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1 Introduction

The Large Hadron Collider (LHC) has finally been fired up and, no black hole having
swallowed the Earth, the race to collect data and analyse them has now started in earnest.
While the short term goal is to rediscover the Standard Model, the long term one will
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of course be to find signals of “new physics”, be it the Higgs boson, supersymmetry, or
something else, more exotic and possibly unexpected. While it is everybody’s hope that
discoveries will announce themselves in the form of unambiguous signals, it is of course con-
ceivable, and probably also unavoidable initially, that they may rather present themselves
cloaked under some subtle data/theory discrepancy. If this is the case, a full control of
the uncertainty of the theoretical predictions becomes naturally of paramount importance:
when comparing an experimental measurement to a theoretical calculation, we must be
able to say if they agree or not, and with what degree of confidence we are making such
statement. This is impossible to achieve unless both the experiment and the theory are
provided with a meaningful (and commonly accepted) degree of uncertainty.

While most of what we discuss below can apply to any kind of theoretical prediction
in perturbation theory, we will specialize it to the context of Quantum Chromodynamics
(QCD): many LHC processes and backgrounds pertain to the QCD realm and, due to the
relatively large size of the QCD coupling αs and therefore the slower perturbative conver-
gence, the issue of theoretical accuracy is more pressing. Theoretical predictions in QCD
contain multiple ingredients, inputs that must be ultimately extracted from experimental
data, like Parton Distribution Functions (PDFs) for hadronic collisions and the value of αs.
In the past several years a lot of progress has been made on αs and the PDFs. The uncer-
tainty with which we know the coupling is now quite small (see for instance [1]). Moreover,
several groups [2–6] have extracted PDF sets with associated uncertainties of experimen-
tal origin, and provided frameworks to properly propagate them to the observable one is
calculating. Huge progress has also been made in performing higher order perturbative
calculations for a large number of phenomenologically interesting observables [7], thereby
potentially improving the accuracy with which they are known.

One area where progress has instead arguably not been made is in an understanding
of the meaning of the residual theoretical uncertainty, given by unknown higher orders in
perturbation theory. This uncertainty is usually estimated by varying unphysical momen-
tum scales (we will denote them collectively by µ) contained in the perturbative result,
like the renormalisation and the factorisation scales, around a central value µ0, usually
taken to coincide with a physical momentum scale Q of the process. The method, the
range in which to vary the scales (typically [µ0/2, 2µ0]), and their central value µ0 = Q are
highly conventional, but nevertheless quite commonly accepted. They allow the community
to efficiently exchange a conventional uncertainty which can be easily compared between
different calculations.

Among the shortcomings one may find in this procedure, the most glaring one is
probably that it does not allow one to estimate the degree of belief (DoB) of the resulting
uncertainty band. By this we mean that it is not possible to associate a value, 68.3%, 95.5%
or 99.7% for example, to our belief that the uncertainty band contains the true sum1 of the

1 We forego here the fact that QCD series are usually not convergent but simply asymptotic. The onset

of the asymptotic behaviour usually taking place at fairly high perturbative orders, it normally does not

affect realistic phenomenological applications. In practice, the place of “true sum of the series” can be

taken by the asymptotic value of the series calculated with an appropriate prescription, or even by some

more refined higher order result, though we will keep (mis)using the term “true result” to mean the desired
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series. This lack of a proper characterisation of the perturbative theoretical uncertainty
also means that procedures to combine it with other sources of uncertainties (e.g. the value
of the coupling and the PDFs) are at best ambiguous or controversial, as exemplified by a
recent discussion [8] about the proper way to estimate the total uncertainty of the prediction
for the Higgs production cross section at hadron colliders. All this makes it potentially
impossible to fully and rigorously assess our degree of belief that an experimental result may
agree (or not) with theory, making betting (or, in order to cover both sides, offering odds)
on new physics having been discovered or not an altogether unscientific — and potentially
risky — proposition.

The purpose of this paper is precisely to try to make such a bet potentially safe,
consistently with the coherent bet idea of de Finetti [9]. To achieve this we construct a model
that leads to a well defined credibility measure for a perturbative theoretical uncertainty,
so that the degree of belief of a given interval can be explicitly calculated. In section 2
we first review the commonly used theoretical uncertainty estimation via unphysical scales
variations, and subsequently proceed to define the Bayesian model from which we then
extract our credibility distributions. Section 3 compares the results of our credibility-based
model with those of the conventional method, allowing one to assign a degree of belief to
the uncertainty bands given by the latter. Some results for the e+e− → hadrons process
are given in section 5, to better illustrate the model with a realistic example. Section 6
discusses some of the hypotheses that were made in building the model, and section 7
extends it to the case of partial knowledge of higher order coefficients.

