stable for the ESN than for the RF. More specifically,

very stable precision and recall values indicate that the

recognition accuracy does not necessarily depend on the

initial rotation angle and that the proposed approach to

train ESNs for image recognition works very well. The

absolute value differences between u0 ¼ 0 and random u0,

denoted as jDj, is close to zero for most of the measures.

These results suggest that the ESN is able to robustly

predict the same class label of a particular cell in 99.38 %

of all test cases, even if u0 randomly falls within Du,
where the network is in the generative mode. However, the

baseline classifier (RF) achieved comparable performance

in almost all measures, cf. Table 3.

The precision–recall curves and confusion matrices

were quite diverse for the foreground classes. While curves

for C3 and C4 were close to optimal, curves for other

classes showed that the network had troubles discriminat-

ing among C1 and C2. This could also be observed by

inspecting the confusion matrices in Fig. 9a, where the

ESN frequently predicted C1 when the true class was C2.

On the other hand, the RF was better in recognizing C1 and

C2, but showed a tendency to predict C4 when the true class

was C2 or C3, and C3, when the true class was C2 or C4, cf.

Fig. 9b. The area under the curve (AUC) over all classes

was also more stable for the RF. The control class Cbg has

always been perfectly classified by both ESN and RF.

5 Discussion and conclusions

While our previous work [24] focused on binary classifi-

cation of similar cells from raw image patches, this paper

showed that the proposed approach robustly generalizes to

multi-class problems as well. Further, performance com-

parable to that of a random forest classifier that was trained

the conventional way to achieve rotation-invariance, i.e.,

multiple rotated versions of an image patch, was observed.

The model evaluation revealed that learning the temporal

features works better for showing all rotations (Du ¼ 0)

than for skipping some rotations (Du[ 0) when ESNs of

the same complexity (in terms of reservoir capacity) were

used. Yet, the ESNs were able to extract discriminative

features in the generative mode, but significantly larger

reservoirs were required to achieve similar classification

(j) (k) (l)

(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

(m) (n) (o)

(p) (q) (r)

Fig. 10 16 samples (4.98 %) classified differently by the RF classifier

in experiment 4 (a–p), and the two samples (0.62 %) classified

differently by the ESN (q, r). The left image shows the original cell

patch at u0 ¼ 0, the right image at a random starting angle (rnd. u0).

Below these images the predicted classes are enclosed in green boxes, if

they were recognized as true positives, or in red boxes otherwise. The

used counterclockwise initial rotation angle and ground truth class (GT)

are shown below the predictions (color figure online)
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performance. Future work could focus on evaluating the

maximum period in generative mode with respect to the

network’s test error.

We have considered short periods of zero-input between

subsequent rotations of the same image to explicitly

examine the capability of the reservoir to generate mean-

ingful features from just a few external stimuli at specific

points in a temporal input stream (experiments 2–4).

However, this may not be an optimal setting for the ESN.

Results from our model evaluations, especially with Du ¼
0 in experiment 1, suggest that applying continuous input,

i.e., without interruptions of the stream, may potentially

deliver higher performance for this cell recognition task.

That could for instance be realized by providing nonzero

input only, such as keeping the input between consecutive

rotations constant. Future work must additionally evaluate

a more economical way of using the proposed rotation-

invariant approach, such as subsampling the input sequence

at specific rotations, which would additionally decrease the

required runtime. However, any change to the ESN input

scheme likely requires an adaption of hyper-parameters

and may even lead to different architectures.

Considering the current approach, the runtime for fea-

ture computation in the reservoir could potentially be

reduced by resetting the reservoir state instead of waiting

until the resting state has been reached after the last rota-

tion of an image has been presented. A first obvious

advantage would be that we could use much shorter ran-

dom periods between the inputs, or omit them entirely.

This further would enable parallel training, since we could

collect the temporal features from parallel copies of the

reservoir and concatenate them (with, or without random

gaps) before learning the regression weights. Similar holds

for testing, where inference could be done for multiple

images in parallel. However, it needs to be investigated

critically, whether omitting the sequences of random length

between individual images is feasible, and how this (pos-

itively or negatively) influences the performance on this

task.

Interestingly, we could only observe a minor improve-

ment in the baseline RF classification results when more

training data were used. Even when we skipped 10 rota-

tions, the mean overall accuracy was approximately as high

as when we trained on all 360 rotations. From that we can

conclude that the performance of the RF can only be

slightly improved when we train on ten times the original

dataset size. We presume that due to interpolation the

images within a range of 10 subsequent rotation angles are

too similar to increase the diversity in the training dataset

and contribute to higher performance.

