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Abstract We consider split–merge systems with heterogeneous subtask service times

and limited output buffer space in which to hold completed but as yet unmerged subtasks.

An important practical problem in such systems is to limit utilisation of the output buffer.

This can be achieved by judiciously delaying the processing of subtasks in order to cluster

subtask completion times. In this paper we present a methodology to find those deter-

ministic subtask processing delays which minimise any given percentile of the difference

in times of appearance of the first and the last subtasks in the output buffer. Technically

this is achieved in three main steps: firstly, we define an expression for the distribution of

the range of samples drawn from n independent heterogeneous service time distributions.

This is a generalisation of the well-known order statistic result for the distribution of the

range of n samples taken from the same distribution. Secondly, we extend our model to

incorporate deterministic delays applied to the processing of subtasks. Finally, we present

an optimisation scheme to find that vector of delays which minimises a given percentile of

the range of arrival times of subtasks in the output buffer. We show the impact of applying

the optimal delays on system stability and task response time. Two case studies illustrate

the applicability of our approach.
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1 Introduction

Numerous physical systems of practical interest feature a queue of incoming tasks which

split into synchronised subtasks that are processed in parallel at a set of (potentially

heterogeneous) servers. Subtasks that complete service are held in an output buffer until all

of its siblings have completed service. Examples of such systems include the processing of

logical I/O requests by a RAID enclosure housing several physical disk drives (Lebrecht

et al. 2011), parallel job processing in MapReduce environments comprising several

compute nodes (Zaharia 2010), and the assembly of customer orders made up of multiple

items in the highly-automated warehouses of large online retailers (Serfozo 2009).

The importance of performance prediction in such systems has been long appreciated by

performance modellers who have devised abstractions for their representation, most

notably split–merge queueing systems and their less synchronised—but analytically much

less tractable—counterparts, fork–join queueing systems (Bolch 2006).

Understandably, for both kinds of model, the primary focus of research work to date has

been on the computation of the stationary distribution of the number of subtasks queued at

each server and on moments of task response time, most especially the mean. Flatto

et al. (Flatto 1985; Flatto and Hahn 1984) derive exact analytical solutions for the sta-

tionary distribution of the number of subtasks in each queue in a two-node fork–join

queueing systems with exponential task arrivals and heterogeneous exponential service

time distributions. Heidelberger and Trivedi (1983) develop two highly accurate approx-

imation methods for mean queue length and mean response time prediction in closed

parallel queueing systems based on M/M/1-queues where primary tasks fork into two or

more secondary subtasks. For fork–join systems with homogeneous exponential service

time distributions, Nelson and Tantawi (1988) describe a technique which yields

approximate lower and upper bounds on mean task response time as a function of the

number of servers. Kim and Agrawala (1989) derive an approach which approximates

mean task response time and state-occupancy probabilities in multi-server fork–join sys-

tems with Erlang service time distributions. Baccelli et al. (1989, 1989) derive bounds on

various transient and steady-state performance measures for (predominantly homogeneous)

fork–join queueing systems by stochastically comparing a given system with constructed

queueing systems with simpler structure but identical stability characteristics. Towsley

et al. (1990) develop mathematical models for mean task response time of fork–join

parallel programs executing on a shared memory multiprocessor under Poisson tasks

arrivals and two different scheduling policies. Under the task scheduling policy, the

authors derive lower and upper bounds for mean task response time, while under the job

scheduling policy, standard birth–death theory leads to an exact expression for mean task

response time. Varma and Makowski (1994) use interpolation between light and heavy

traffic modes to approximate the mean response time for a homogeneous fork–join system

of M/M/1 queues. The same fork–join system was considered in Lebrecht and Knottenbelt

(2007), where a maximum order statistic provides an easily-computable upper bound on

response time. Varki et al. (unpublished) present bounds on mean response time in a fork–

join queueing system with Poisson arrivals and exponential subtask service time distri-

butions. Harrison and Zertal (2007) present an approximation for moments of the maxi-

mum of response times in a split–merge queueing system with Poisson task arrivals and

general heterogeneous subtask service times; this gives an exact result in the case of

exponential subtask service time distributions. Another recent approach by Sun and Pet-

erson (2012) presented in the context of parallel program execution time analysis—but

with ready application to the analysis of split–merge systems—approximates the
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expectation of the maximum value of a set of random variables drawn from certain dis-

tribution classes by solving for the domain value at which the inverse cdf of the maximum

order statistic is equal to a constant (0.570376002).

By contrast, the focus of the present paper is not response time computation; rather it

concerns ways to control the variability of subtask completion time (that is the difference

in time between the arrival of the first and last subtasks of a task in the output buffer) in

split–merge systems. The idea is to try to cluster the arrival of subtasks in the output buffer

by applying judiciously-chosen deterministic delays to subtasks before they are dispatched

to the parallel servers. This has especial relevance for systems that involve the retrieval of

orders comprising multiple items from automated warehouses (Serfozo 2009), since par-

tially completed subtasks must be held in a physical buffer space that is often limited and

highly utilised; consequently it is difficult to manage. Despite this, to the best of our

knowledge, this problem has not received significant attention in the literature. Our pre-

vious work (Tsimashenka and Knottenbelt 2011) presented a simple mean-based meth-

odology for computing the vector of deterministic subtask delays that minimises a cost

function given by the difference between the expected maximum and expected minimum

subtask completion times (across all subtasks arising from a particular task). However, an

expected value does not always satisfy service level objectives; in addition there is a

dependence between the maximum and minimum subtask completion times which must be

taken into account for any distributional analysis. The methodology we present here yields

the set of subtask delays which minimises any given percentile of the distribution of the

difference in the time of appearance of the first and last subtasks in the output buffer.