Before closing this introduction we wish to stress the following point: we are not trying
to improve our knowledge of a perturbative prediction by adding physical information or
even just speculations about its form, or by (improbably) seeking physical content inside
the mathematical formalism: the only information that enters the result is what has been
explicitly calculated, i.e. the known coefficients of a perturbative series. To this information
we add hypotheses meant to formalize assumptions that are often implicitly made when
estimating theoretical uncertainty using scale variations, and we use the framework of
Bayesian probability (see section 2.2) for computing from them and from the available
information the degree of belief of given uncertainty intervals. The hypotheses need not
even be strictly true (or people may disagree about them), but once they are made the
path to the calculation of the degree of belief values is a rigorous one.

2 Theoretical uncertainty estimates

For definiteness, consider the perturbative calculation for the cross section of a process
taking place at a hard scale Q (see footnote 1 for a comment about the asymptotic nature
of QCD series):

σ(Q) =
∞∑

n=0

cn(Q, µR)αn
s (µR) , (2.1)

result beyond what has been really calculated.
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where µR is the renormalisation scale (which we shall in the following simply denote by µ),
and the coupling αs(µ) evolves according to

dαs

d lnµ2
= β(αs) = −α2

s

∞∑
n=0

βnαn
s . (2.2)

A concrete example would of course be the production of hadrons in e+e− collisions. When
no dependence is given explicitly, the coefficients and the coupling will be considered to be
evaluated at a renormalisation scale µ = Q:

σ(Q) =
∞∑

n=0

cn(Q, Q)αn
s (Q) ≡

∞∑
n=0

cnαn
s . (2.3)

Given cn ≡ cn(Q, Q) independent of µ, one can always reinstate the full µ dependence and
determine cn(Q, µ) using

cn(Q, µ) =
n−1∑
l=0

cn,l

(
ln

µ2

Q2

)l

(2.4)

where cn,0 = cn and

cn,l =
1
l

n−1∑
j=0

jβn−1−jcj,l−1 (2.5)

(see appendix A for a derivation). Note that this last equation uses all the coefficients cj

with j < n.
We will also denote by

σk(Q, µ) ≡
k∑

n=0

cn(Q, µ)αn
s (µ) (2.6)

(or, for short, σk ≡
∑k

n=0 cnαn
s for µ = Q) the partial sum up to the last calculated

perturbative order k, and by

∆k ≡
∞∑

n=k+1

cnαn
s . (2.7)

the remainder.

2.1 Conventional theoretical uncertainty estimate

The explicit µ dependence of σk(Q, µ) in eq. (2.6) serves as a reminder that, when trun-
cated to a finite order, a perturbative calculation retains a higher-order dependence on
the scale µ. This dependence is generally exploited to estimate its “uncertainty”,2 i.e.
the presumed value of ∆k. In order to do so, one typically quotes an uncertainty interval
[σ−k , σ+

k ] around σk (but not necessarily centred on it). The specific choices for σ±k can
vary. Possible options are:

2Of course it is not so much σk which is “uncertain”, in that it is perfectly well determined by the

knowledge of its coefficients and parameters, but rather the true value of the series and therefore to what

extent σk describes it.
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1.

σ−k = min{σk(Q, Q/2), σk(Q, 2Q)} σ+
k = max{σk(Q, Q/2), σk(Q, 2Q)}

(2.8)

2.
σ−k = min

µ∈[Q/2,2Q]
{σk(Q, µ)} σ+

k = max
µ∈[Q/2,2Q]

{σk(Q, µ)} (2.9)

3.
σ±k = σk ±

δk

2
(2.10)

where
δk ≡ |σk(Q, 2Q)− σk(Q, Q/2)| (2.11)

4. Same as eq. (2.10), but with

δk ≡ max
µ∈[Q/2,2Q]

{σk(Q, µ)} − min
µ∈[Q/2,2Q]

{σk(Q, µ)} (2.12)

In the last two cases the interval is centred on σk(Q, Q), whereas in the first two it is not
necessarily so. Note also that the choice of varying the scale µ within a factor of two around
the physical scale Q, i.e. in the range [Q/2, 2Q], is fully conventional.