We see advantages in using ESNs for cell recognition:

multiple classes can be learned from a single, randomly

connected RNN, which is driven by raw image data. When

compared to other, gradient descent-based training meth-

ods [47, 54], training via ridge regression is guaranteed to

result in a global optimum. Besides the proposed regression

inference scheme, more sophisticated (also nonlinear)

schemes may lead to superior performance. Nevertheless,

obtaining good hyper-parameters is highly task-specific

and remains a tedious duty. Deep learning models, espe-

cially convolutional neural networks (CNNs [29]) have

demonstrated good performance in white blood cell

Table 3 Class-wise performance of the ESN and RF on the fixed test dataset (n ¼ 321) in experiment 4

PRC REC SPC F1-score

u0 ¼ 0 rnd. u0 jDj u0 ¼ 0 rnd. u0 jDj u0 ¼ 0 rnd. u0 jDj u0 ¼ 0 rnd. u0 jDj

C1 ESN 0.791 0.791 0.000 0.928 0.928 0.000 0.934 0.934 0.000 0.853 0.853 0.000

n1 ¼ 69 RF 0.903 0.868 0.035 0.942 0.957 0.015 0.972 0.960 0.012 0.922 0.910 0.012

C2 ESN 0.897 0.897 0.000 0.625 0.625 0.000 0.985 0.985 0.000 0.737 0.737 0.000

n2 ¼ 56 RF 0.946 0.939 0.007 0.625 0.554 0.071 0.992 0.992 0.000 0.753 0.697 0.056

C3 ESN 0.929 0.912 0.017 0.853 0.853 0.000 0.985 0.985 0.000 0.889 0.881 0.008

n3 ¼ 61 RF 0.889 0.803 0.086 0.918 0.869 0.049 0.973 0.950 0.023 0.903 0.835 0.068

C4 ESN 0.853 0.865 0.012 0.985 0.985 0.000 0.957 0.961 0.004 0.914 0.921 0.007

n4 ¼ 65 RF 0.785 0.763 0.022 0.954 0.892 0.062 0.934 0.930 0.004 0.861 0.823 0.038

Cbg ESN 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000

nbg ¼ 69 RF 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000

w.m. ESN 0.894 0.893 0.001 0.888 0.888 0.000 0.971 0.971 0.000 0.884 0.884 0.000

n ¼ 321 RF 0.905 0.876 0.029 0.897 0.866 0.031 0.974 0.966 0.008 0.894 0.860 0.034

The last row contains the weighted mean (w.m.) of the measures according to the class distribution in the test set. The differences between the

performance at the default (u ¼ 0) and the random starting angle (rnd. u0) are computed as absolute differences jDj. The ESN recognized the

same cells under different rotation angles more constantly. Superior results are printed in bold. The best hyper-parameters of the classifiers were

chosen according to the best cross-validation results of experiment 2 (ESN: N ¼ 4000, RF: forest size ¼ 128, maximum tree depth ¼ 12)
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classification [17] and are therefore considered as a

promising candidate in future research regarding the clas-

sification of subsequent maturation stages in the bone

marrow. While CNNs also operate on raw images, they

may be more robust in capturing the high intra-class vari-

ance while coping with small inter-class distance of blood

cell maturation by learning significant features directly

from the cell images. Nevertheless, robustly training deep

feed-forward networks usually requires huge databases that

are usually not available for biomedical imaging problems.

Our approach, on the other hand, works well even with a

small number of samples, and skewed class

distributions [24].

We consider a classifier as truly rotation-invariant, if the

same object can be recognized as the true class under

arbitrary rotations. However, a rectangular image is

bounded by definition, and when it gets rotated while

keeping the original image dimensions, some parts of the

rotated image may be undefined. A common strategy to

overcome this problem is to use border extension tech-

niques [15], for instance filling these regions with uniform

gray values, or mirroring the border pixels. Depending on

the ratio of the image dimensions, this may introduce

significant mirroring artifacts and artificial repetitive pat-

terns that do not contribute to the semantics of the image.

Since we used square patches and the cell nuclei were

centered, the introduced border artifacts are just minimal.