The present paper is an extended version of our work presented in Tsimashenka et al.

(2012). The technical contribution of this work begins with a generalisation of the well-

known order statistics result for the distribution of the range when n samples are taken

from a given distribution FðtÞ. In particular, we obtain the distribution of the range of n

samples taken from heterogeneous distributions FiðtÞ (i ¼ 1; . . .; n). Having extended this

theory to incorporate deterministic subtask processing delays, we show how an optimi-

sation procedure can be applied to a split–merge system to find that vector of subtask

delays which minimises a given percentile of the range of subtask completion times. Our

further contributions over Tsimashenka et al. (2012) include: (a) quantification of the

adverse impact of minimising subtask variability on system stability and expected task

sojourn time in the system, (b) lowering of the computational complexity of our optimi-

sation procedure through the use of Brent’s method rather than the Bisection method,

(c) implementing a split–merge system simulator and performing mutual validation

between the analysis and simulation, and (d) an additional case study.

The rest of the paper is organised as follows. Section 2 describes essential preliminaries

including a definition of split–merge systems and selected results from the theory of order

statistics. Section 3 presents various heterogeneous order statistic results, including the

distribution of the range. Section 4 shows how the basic split–merge model can be

enhanced to support deterministic delays, defines an appropriate objective function, and

presents a related optimisation procedure. Section 5 describes the impact of applying

subtask delays on system stability and expected task response time. Section 6 presents two

case studies which demonstrate the applicability of our work. The first case study considers

a split–merge system with just three parallel servers, which allows for convenient visual

representation of the optimisation landscape. The second case study considers a larger

system of eight parallel servers. Section 7 concludes and considers avenues for future

work.
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2 Essential preliminaries

2.1 Parallel systems

A split–merge system (see Fig. 1) is a composition of a queue of waiting tasks (assumed to

arrive according to a Poisson process with mean rate k), a split point, several heterogeneous

servers (which serve their allocated subtask with general service time distribution with

mean service rate 1=li), buffers for completed subtasks (merge buffers) and a merge point

(Bolch 2006). We note that in practice in physical systems it is not uncommon for the merge

buffers to share the same physical space which is managed as a single logical output buffer.

When the queue of waiting tasks is not empty and the parallel servers are idle, a task is

injected into the system from the head of the queue. The task is split into n subtasks at the

split point and the subtasks arrive simultaneously at the n parallel servers to receive service.

Completed subtasks join a merge buffer. Only after all subtasks (belonging to a particular

task) are present in the merge buffers does the original task depart the system via the merge

point. We note that this split–merge system is a more synchronised type of fork–join system.

In split–merge systems parallel servers are blocked after they have served a subtask while

the original task is in the system, whereas in fork–join systems there is no queue of waiting

tasks, but there is a queue of subtasks at each parallel server. Task response time in a split–

merge system yields an upper bound on task response time in a fork–join system having the

same set of parallel servers and task arrival rate (Lebrecht and Knottenbelt 2007).

2.2 Theory of order statistics (David 1980)

Definition: Let the increasing sequence Xð1Þ;Xð2Þ; . . .;XðnÞ be a permutation of the real

valued random variables X1;X2; . . .;Xn, i.e. the Xi arranged in ascending order

Xð1Þ 6 Xð2Þ 6 . . . 6 XðnÞ. Then XðiÞ is called the ith order statistic, for i ¼ 1; 2; . . .; n. The

first and last order statistics, Xð1Þ and XðnÞ, are the minimum and maximum respectively,

which are also called the extremes. T ¼ XðnÞ � Xð1Þ is the range.

We assume initially that the random variables Xi are identically distributed as well as

independent (iid), but of course the XðiÞ are dependent because of the ordering.

2.2.1 Distribution of the kth-order statistic (iid case)

If X1;X2; . . .;Xn are n independent random variables, the cumulative distribution function

(cdf) of the maximum order statistic (the maximum) is simply given by

Fig. 1 Split–merge queueing model
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FnðxÞ ¼ PrfXðnÞ 6 xg ¼ PrfXi 6 x; 1 6 i 6 ng ¼ FnðxÞ

Likewise, the cdf of the minimum order statistic is:

F1ðxÞ ¼ PrfXð1Þ 6 xg ¼ 1�PrfXð1Þ[xg ¼ 1�PrfXi [x;1 6 i 6 ng ¼ 1� ½1�FðxÞ�n

These are special cases of the general cdf of the rth order statistic, FrðxÞ, which can be

expressed as:

FrðxÞ ¼ PrfXðrÞ 6 xg ¼ Prfat least r of the Xi 6 xg

¼
Xn

i¼r

n

i

� �
FðxÞi½1 � FðxÞ�n�i ð1Þ

The pdf of Xr; frðxÞ ¼ F0
rðxÞ, where the prime denotes the derivative with respect to x,

when it exists, is then:

frðxÞ ¼
n!