A priori there is no reason why the interval [σ−k , σ+
k ] should represent a sensible estimate

of the remainder ∆k of the series since, from a purely mathematical point of view, δk (or
σk) does not contain any information about ∆k: σk(Q, µ) and δk are functions of the cn

for n ≤ k, while ∆k is a function of the cn for n > k. However, the reason why this can
instead often work in practice is that, under certain circumstances, the size of δk can be
similar to the size of ∆k. One can indeed show that (see appendix A)

δk '
∣∣∣∣ dσk

d lnµ2

∣∣∣∣
µ=Q

[ln(2Q)2 − ln(Q/2)2] ' 3kβ0α
k+1
s |ck| (2.13)

where the factor of 3 in the last term has been obtained by approximating the exact
expression 4 ln 2 (This factor would be replaced by 4 ln r if the scale µ were varied in the
range [Q/r, rQ]). The last equality above is obtained by making the assumption that all
the coefficients in the series share the same magnitude and that αs is reasonably small.
Under these same hypotheses (and therefore |ck+1| ' |ck|), we can also write

|∆k| ' αk+1
s |ck+1| ∼ δk . (2.14)

Experience with perturbative calculations in QCD has shown that theoretical uncertainty
estimates like those of eq. (2.10) are quite successful in predicting the range in which
a higher order result will fall. This can then be seen as an empirical validation of the
assumption made above, i.e. that |ck+1| is indeed often of the same magnitude as |ck|.

The limitation of this conventional approach is that, even if the hypothesis |ck+1| ' |ck|
is correct and therefore δk correctly describes the size of the remainder of the series, there
is no way of deciding how reliably it may do so.
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2.2 Credibility-based theoretical uncertainty estimate

In this paper we use the “Bayesian probability” (also called “subjective probability” or
“degree of belief” or “credibility”, see e.g. [10]), and distinguish it from the “frequentist
probability”. The two concepts share the same mathematical formalism, but are nonethe-
less distinct. Bayesian probability is not linked to an infinite number of realizations of an
experiment. It deals with a particular question, which may or may not be about the result
of one particular realization of a given experiment, and the consequences of the information
one considers about its possible answer.3 This information is not necessarily rigorous or
“true” in any way, but its treatment, once translated mathematically into the so called
“priors” and “likelihoods”, is. A distribution of frequentist probability (or, for instance, its
variance) gives a measure of the reproducibility of an experiment. Conversely, a credibility
distribution conveys information about the uncertainty of the answer to a question, for
instance the result of one particular realization of an experiment, prior to its execution.
The variables appearing in a frequentist probability distribution are commonly denoted as
random variables, since they take different values in different realizations of the experiment.
We call instead uncertain variables the ones in a credibility distribution, to better make
the distinction with the former ones: their values are not random (each of them being a
single number), but simply unknown.

Given a density function f , the degree of belief (or “credibility”) that the value of an
uncertain variable η belongs to the interval [a, b] is then equal to

C(η ∈ [a, b]) ≡
∫ b

a
f(η)dη . (2.15)

where the result is a number between zero and one.4

In this paper we will always work within the concept of degree of belief as defined
above, and will never use the frequentist probability. The latter is not applicable to the
case of a theoretical uncertainty, which is not amenable to a frequentist treatment (there
is nothing one can “repeat”) and is much more akin to a systematic uncertainty instead.

2.2.1 The model

The goal of this paper is to establish a conditional density f(∆k|c0, . . . , ck) for the value
of remainder of the series ∆k in eq. (2.7), given the knowledge of the coefficients of the
perturbative expansion up to order k, and study its behavior. The reason for introducing a

3One may build his initial credibility distribution using information of frequentist origin: e.g. after

throwing an unbiased six-sided dice a large number of times (and hence establishing a frequentist proba-

bility), one can come to believe (i.e. define a credibility measure) that there is a one-in-six chance that a

given number will show up in a subsequent throw (i.e. set the credibility measure equal to the frequentist

probability previously established). However, information of non-frequentist origin can also be included in

a credibility-based approach: if someone is told that the dice is likely crooked, they can then adjust their

expectations (degree of belief) using this information, even before throwing the dice a single time.
4Note that, while this may seem similar to the “confidence level intervals” of frequentist statistical

analyses, our intervals are to be understood strictly within a Bayesian framework (where they can also be

called “credible intervals” at a given level), and should not be confused with the frequentist ones, which

(see e.g. [11]) do not in fact express a “level of confidence”.

– 6 –



J
H
E
P
0
9
(
2
0
1
1
)
0
3
9

density function is that it contains much more information than a simple uncertainty band
like the one established in eq. (2.10) in section 2.1.