Moreover, the proposed rotation scheme for the ESN

training just considers pixels within the incircle of the

square patch. Therefore, the border artifacts become neg-

ligible for both ESN and RF classifier. Nevertheless, the

information in the original and rotated image is not com-

pletely equivalent, and therefore, we can only speak of

achieving an approximate rotation-invariance. It has to be

noted that despite the classifiers may have misclassified

some samples in either the default (i.e., Du0 ¼ 0) or the

random starting angle evaluation (see definition of exper-

iment 4), the other one always resulted in a true positive

recognition, cf. Fig. 10. Hence, to increase the overall

recognition rates and make a step toward more robust

rotation-invariant classifiers, it could be beneficial to

classify a given test image several times under varying

(e.g., random) angles and predict the final class label using

some consolidation process.

The classification performance of the ESN on the pre-

sented bone marrow dataset has to be interpreted carefully,

though. Firstly, due to the minimal inter-class distance that

is caused by continuous maturation stages (i.e., C1–C3),

and the cells’ appearance is frequently very similar and

exacerbates finding a good (linearly) separating hyper-

plane. Secondly, even after several years of experience, it

is a non-trivial task for expert pathologists to make an exact

distinction between consecutive maturation stages. The

class distribution in this dataset might also slightly distort

the results presented as weighted mean here, since C2 is the

minority—but most difficult—class to be recognized. This

under-representation provokes a more optimistic view on

our results, since the probability of misclassifying C2 is

lower due to the sample size. However, we provided per-

class performance measures in our experimental results

(Fig. 7) that showed non-consecutive maturation stages

(i.e., C3 and C4) being recognized reliably even by less

complex ESN models. Using a background class as control

enabled assessing the discriminative power of the classi-

fiers with respect to the foreground classes. However, in

comparison to the foreground classes, the background class

always shows very high classification accuracy in both

classifiers. This behavior increases the overall mean

accuracy measures and must be considered when inter-

preting the results. However, the collection of hundreds of

images for each cell class requires the time-consuming,

manual annotation by hematopathology experts. By

employing label-preserving data augmentation strategies

that mimic morphological variability we were able to

generate more samples for this study. Our current research

is focused on creating a larger bone marrow dataset to

assess the robustness and generalization capability of the

ESN and omit artificial data augmentation. Additionally, a

thorough evaluation on other similar datasets is required to

evaluate the transferability of the approach. Despite our

promising results, an evaluation on a more extensive and

fully balanced dataset obtained from multiple patients is

required to derive more precise conclusions.

Previous work employed heterogeneous ensembles of

classifiers [37, 41], where each individual instance focused

on different aspects of the feature space, or even different

features. They reported superior results of their ensembles

over individual classifiers. Our results in experiment 4

revealed, that the RF classifier has weaknesses, where the

ESN actually shows strengths—and vice versa, cf. Fig. 9.

A combination of the two evaluated classifiers, i.e., ESN

and RF, to increase the overall recognition rates in our

experimental settings seems feasible. Deeper trees are

expected to further increase the performance, but finding an

optimum depth requires further examination. Using mul-

tiple ESNs in ensembles could be another opportunity to

increase the performance by introducing diversity. One

could use different settings for the individual networks,

such as the sparsity of input and reservoir weights, different

reservoir sizes, input weight scaling, and neuron models.

Furthermore, training on different levels of a Gaussian

scale space pyramid could add robustness against scale

variations to a certain extent, where the linear regression

would still guarantee globally optimal learning.

Using ESNs to classify bone marrow cells is attractive

for applications in biomedical diagnostics due to the
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reliability of the system. An important measure in most

medical application settings besides recall is a high

specificity, as it is expressed by our recognition system.

Since it is a learning-based strategy, it can more easily be

transferred to other problems than rigid standard image

processing approaches. A big advantage of the proposed

approach is that cell segmentation and explicit manual

feature extraction is not required, once the locations of cell

nuclei are determined. The focus of this paper was set on

discriminating blood cell maturation stages in the bone

marrow, and thus we omitted including an automatic pro-

cedure to localize cell candidates in the histopathology

images. Some previously reported approaches treated cell

localization as a subproblem of cell counting, but we

believe that a separation of matters regarding cell local-

ization and cell classification has more potential. Recent

work [26] presented state-of-the-art results in bone marrow

cell localization with the ability to tune the detector toward

producing a huge set of candidate cells. Such a reliable and

accurate cell nuclei detection strategy could easily be

employed as a preceding step before applying the rotation-

invariant classification scheme proposed in this paper.

Integrating these approaches into a fully automated system

to support quantitative bone marrow diagnostics seems

feasible and is subject of our future research.
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