ðr � 1Þ!ðn � rÞ!F
r�1ðxÞf ðxÞ½1 � FðxÞ�n�r:

Multiplying both sides by ‘‘small’’ �, this result follows intuitively from noting that we

require one of the Xi to take a value in the interval ðx; x þ ��, exactly r � 1 of the Xi to be

less than or equal to x and exactly n � r of them to be greater than x. The coefficient

n!=ððr � 1Þ!1!ðn � rÞ!Þ is the number of ways of doing this, given that the Xi are sto-

chastically indistinguishable.

The joint density function of the rth and sth order statistics XðrÞ;XðsÞ, where for 1 6

r\s 6 n and x� y, is:

frsðx; yÞ ¼ SrsF
r�1ðxÞf ðxÞ½FðyÞ � FðxÞ�s�r�1

f ðyÞ½1 � FðyÞ�n�s ð2Þ

where Srs ¼ n!
ðr�1Þ!ðs�r�1Þ!ðn�sÞ!, by similar reasoning. The corresponding joint cdf Frsðx; yÞ of

XðrÞ and XðsÞ may be obtained by integration of the pdf or, alternatively, following the same

conditions, we have:

Frsðx; yÞ ¼ Prfat least r of the Xi 6 x; at most n � s of the Xi [ yg

¼
Xn

j¼s

Xj

i¼r

Prfexactly i of the Xi 6 x; exactly n � j of the Xi [ yg

¼
Xn

j¼s

Xj

i¼r

n!

i!ðj � iÞ!ðn � jÞ!F
iðxÞ½FðyÞ � FðxÞ�j�i½1 � FðyÞ�n�j

Finally, the joint pdf for the k order statistics Xðn1Þ; . . .;XðnkÞ; 1 6 n1\. . .\nk 6 n, is

similarly, for x1 6 . . . 6 xk:

fn1;...;nk
ðx1; . . .; xkÞ ¼ Sn1;...;nk

Fn1�1ðx1Þf ðx1Þ½Fðx2Þ � Fðx1Þ�n2�n1�1
f ðx2Þ � � �

½FðxkÞ � Fðxk�1Þ�nk�nk�1�1
f ðxkÞ½1 � FðxkÞ�n�nk

where Sn1;...;nk
¼ n!

ðn1�1Þ!ðn2�n1�1Þ!...ðnk�nk�1�1Þ!ðn�nkÞ!.
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2.2.2 Distribution of the range

The pdf fTrs
ðxÞ of the interval Trs ¼ XðsÞ � XðrÞ follows from the joint pdf of the rth and sth

order statistics in Eq. 2 by setting y ¼ x þ trs and integrating over x, giving:

fTrs
ðtrsÞ ¼ Srs

Z1

�1

Fr�1ðxÞf ðxÞ½Fðx þ trsÞ � FðxÞ�s�r�1
f ðx þ trsÞ½1 � Fðx þ trsÞ�n�s

dx

In the special case when r ¼ 1 and s ¼ n; Trs is the range T ¼ XðnÞ � Xð1Þ and the pdf

simplifies to:

fTðtÞ ¼ nðn � 1Þ
Z1

�1

f ðxÞ½Fðx þ tÞ � FðxÞ�n�2
f ðx þ tÞdx:

The cdf of T then follows by integrating inside the integral with respect to x, giving:

FTðtÞ ¼ n

Z1

�1

f ðxÞ
Z t

0

ðn � 1Þf ðx þ t0Þ½Fðx þ t0Þ � FðxÞ�n�2
dt0dx

¼ n

Z1

�1

f ðxÞ
�
½Fðx þ t0Þ � FðxÞ�n�1

�t0¼t

t0¼0
dx

¼ n

Z1

�1

f ðxÞ½Fðx þ tÞ � FðxÞ�n�1
dx:

ð3Þ

As noted in David (1980), this equation follows intuitively by noting that the integrand

(multiplied by an infinitesimal quantity dx) is the probability that Xi falls into the interval

ðx; x þ dx� (for some i) and the remaining n � 1 of the Xj; j 6¼ i fall into ðx; x þ t�. There are

n ways of choosing i, giving the factor n.

3 Heterogeneous order statistics

We now consider n independent, real-valued random variables X1; . . .;Xn where each Xi

has an arbitrary probability distribution FiðxÞ and probability density function

fiðxÞ ¼ F0
iðxÞ. In this case of ‘‘heterogeneous’’ (or independent, but not necessarily iden-

tically distributed) random variables, we call the order statistics heterogeneous order

statistics to distinguish them from the better known results where the random variables are

implicitly assumed to be identically distributed.

Recent decades have seen increasing consideration given to the heterogeneous case in the

literature. Key theoretical results for the distribution and density functions of heterogeneous

order statistics are summarised in David and Nagaraja (2005). This includes the work of

Sen (1970), who derived bounds on the median and the tails of the distribution of hetero-

geneous order statistics. Practical issues related to the numerical computation of the ith

heterogeneous order statistic are considered in Cao and West (1997), with special consid-

eration of recurrence relations among distribution functions of order statistics.
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3.1 Distribution of the rth heterogeneous order statistic

The rth heterogeneous order statistic, derived similarly to Eq. 1, has the following cdf:

FðrÞðxÞ ¼ PrfXðrÞ 6 xg ¼ Prf at least r of the Xi 6 xg

¼
Xn

i¼r

X

f‘1;‘2g2Pi

Yi

k¼1

F‘1k
ðxÞ

Yn�i

k¼1

½1 � F‘2k
ðxÞ� ð4Þ

where Pi is the set of all two-set partitions fD;Eg of f1; 2; . . .; ng with jDj ¼ i and

jEj ¼ n � i, and ‘hk is the kth component of the vector ‘h for h ¼ 1; 2.