To achieve this we will create a generic credibility measure, applicable to any possi-
ble perturbative series, over the space of a priori unknown coefficients c0, c1, . . . . More
precisely, we will create a density function f(c0, c1, . . . ), normalised such that∫

f(c0, c1, . . . ) dc0 dc1 · · · = 1 (2.16)

and whose parameters can be marginalised according to

f(c0, . . . , ci−1, ci+1, . . . ) =
∫

f(c0, . . . , ci−1, ci, ci+1, . . . ) dci . (2.17)

f(c0, . . . , ck) =
∫

f(c0, c1, . . . ) dck+1 dck+2 . . . . (2.18)

In the case of one particular physical process, some coefficients will have been already
computed up to order k: ctrue

0 , . . . , ctrue
k . The credibility measure for this particular process

will be the inherited measure defined on the subspace corresponding to c0 = ctrue
0 , c1 =

ctrue
1 , . . . , ck = ctrue

k . For brevity, we will use the notation f(ck+1|c0, . . . , ck) instead of
f(ck+1|c0 = ctrue

0 , . . . , ck = ctrue
k ). The density over the still unknown ck+1 coefficient will

then read, according to the standard conditional density rule,

f(ck+1|c0, . . . , ck) =
f(ck+1, c0, . . . , ck)

f(c0, . . . , ck)
. (2.19)

To create this generic measure, we focus on the observation made at the end of sec-
tion 2.1 (i.e. that the empirical success of conventional theoretical uncertainty estimates
made using scale variations can be explained by the fact that successive perturbative co-
efficients have similar magnitudes) and reverse it. We make the assumption that all the
coefficients cn in a perturbative series share some sort of upper bound c̄ > 0 to their abso-
lute values, specific to the physical process studied.5 The calculated coefficients will give an
estimate of this c̄, restricting the possible values for the unknown cn. The set of uncertain
variables that define the space on which we will create our credibility measure is thus the
set constituted of this parameter c̄ and of all the a priori unknown coefficients.

The model rests on three hypotheses:

1. Residual uncertainty
We suppose that, if we happened to know beforehand the parameter c̄, our residual
density for the value of an unknown coefficient cn would be in the form of a uniform
distribution,

f(cn|c̄) =
1
2c̄

{
1 if |cn| ≤ c̄

0 if |cn| > c̄
≡ 1

2c̄
χ|cn|≤c̄ , (2.20)

5This hypothesis is of course known to be violated in practice, for instance by the factorial growth of

the coefficients in the presence of renormalons. However, knowing that such a factorial growth typically

only kicks in at fairly large perturbative orders, we can safely assume that our hypothesis holds true for

low perturbative orders, which are the ones which are calculated in practice. Another instance in which

our hypothesis is violated is in particular kinematical configurations (see e.g. [12]), or when new production

channels open up at some higher order.
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where χA is the characteristic function of a set A. We could (and probably should)
use a density function that does not vanish anywhere, like a Gaussian distribution,
but the form (2.20) leads to simpler expressions, so we use it in the following to study
the model analytically.6

2. Shared information and independence
The parameter c̄ models information that we consider to be shared by all coefficients,
and we make it the only one. When c̄ is known, the residual uncertainties on the
values of two coefficients cn and cn′ are then totally independent. In fact, we will
suppose the coefficients to be mutually independent, so that for a set of coefficients
{ci} we have

f({ci, i ∈ I}|c̄) =
∏
i∈I

f(ci|c̄) . (2.21)

The value of c̄ is the maximal information that the coefficients share. It corresponds
to the maximal knowledge one could extract from the known coefficients c0, . . . , ck in
order to “predict” the possible values of unknown ones cn, n > k.

3. Hidden parameter
The value of the c̄ parameter is “hidden” in the knowledge of the cn. As long as we
have not calculated any coefficient, we can only say that it is a positive real number,
and that all values for its order of magnitude are a priori equally probable. In order
to implement this in practice we define a density for its logarithm as the limit of a uni-
form distribution between | ln ε| and −| ln ε| when a small parameter ε tends to zero:

fε(ln c̄) =
1

2|ln ε|
χ| ln c̄|≤| ln ε| ⇔ fε(c̄) =

1
2|ln ε|

1
c̄

χε≤c̄≤1/ε (2.22)

We will perform calculations (both analytical and numerical) using this ε-dependent
density fε with ε 6= 0, and the final result will then be the limit ε → 0. The vanishing
of a density in this limit would mean that we do not have enough information to
make any guess about the result. For example, fε(ln c̄) tends to a “uniformly null”
density, meaning that that when no coefficients are known we have no information
whatsoever about the possible value of ln c̄.

The three hypotheses (2.20), (2.21) and (2.22) define completely the credibility measure
over the whole space of a priori uncertain variables {c̄, c0, c1, . . . }. They then define every
possible inherited measure on a subspace associated with a physical process whose first
coefficients are known. Section 6 will revisit the choices made in building this model, for
instance the choice of a uniform distribution for ln c̄ rather than for c̄ (eq. (2.22)), and
study some alternatives and their consequences on the results.

The following subsections are dedicated to deriving from these hypotheses the densities
f(c̄|c0, . . . , ck), f(cn|c0, . . . , ck) for n > k, and finally the residual theoretical uncertainty
of a perturbative prediction calculated up to order k, f(∆k|c0, . . . , ck).

6We have checked that using a Gaussian distribution of mean zero and standard deviation c̄ does not

significantly modify the general behaviour of the results shown in this paper.
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2.2.2 Conditional densities f(c̄|c0, . . . , ck) and f(cn|c0, . . . , ck), n > k

Using the three hypotheses eqs. (2.20), (2.21) and (2.22) and the properties of conditional
densities, one can show that

f(c̄|c0, . . . , ck) = (k + 1)
(max(|c0|, . . . , |ck|))k+1

c̄k+2
χc̄>max(|c0|,...,|ck|) (2.23)

and

f(cn|c0, . . . , ck) =
1
2

k + 1
k + 2

(max(|c0|, . . . , |ck|))k+1

(max(|cn|, |c0|, . . . , |ck|))k+2
. (2.24)

Let us derive for instance the second of these results. The conditional density for a
generic (uncalculated) coefficient cn, n > k, is by definition (see eq. (2.19))

fε(cn|c0, . . . , ck) =
fε(c0, . . . , ck, cn)

fε(c0, . . . , ck)
. (2.25)

As stated in the previous subsection, we perform all calculations with ε 6= 0 and we take
the ε → 0 limit at the end. From eq. (2.17) and the property of conditional densities,
similar to eq. (2.19), we have

fε(c0, . . . , ck) =
∫

fε(c0, . . . , ck, c̄) dc̄

=
∫

fε(c0, . . . , ck|c̄)fε(c̄) dc̄ . (2.26)

Using the factorisation property (2.21) and the definitions (2.20) and (2.22) we get

fε(c0, . . . , ck) =
∫ ( k∏

i=0

f(ci|c̄)

)
fε(c̄) dc̄

=
∫ ( k∏

i=0

1
2c̄

χ|ci|≤c̄

)
1

2|ln ε|
1
c̄

χε≤c̄≤1/ε dc̄

=
1

2k+2

1
|ln ε|

∫ 1/ε

max(|c0|,...,|ck|,ε)

1
c̄k+2

dc̄ . (2.27)

A similar result holds for fε(c0, . . . , ck, cn):

fε(c0, . . . , ck, cn) =
1

2k+3

1
|ln ε|

∫ 1/ε

max(|cn|,|c0|,...,|ck|,ε)

1
c̄k+3

dc̄ . (2.28)

We therefore can write, using eq. (2.25),

f(cn|c0, . . . , ck) = lim
ε→0

fε(c0, . . . , ck, cn)
fε(c0, . . . , ck)

=
1
2

k + 1
k + 2

(max(|c0|, . . . , |ck|))k+1

(max(|cn|, |c0|, . . . , |ck|))k+2
. (2.29)

Note that in this equation the value k+1 represents the total number of known perturbative
coefficients c0, . . . , ck used to estimate cn with n > k, rather than simply one unit above
the last calculated perturbative order k. Similarly, k + 2 is this total number plus one. If
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Figure 1. Densities f(c̄|c0, . . . , ck) and f(cn|c0, . . . , ck) in the case c̄(k) = 1 for k = 0, 1, 5, 10 and
103 from the largest dashing to the solid curve.

a series starts at a non-zero order αl
s, its last known perturbative order k plus one will not

give anymore the number of known coefficients. We will detail in section 4 the modifications
to be made in this and in the following equations to account for such a case.

The derivation of eq. (2.29) is given in some more detail in appendix B.1. The full
derivation of eq. (2.23) is given in appendix B.2. From now on we will collect the derivations
of the densities and uncertainty intervals in appendix B, since we do not wish to focus on
the technicalities of the derivation of the conditional densities but rather on their behavior.

Defining c̄(k) ≡ max(|c0|, . . . , |ck|) we can rewrite the densities (2.23) and (2.24) as

f(c̄|c0, . . . , ck) = (k + 1)
c̄k+1
(k)

c̄k+2
χc̄>c̄(k)

(2.30)

and

f(cn|c0, . . . , ck) =
(

k + 1
k + 2

)
1

2c̄(k)

{
1 if |cn| ≤ c̄(k)
1

(|cn|/c̄(k))
k+2 if |cn| > c̄(k)

. (2.31)

Figure 1 shows the two distributions f(cn|c0, . . . , ck) and f(c̄|c0, . . . , ck), plotted as func-
tions of cn and c̄ respectively, for different values of k, assuming that c̄(k) remains equal to
one. c̄(k) acts as an estimate of c̄, and the density f(c̄|c0, . . . , ck) can be seen to tend to a
Dirac distribution concentrated at c̄ = c̄(k) when k goes to infinity. The more coefficients
are known, the more precisely c̄ is estimated. In the same k →∞ limit the density over the
unknown cn tends to f(cn|c̄ = c̄(k)) as given in eq. (2.20), the distribution that corresponds
by construction to the remaining uncertainty when the whole of the hidden information
simulated by c̄ is known. For a finite value of k, the density is always wider than this limit:
the uncertainty about unknown coefficients cn is larger when one knows the values of only
a few coefficients c0, . . . , ck than when one posses the full information about the value of c̄.