Similarly to the homogeneous case, the minimum and maximum order statistics are

respectively given by:

Fð1ÞðxÞ ¼ PrfXð1Þ 6 xg ¼ 1 � PrfXð1Þ [ xg

¼ 1 � PrfXi [ x 8i : 1� i� ng ¼ 1 �
Yn

i¼1

½1 � FiðxÞ�;

and

FðnÞðxÞ ¼ PrfXðnÞ 6 xg ¼ PrfXi 6 x 8i : 1� i� ng ¼
Yn

i¼1

FiðxÞ:

Differentiating Eq. 4 and simplifying yields the pdf:

fðrÞðxÞ ¼
Xn

i¼r

X

f‘1;‘2g2Pi

Xi

j¼1

Yi

k¼1;k 6¼j

F‘1k
ðxÞ

Yn�i

k¼1

½1 � F‘2k
ðxÞ�f‘1j

ðxÞ
"

�
Xn�i

j¼1

Yi

k¼1

F‘1k
ðxÞ

Yn�i

k¼1;k 6¼j

½1 � F‘2k
ðxÞ�f‘2j

ðxÞ
#

¼
Xn

i¼r

Xn

h¼1

X

f‘1;‘2g2Ph�
i�1

Yi�1

k¼1

F‘1k
ðxÞ

Yn�i

k¼1

½1 � F‘2k
ðxÞ�fhðxÞ

2
4

�Ii\n

X

f‘1;‘2g2Ph�
i

Yi

k¼1

F‘1k
ðxÞ

Yn�i�1

k¼1

½1 � F‘2k
ðxÞ�fhðxÞ

3
5

¼
Xn

h¼1

fhðxÞ
Xn

i¼r

X

f‘1;‘2g2Ph�
i�1

Yi�1

k¼1

F‘1k
ðxÞ

Yn�i

k¼1

½1 � F‘2k
ðxÞ�

2
4

�
Xn

i¼rþ1

X

f‘1;‘2g2Ph�
i�1

Yi�1

k¼1

F‘1k
ðxÞ

Yn�i

k¼1

½1 � F‘2k
ðxÞ�

3
5

¼
Xn

h¼1

fhðxÞ
X

f‘1;‘2g2Ph�
r�1

Yr�1

k¼1

F‘1k
ðxÞ

Yn�r

k¼1

½1 � F‘2k
ðxÞ�

where I� is the indicator function and Ph�
i is the set of all 2-set partitions of {1, 2,…,n}\{h}

with i elements in the first set and 1� h� n. In fact this result also follows from an

intuitive argument using the infinitesimal interval ðx; x þ ��, as in the homogeneous case.
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The joint density function frsðx; yÞ of two order statistics, XðrÞ and XðsÞ, for 1 6 r\s 6 n

and x� y, follows similarly as:

fðrÞðsÞðx; yÞ ¼
X

1� h1 6¼h2 � n

fh1
ðxÞfh2

ðyÞ
X

f‘1;‘2;‘3g2P
h1�;h2�
r�1;s�r�1

Yr�1

k¼1

F‘1k
ðxÞ

�
Ys�r�1

k¼1

½F‘2k
ðyÞ � F‘2k

ðxÞ�
Yn�s

k¼1

½1 � F‘3k
ðyÞ�

ð5Þ

where Ph1�;h2�
i1;i2

is the set of all 3-set partitions of {1, 2,…,n}\{h1, h2} with i1 elements in

the first set, i2 elements in the second set, and so n � i1 � i2 � 2 in the third, and

1� h1 6¼ h2 � n.

3.2 Distribution of the range for heterogeneous order statistics

From the joint pdf of two heterogeneous order statistics in Eq. 5, we obtain the pdf of the

interval Trs ¼ XðrÞ � XðsÞ by setting trs ¼ y � x:

fðr:sÞðtrsÞ ¼
X

1� h1 6¼h2 � n

Z1

�1

fh1
ðxÞfh2

ðx þ trsÞ

X

f‘1;‘2;‘3g2P
h1�;h2�
r�1;s�r�1

Yr�1

k¼1

F‘1k
ðxÞ

Ys�r�1

k¼1

½F‘2k
ðx þ trsÞ

� F‘2k
ðxÞ�

Yn�s

k¼1

½1 � F‘3k
ðx þ trsÞ�dx:

ð6Þ

For the range, we want the special case in which r ¼ 1; s ¼ n and T ¼ XðnÞ � Xð1Þ, giving

the pdf:

fð1:nÞðtÞ ¼
X

1� h1 6¼h2 � n

Z1

�1

fh1
ðxÞfh2

ðx þ tÞ
X

f‘1;‘2;‘3g2P
h1�;h2�
0;n�2

Yn�2

k¼1

½F‘2k
ðx þ tÞ � F‘2k

ðxÞ�dx

¼
X

1� h1 6¼h2 � n

Z1

�1

fh1
ðxÞfh2

ðx þ tÞ
Y

k 6¼h1;h2

½Fkðx þ tÞ � FkðxÞ�dx:

ð7Þ

The cdf now follows by integration (inside the sum and integral with respect to x):

Fð1:nÞðtÞ ¼
X

1� h1 6¼h2 � n

Z1

�1

fh1
ðxÞ

Z t

0

fh2
ðx þ t0Þ

Y

k 6¼h1;h2

½Fkðx þ t0Þ � FkðxÞ�dt0 dx

¼
X

1� h1 � n

Z1

�1

fh1
ðxÞ

Y

k 6¼h1

½Fkðx þ tÞ � FkðxÞ�dx:

ð8Þ

In fact, the same result can be obtained by noting that Eq. 3 generalises using the argument

given immediately following it. This is that, given a particular choice of i ¼ 1; 2; . . .; n, the

integrand (multiplied by an infinitesimal quantity dx) is the probability that Xi falls into the
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interval ðx; x þ dx� and the other Xj; j 6¼ i fall into ðx; x þ t�. Of course there are n ways of

choosing i, and so we have to sum over n terms; in the homogeneous case, all these terms are

the same, which gave the factor n. For heterogeneous order statistics, we therefore obtain:

FrangeðtÞ ¼ Fð1:nÞðtÞ ¼
Xn

i¼1

Z1

�1

fiðxÞ
Yn

j¼1;j 6¼i

½Fjðx þ tÞ � FjðxÞ� dx ð9Þ

This is a useful result, which requires a sum of only n terms. It can be directly applied to

determine the distribution of the variability of subtask completion times in any split–merge

system with heterogeneous service time distributions, and will form the basis for range-

optimisation as considered in the next section.

4 Controlling variability in split–merge systems

4.1 Introducing subtask delays

Our aim is to control the variability of subtask completion (equivalently output buffer

arrival) times by introducing a vector of delays:

d ¼ ðd1; d2; . . .; di; . . .; dn�1; dnÞ ð10Þ

Here, di denotes the deterministic delay that will be applied before a subtask is sent to

server i for processing. From Xi �FiðtÞ we define the random variables of parallel service

time with applied delays as Xd
i �Fiðt � diÞ. The order statistics of parallel service time

with applied delays are Xd
ð1Þ;X

d
ð2Þ; . . .;X

d
ðnÞ.

After applying the delays from Eq. 10, the distribution of the range from Eq. 9

becomes:

Frangeðt; dÞ ¼
Xn

i¼1

Z1

�1

fiðx � diÞ
Yn

j¼1;j 6¼i

½Fjðx þ t � djÞ � Fjðx � djÞ� dx ð11Þ

We assume that, 8i; fiðt � diÞ ¼ 0; 8t\di. Similarly, 8j; Fjðt � djÞ ¼ 0, 8t\dj. We note

that in order to avoid unnecessarily delaying all subtasks we require that the subtask delay

for at least one server (the ‘‘bottleneck’’ server) be set to 0.

4.2 Optimisation procedure

In this section we move away from our previous mean-based technique (Tsimashenka and

Knottenbelt 2011) towards a more sophisticated framework for finding delay vectors which

provide soft (probabilistic) guarantees on variability. More specifically, for a given

probability a, a 2 ð0; 1� we aim to minimise the 100ath percentile of variability with

respect to d. That is, we aim to solve for d in:

da ¼ min
d

F�1
rangeða; dÞ ð12Þ

Put another way, we aim to find that vector da which yields the lowest value for the 100ath

percentile of the difference in the completion times of the first and the last subtasks

(belonging to each task).
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Practically, we developed a numerical optimisation procedure by prototyping it in

Mathematica and subsequently implementing a full version of it in C?? for efficiency

reasons. Evaluation of Eq. 11 for a given a and d is performed by means of numerical

integration using the trapezoidal rule. While this is adequate for almost all continuous

service time density functions, complications arise in the case of the pdf of deterministic

service time density functions because of its infinitely thin, infinitely high impulse. We

resolve this by replacing the deterministic pdf with delay parameter a by the Gaussian

approximation:

fDetðaÞðxÞ 	
1

c
ffiffiffi
p

p e
�ðx�aÞ2

c2

which becomes exact as c ! 0; in practice we set c ¼ 0:01.

In order to invert Eq. 11 for a given a and d, we have applied the Bisection method

(Burden and Burden 2006) in our previous work (Tsimashenka et al. 2012) because of its

excellent robustness characteristics, but it might be not computationally optimal for all

classes of functions, particularly convex functions. In the present work, we apply Brent’s

method (1971, 2002) which combines bisection, secant and inverse quadratic interpolation.

On each iteration the proposed algorithm chooses which method to use based on (a) the

method used for the previous iterate and (b) the trends observed in the most recent iterates.

For ‘‘well-behaved’’ functions, this has the potential to deliver a considerably higher

convergence rate while guaranteeing robustness (Brent 1971).