– 10 –
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2.2.3 Conditional density f(∆k|c0, . . . , ck)

The remainder ∆k of the perturbative series depends on the values of all the unknown
coefficients ck+1, ck+2, . . . . Its density can be written as

f(∆k|c0, . . . , ck) =
∫ [

δ(∆k −
∞∑

n=k+1

αn
s cn)

]
f(ck+1, ck+2, . . . |c0, . . . , ck) dck+1dck+2 . . .

(2.32)
This expression is too complicated to be handled analytically, even in the case of the simple
choice of density in eq. (2.20) for the coefficients. However, making the approximation

∆k ' αk+1
s ck+1 , (2.33)

and using eq. (2.31) for f(cn|c0, . . . , ck) with n = k + 1, we obtain

f(∆k|c0, . . . , ck) '
(

k + 1
k + 2

)
1

2αk+1
s c̄(k)


1 if |∆k| ≤ αk+1

s c̄(k)

1
(|∆k|/(αk+1

s c̄(k)))
k+2

if |∆k| > αk+1
s c̄(k)

. (2.34)

This result depends on the entire set of the calculated coefficients via the parameter c̄(k) =
max(|c0|, . . . , |ck|).

The knowledge of f(∆k|c0, . . . , ck) allows one to calculate the smallest p%-credible
interval for ∆k. It turns out to be centred at zero, and hence we denote it by [−d

(p)
k , d

(p)
k ].

It is defined implicitly by

p% =
∫ d

(p)
k

−d
(p)
k

f(∆k|c0, . . . , ck)d∆k (2.35)

and one finds, using the analytical approximation in eq. (2.34) (see appendix B.3)

d
(p)
k =

 αk+1
s c̄(k)

k+2
k+1p% if p% ≤ k+1

k+2

αk+1
s c̄(k) [(k + 2)(1− p%)]−1/(k+1) if p% > k+1

k+2

(2.36)

where, of course, p% ≡ p/100 and p is a number between 0 and 100.
The result for f(∆k|c0, . . . , ck) in eq. (2.34) can be generalised to any choice of f(cn|c̄)

and fε(c̄), i.e. beyond the choices of eqs. (2.20) and (2.22). Using the derivation given in
appendix B.4 we obtain, still within the approximation of eq. (2.33),

fε(∆k|c0, . . . , ck) =
1

fε(c0, . . . , ck)
1

αk+1
s

∫
f(c0|c̄)...f(ck|c̄) f(ck+1 =

∆k

αk+1
s

|c̄) fε(c̄) dc̄ ,

(2.37)
where we have now explicitly allowed for the possibility of expressing intermediate quan-
tities as a function of ε (eq. (2.32) was instead already written in the ε → 0 limit). This
expression will be used for the numerical evaluations of densities and credible intervals
proposed in the Mathematica package available from the authors.

Since the results in eqs. (2.34) and (2.37) were obtained using the approximation in
eq. (2.33), we now wish to check it by comparing them to numerical estimates of the exact
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Figure 2. Numerical estimates of the exact densities f(∆k|c0, . . . , ck) (continuous curves) and
their analytical approximations in eq. ( 2.34) (dashed curves) in the case c̄(k) = 1 for k = 0 (left),
k = 1 (middle), and k = 2 (right), for αs = 0.5 (top row) and αs = 0.12 (bottom row). These
numerical estimates are computed by integrating over the distributions for 10 unknown coefficients,
the results being stable when using more. Using values of αs of the order of 0.2 or 0.3 does not
degrade significantly the quality of the approximation seen here in the αs = 0.12 case.

density (2.32). In order to do so we perform a numerical integration of eq. (2.32), rewritten
in the form

f(∆k|c0, . . . , ck)=
∫ [

δ

(
∆k−

∞∑
n=k+1

αn
s cn

)][ ∞∏
n=k+1

f(cn|c̄)

]
f(c̄|c0, . . . , ck)dc̄dck+1dck+2 . . .

(2.38)
where f(c̄|c0, . . . , ck) is given in eq. (2.30) and the f(cn|c̄) in eq. (2.20). Figure 2 shows the
numerical results for k = 0, 1 and 2 and the corresponding analytical approximation for
f(∆k|c0, . . . , ck) in eq. (2.34). We can see that the agreement is extremely good, especially
when small (realistic) value of αs are used. We will therefore rely on the approximation of
equation (2.33) for our predictions of densities for ∆k in the rest of this paper.

3 Comparison with the conventional method

In deriving the density for ∆k in the previous section we made no reference to the scale
variation δk of the partial sum σk(Q, µ) which is usually employed in the conventional
uncertainty estimate [σ−k , σ+

k ] of section 2.1. In order to assess the compatibility of the two
methods, we now wish to study the relation between the density for ∆k and an interval of
the kind [σ−k , σ+

k ].
Given a specific series and a set of coefficients (c0, . . . , ck) we wish to evaluate

C(∆k ∈ [∆−
k ,∆+

k ]|c0, . . . , ck) =
∫ ∆+

k

∆−
k

f(∆k|c0, . . . , ck) d∆k (3.1)
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Figure 3. Numerical estimates of the exact densities f(xk|c̄), where xk(c0, . . . , ck) = C(∆k ∈
[∆−k ,∆+

k ]|c0, . . . , ck) is the degree of belief of the scale variation interval, for c̄ = 1, for k = 1 (left)
and k = 2 (middle) and k = 3 (right). Each plot is obtained using N = 104 samples.

and, for definiteness, we now take [σ−k , σ+
k ] as the interval given by eq. (2.8), so that we

can set

∆−
k = min(σk(Q, Q/2), σk(Q, 2Q))− σk = σ−k − σk (3.2)

∆+
k = max(σk(Q, Q/2), σk(Q, 2Q))− σk = σ+

k − σk (3.3)

Since the shape of σk(Q, µ), and therefore the values of ∆−
k and ∆+

k , depend on all the
values of the calculated coefficients (c0, . . . , ck), while the density function f(∆k|c0, . . . , ck)
depends only on their maximum c̄(k) (see eq. (2.34)), it is important to make sure that
different sets of coefficients, sharing the same c̄, do not typically lead to broadly different
estimates for the degree of belief C(∆k ∈ [∆−

k ,∆+
k ]|c0, . . . , ck) in eq. (3.1).

To test this in practice, we evaluate the integral (3.1) for many different configurations
of the coefficients (c0, . . . , ck), in the case c̄ = 1. Figure 3 shows the distribution of the
values of the degrees of belief that are obtained for the three perturbative orders k = 1, 2, 3.
The typical degree of belief C(∆k ∈ [∆−

k ,∆+
k ]|c0, . . . , ck) predicted by the model can be

seen to be largely unaffected by the precise values of the coefficients, its distribution taking
an almost Dirac-delta shape at the values 0.57, 0.96 and 0.99 for k = 1, 2, 3 respectively.
The peak at x3 ' 0 in the rightmost plot can be understood as an artifact due to con-
figurations where σ3(Q, 2Q) and σ3(Q, Q/2) are accidentally close to each other, resulting
in a vanishing [∆−

k ,∆+
k ] interval. It can be made to disappear by modifying the choice of

the interval and using instead [∆−
k ,∆+

k ] = [min{σk(Q, µ)} − σk,max{σk(Q, µ)} − σk], i.e.
corresponding to eq. (2.9) rather than eq. (2.8).

The numerical results of figure 3 can be understood through the following analytical
approximations. First, we modify slightly the interval [∆−

k ,∆+
k ] considered above. We make

it symmetric around σk and of width δk/2, where δk is given in eq. (2.13), and we consider

C(∆k ∈ [∆−
k ,∆+

k ]|c0, . . . , ck) ' C(∆k ∈
[
− δk

2
,
δk

2

]
|c0, . . . , ck) (3.4)

– 13 –
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Using eq. (2.34), we get (see appendix B.5)

C
(
∆k ∈

[
−δk

2
,
δk

2

]
|c0, . . . , ck

)
=


1− 1

k+2

[
2

3kβ0

c̄(k)

|ck|

]k+1
if δk

2 ≥ αk+1
s c̄(k) ⇔ |ck| ≥ 2

3kβ0
c̄(k)

k+1
k+2

3kβ0

2
|ck|
c̄(k)

if δk
2 < αk+1

s c̄(k) ⇔ |ck| < 2
3kβ0

c̄(k)