Finally, we explore the optimisation surface of F�1
rangeða; dÞ with the initial d ¼

f0; . . .; 0g using a numerical optimisation procedure. We constrain the search such that

di 
 0 for all i and
Q

i

di ¼ 0 (that is, the ‘‘bottleneck’’ server(s) should have no unnecessary

additional delay). In our implementation, we have used a simple Nelder–Mead optimisa-

tion technique (Nelder and Mead 1965), which is based on the simplex method. We note

that a range of more sophisticated (and correspondingly considerably more complex to

implement) gradient-free optimisation techniques are also available e.g. Ali and Gabere

(2010), Lewis et al. (2007).

5 Impact of applied delays on system capacity and performance

In Tsimashenka et al. (2012) our concern was solely the minimisation of a given percentile

of subtask dispersion time by introducing delays at the parallel servers. However, the

introduction of such delays has negative implications for system stability and task response

time, as quantified below.

5.1 Impact on system stability

We observe first that, at a high-level, any given split–merge system with a set of parallel

servers is conceptually equivalent to a single M/G/1 queue whose service time is equal to

the maximum of the service times of the replaced parallel servers, i.e. maxfX1;X2; :::;Xng
¼ XðnÞ. This is of course applicable for a split–merge system with delays as well, i.e.

maxfXd
1 ;X

d
2 ; :::;Xd

ng ¼ Xd
ðnÞ. Secondly, due to the fact that cdfs are monotonically

increasing functions:
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Fiðx � diÞ�FiðxÞ; 8i ðgiven di 
 08iÞ

It follows that

Yn

i¼1

Fiðx � diÞ�
Yn

i¼1

FiðxÞ

and

Z1

0

1 �
Yn

i¼1

Fiðx � diÞ dx

Z1

0

1 �
Yn

i¼1

FiðxÞ dx:

Thus:

E½Xd
ðnÞ� 
E½XðnÞ�

which proves the intuition that applying any delay to any subtask maintains or increases the

mean task service time. A similar argument can be used to show that the same property

applies to any percentile of task service time.

Exploiting the well-known stability condition for an M/G/1 queue, and denoting the

maximum arrival rate at which the system with and without delays remains stable as kd
max

and kmax respectively, we have:

kd
max ¼ 1

E½Xd
ðnÞ�

� kmax ¼ 1

E½XðnÞ�
: ð13Þ

Thus, adding any delay to any subtask adversely impacts the maximum arrival rate at

which the system remains stable.

5.2 Impact on response time

In order to quantify the impact of subtask delays on mean task response time we use the

following metric:

Response Penaltya;k ¼
E½Rd¼da;k� � E½Rd¼0;k�

E½Rd¼0;k�
� 100 ð14Þ

where E½Rd¼da;k� and E½Rd¼0;k� correspond for a given arrival rate k to mean task response

time with optimal delays and without any delays respectively. Response Penalty corre-

sponds to the percentage by which task response time increases after application of optimal

delays.

The expected task response time in a split–merge system is conceptually equivalent to

the expected task response time in a single M/G/1 queue, whose service time is given by

the maximum of the service times of the parallel servers. Consequently, we utilise the

Pollaczek–Khinchine formula for mean task response time in an M/G/1 queue:

E½Rd¼0;k� ¼
qþ l k Var½XðnÞ�

2 ðl� kÞ þ l�1 ð15Þ

where k is arrival rate, 1=l is the mean service time (with l ¼ E½XðnÞ�), and Var½XðnÞ� is the

variance of service time. The latter can be calculated as:
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Var½XðnÞ� ¼ 2

Z1

0

x
�
1 �

Yn

i¼1

FiðxÞ
�

dx �
Z1

0

1 �
Yn

i¼1

FiðxÞ dx

0
@

1
A

2

Straightforward modification of the above formulae yields the expected task response time

with applied delays (E½Rd¼da;k�).

6 Numerical results

Below we consider two case studies, which are analysed using a combination of numerical

results from the methodology above and simulation results, with mutual validation as

appropriate. The simulator is written in C?? and performs an event-driven simulation of a

split–merge queueing system using component classes for task queues, split/merge points,

parallel servers, merge/output buffers and links. For split–merge systems with up to 10

parallel servers, the simulator processes approximately 300,000 tasks per second on a

3.5GHz Intel Core-i5 workstation with 8GB RAM, and permits computation and validation

of various quantities, both in scenarios with and without application of optimal delays,

including (a) distribution of the range (cf. Eq. 11) of subtask processing times, (b) expected

task response time (cf. Eq. 15) and (c) mean output buffer population. In the following,

each simulation is replicated three times. Each replication starts with a warm-up phase

involving the processing of 1,000,000 tasks; this is followed by a measurement phase

involving the processing of 10,000,000 tasks. Because of the very large number of pro-

cessed tasks, the resulting confidence intervals are extremely narrow and are consequently

not reported. Results, whether derived from numerical analysis or simulation, are reported

to three significant figures.

6.1 Case study 1

Consider a split–merge system with task arrival rate k ¼ 0:1 (tasks/time unit) and three

parallel servers having heterogeneous service time density functions:

X1 � Paretoða ¼ 3; l ¼ 3:5; h ¼ 10Þ
ðE½X1� ¼ 4:81; Med½X1� ¼ 1:2; Var½X1� ¼ 24:96Þ

X2 �Erlangðn ¼ 2; k ¼ 1Þ
ðE½X2� ¼ 2; Med½X2� ¼ 1:68; Var½X2� ¼ 2Þ

X3 �Detð5Þ
ðE½X3� ¼ 5; Med½X3� ¼ 5; Var½X3� ¼ 0Þ

Without adding any extra delays, it is straightforward to apply Eq. 9 in a root-finding

algorithm (e.g. Brent’s method) to compute the 50th (a ¼ 0:5) and 90th (a ¼ 0:9) per-

centiles of the range of subtask completion times as t0:5 ¼ 3:62 and t0:9 ¼ 5:21 time units

respectively. Simulations of the split–merge system show that the mean output buffer

population is 0:560 subtasks.

Incorporating delays into the distribution of the range of subtask output buffer arrival

times as per Eq. 11, and executing a Nelder–Mead optimisation (suitably constrained so

that
Q

i

di ¼ 0) to solve Eq. 12 given a ¼ 0:5 yields
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d0:5 ¼ ð0:533; 3:50; 0Þ

as shown in Fig. 2. The improved optimisation procedure’s run time (using Brent’s

method) is 13 s in comparison with 46 s for the previous optimisation procedure

from Tsimashenka et al. (2012). We note that in this case the ‘‘bottleneck’’ server is

server 3. With the incorporation of the optimal delays, the 50th percentile of the range of

subtask arrival times becomes t0:5 ¼ 1:29 time units, representing an improvement of 64 %

over the original system configuration without delays. Mean output buffer population is

0:372, a 33 % reduction.

For a ¼ 0:9 we obtain

d0:9 ¼ ð0; 2:82; 1:16Þ

as shown in Fig. 3. We note that for this percentile the ‘‘bottleneck’’ switches from server 3

to server 1, despite the fact that server 3 has a higher mean service time than server 1. With

the incorporation of the optimal delays, the 90th percentile of the range of subtask arrival

times becomes t0:9 ¼ 3:35 time units, representing an improvement of 36 % over the

original system configuration without delays. Mean output buffer population is 0:392

subtasks, a 29 % reduction.

Figure 4 shows how the distribution of the range of subtask output buffer arrival times

changes according to the value of a. We note that a change of a can have a significant

impact on the quantiles of Frangeðt; dÞ, and may result in the shifting of the ‘‘bottleneck’’

server.

Without delays, the expected task response time is E½Rd¼0;0:1� ¼ 8:93 time units. After

introducing optimal subtask delays, the expected task response time becomes

E½Rd¼d0:5;0:1� ¼ 11:7 time units for a ¼ 0:5 and E½Rd¼d0:9;0:1� ¼ 12:8 time units for a ¼ 0:9.

The percentage increases in expected task response time from Eq. 14 are 31 and 43 %

respectively. Fig. 5 presents the corresponding distributions of task response time.

Fig. 2 50th percentile of the range of subtask output buffer arrival times for various deterministic
processing delays. The optimal delay vector is d0:5 ¼ ð0:533; 3:50; 0Þ
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For the system without delays the maximum sustainable arrival rate from Eq. 13 is

kmax\0:182 tasks/time unit. After introducing subtask delays to minimise the 50th and

90th percentiles of the range of subtask completion times, this drops to 0:160 and 0:153

tasks/time unit respectively. This is illustrated in Fig. 6.

Fig. 3 90th percentile of the range of subtask output buffer arrival times for various deterministic
processing delays. The optimal delay vector is d0:9 ¼ ð0; 2:82; 1:16Þ

Fig. 4 Distributions of the range of subtask output buffer arrival times without any delays (red line), with
delays optimised under a ¼ 0:5 (green line) and delays optimised under a ¼ 0:9 (blue line). (Color figure
online)
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6.2 Case study 2

We consider a split–merge system with arrival rate k ¼ 0:1 tasks/time unit and eight

service nodes with following heterogeneous service time distributions:

Fig. 5 Distributions of task response time given k ¼ 0:1, without any delays (red line), with delays
optimised under a ¼ 0:5 (green line) and delays optimised under a ¼ 0:9 (blue line). (Color figure
online)

Fig. 6 Expected response time of split–merge system for various customer arrival rates without any delays
(red line), with delays optimised under a ¼ 0:5 (green line) and delays optimised under a ¼ 0:9 (blue line).
(Color figure online)
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X1 �Exponentialðk ¼ 1Þ
ðE½X1� ¼ 1; Med½X1� ¼ 0:693; Var½X1� ¼ 1Þ

X2 �Erlangðn ¼ 2; k ¼ 5Þ
ðE½X2� ¼ 0:4; Med½X2� ¼ 0:336; Var½X2� ¼ 0:08Þ

X3 �Detð2Þ
ðE½X3� ¼ 2; Med½X3� ¼ 2; Var½X3� ¼ 0Þ

X4 �Paretoðn ¼ 2:1; a ¼ 3:5; b ¼ 10Þ
ðE½X4� ¼ 4:89; Med½X4� ¼ 4:63; Var½X4� ¼ 28:81Þ

X5 �Exponentialðk ¼ 4Þ
ðE½X5� ¼ 0:25; Med½X5� ¼ 0:173; Var½X5� ¼ 0:0625Þ

X6 �Erlangðn ¼ 3; k ¼ 3Þ
ðE½X6� ¼ 1; Med½X6� ¼ 0:891; Var½X6� ¼ 0:333Þ

X7 �Exponentialðk ¼ 8Þ
ðE½X7� ¼ 0:125; Med½X7� ¼ 0:0866; Var½X7� ¼ 0:0156Þ

X8 �Paretoðn ¼ 2:5; a ¼ 3:5; b ¼ 10Þ
ðE½X8� ¼ 4:98; Med½X8� ¼ 4:49; Var½X8� ¼ 26:97Þ

Applying Eq. 9 in a root-finding algorithm, we compute the 50th (a ¼ 0:5) and 90th

(a ¼ 0:9) percentiles of the range of subtask completion times as t0:5 ¼ 5:43 time units and

t0:9 ¼ 8:26 time units respectively. Simulations show that the mean output buffer popu-

lation for the system is 3:20 subtasks.

Applying our methodology for determining optimal subtasks delays under a ¼ 0:5
yields:

d0:5 ¼ ð3:84; 4:13; 2:32; 0; 4:71; 3:55; 4:88; 0:279Þ

For this case the improved optimisation procedure (using Brent’s method) takes 2 min 5 s,

whereas the procedure from Tsimashenka et al. (2012) takes 29 min. We see the ‘‘bot-

tleneck’’ server is server 4. With the incorporation of the optimal delays, the 50th per-

centile of the range of subtask arrival times becomes t0:5 ¼ 2:02 time units, representing an

improvement of 63 % over the original system configuration without delays. Mean output

buffer population is 1:28 subtasks, a 60 % reduction.

For a ¼ 0:9 we obtain:

d0:9 ¼ ð4:92; 5:97; 3:16; 0; 5:02; 4:37; 7:04; 0:758Þ

The ‘‘bottleneck’’ remains server 4. After adding optimal delays, the 90th percentile of the

range of subtask arrival times becomes t0:9 ¼ 4:29 time units, representing an improvement

of 48 % over the original system configuration without delays. Mean output buffer pop-

ulation is 1:36, a 58 % reduction.

Figure 7 shows how the distribution of the range of subtask output buffer arrival times

changes according to the value of a.

Without delays, the expected task response time is E½Rd¼0;k� ¼ 10:3 time units. After

introducing optimal subtask delays, the expected task response time becomes E½Rd0:5;k� ¼
12:4 time units for a ¼ 0:5 and E½Rd0:9;k� ¼ 19:2 time units for a ¼ 0:9. The percentage

increases in expected task response time are 20 and 86 % respectively. Figure 8 presents
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the corresponding distributions of task response time. For the system without delays the

maximum sustainable arrival rate from Eq. 13 is kmax\0:171 tasks/time unit. After

introducing subtask delays to minimise 50th and 90th percentile of the range of subtask

completion times this drops to 0.156 and 0.133 tasks/time unit respectively. This is

illustrated in Fig. 9.

Fig. 7 Distributions of the range of subtask output buffer arrival times without any delays (red line), with
delays optimised under a ¼ 0:5 (green line) and delays optimised under a ¼ 0:9 (blue line). (Color figure
online)

Fig. 8 Distributions of task response time given k ¼ 0:1 without any delays (red line), with delays
optimised under a ¼ 0:5 (green line) and delays optimised under a ¼ 0:9 (blue line). (Color figure online)
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7 Conclusions and future work

This paper has presented a methodology for controlling variability in split–merge systems.

Here variability is defined in terms of a given percentile of the range of arrival times of

subtasks in the output buffer, and is controlled through the application of judiciously

chosen deterministic delays to subtask service times. The methodology has three main

building blocks. The first is an exact analytical expression for the distribution of the range

of subtask output buffer arrival times over n heterogeneous servers in a split–merge sys-

tem. This is a natural generalisation of the well-known order statistics result for the

distribution of the range taken over n homogeneous servers. The second is the introduction

of deterministic subtask delays into the aforementioned expression. The third is an opti-

misation procedure which yields the vector of subtask delays which minimises a given

percentile of the range of subtask output buffer arrival times. We also quantified the impact

of our optimisation on the system stability and mean task response time. We presented two

case studies which showed that the choice of percentile can have a significant impact on

the optimal delay vector and the ‘‘bottleneck’’ server.

As previously mentioned fork–join systems are significantly less analytically tractable

than split–merge systems. However, they are more realistic abstractions of many real world

systems on account of their less-constrained task synchronisation. Consequently a natural

future direction of this work is to try and generalise our results to fork–join systems. In line

with previous research we believe we are unlikely to find an exact analytical expression for

the distribution of the range of join buffer arrival times. However, a numerical approach

and/or an analytical approximation may be possible.

Finally, the scalability of our methodology to very large split–merge systems with 100?

service nodes is currently an open question. However, large-scale problems are sometimes

encountered when modelling real-life systems. Consequently we will conduct experiments to

assess the scaling behaviour of our methodology. It may be beneficial to devise an approach

that makes use of parallel computations using for example Message Passing Interface (MPI).

Fig. 9 Expected response time of split–merge system for various customer arrival rates without any delays
(red line), with delays optimised under a ¼ 0:5 (green line) and delays optimised under a ¼ 0:9 (blue line).
(Color figure online)
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