(3.5)
This result is fully independent of the coefficients in the approximation (or in the case)
where ck = c̄(k). It predicts the Dirac distribution-like shape observed in figure 3 and the
variation of its position with the value of k. For k = 1, k = 2 and k = 3, it gives for the
degree of belief (3.5) the values 61% (using the lower expression in eq. (3.5)), 96% and
99.6% (using the upper expression in eq. (3.5)) respectively, using β0 = 0.61 and ck = c̄(k).
These values are in good agreement with those obtained from the numerical estimates of
the exact densities in figure 3. The k-dependence of the result in eq. (3.5) shows that the
degree of belief of the interval [σk − δk/2, σk + δk/2] is not a constant, but depends instead
on the perturbative order at which we are working. When calculating higher orders in
a perturbative series not only the size of the conventional residual uncertainty decreases,
but also its degree of belief, as evaluated by our new method, increases. Note also that
this method of evaluating the degree of belief of an uncertainty interval avoids one specific
shortfall of the conventional method, namely that its estimate of the theoretical uncertainty
may become unreasonably small if the last calculated coefficient happens by accident to
be much smaller than the others or if accidental cancellations take place.

It would be tempting to consider eq. (3.5) as the main results from our Bayesian
model, allowing one to associate a degree of belief to the uncertainty bands given by
the conventional method. The simplicity of these equations, and their numerical values
tantalisingly (though entirely accidentally) close to the confidence levels of Gaussian sigmas,
make them apparently good candidates for such an identification. However, it is important
to bear in mind that these equations depend on the choice made for the density function
in eq. (2.20), as well as on the various approximations made in deriving them. As such,
they cannot be considered as strictly valid in general, although they offer a very useful
first approximation when trying to gauge the degree of belief of a conventional uncertainty
band generated by scale variations.

In practice, one would like to be able to abandon the scale variations method altogether,
and determine the degree of belief of any interval of his choosing. In general we will therefore
not use eq. (3.5), but rather estimate any desired p%-credible interval numerically using
the density function (2.37), without any reference to the conventional method.

4 Series starting at non-zero order αl
s

Oftentimes, one may wish to consider a perturbative series starting at a non-zero order
in αs,

σ =
∞∑

n=l

cnαn
s . (4.1)
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When this is the case, only k+1− l coefficients (rather than k+1) are calculated when the
series is known up to perturbative order k. The results of our model given in the previous
section should then be modified as follows.

Eqs. (2.23) and (2.30) become

f(c̄|cl, . . . , ck) = nc
(max(|cl|, . . . , |ck|))nc

c̄nc+1
χc̄>(max(|cl|,...,|ck|)) = nc

c̄nc

(k)

c̄nc+1
χc̄>c̄(k)

(4.2)

where we have introduced the number of known coefficients,

nc ≡ k + 1− l . (4.3)

Note also that c̄(k) should now formally be defined as max(|cl|, . . . , |ck|). We have not
changed its notation so as not to proliferate the number of different symbols.

Eqs. (2.24) and (2.31) are similarly modified to

f(cn|cl, . . . , ck) =
1
2

nc

nc + 1
(max(|cl|, . . . , |ck|))nc

(max(|cn|, |cl|, . . . , |ck|))nc+1

=
(

nc

nc + 1

)
1

2c̄(k)

{
1 if |cn| ≤ c̄(k)
1

(|cn|/c̄(k))
nc+1 if |cn| > c̄(k)

. (4.4)

eq. (2.34) becomes

f(∆k|cl, . . . , ck) '
(

nc

nc + 1

)
1

2αk+1
s c̄(k)


1 if |∆k| ≤ αk+1

s c̄(k)

1
(|∆k|/(αk+1

s c̄(k)))
nc+1

if |∆k| > αk+1
s c̄(k)

(4.5)

and from this one derives the result corresponding to eq. (2.36) for the width of the smallest
p%-credibility interval:

d
(p)
k =

 αk+1
s c̄(k)

nc+1
nc

p% if p% ≤ nc
nc+1

αk+1
s c̄(k) [(nc + 1)(1− p%)]−1/nc if p% > nc

nc+1

. (4.6)

Finally, using the result in eq. (2.13), δk ' 3kβ0α
k+1
s |ck|, which is unmodified by the

fact that the series starts now at order l, one finds that the degree of belief associated to
the interval given by the conventional scale-variation method, already given in eq. (3.5) for
the l = 0 case, is modified as

C(∆k ∈ [−δk

2
,
δk

2
]|cl, . . . , ck) =


1− 1

nc+1

[
2

3kβ0

c̄(k)

|ck|

]nc

if δk
2 ≥ αk+1

s c̄(k) ⇔ |ck| ≥ 2
3kβ0

c̄(k)

nc
nc+1

3kβ0

2
|ck|
c̄(k)

if δk
2 < αk+1

s c̄(k) ⇔ |ck| < 2
3kβ0

c̄(k)

(4.7)
For a process starting at order αs (i.e. l = 1) this equation predicts a degree of belief

of 46% at LO (k = 1), using the lower expression in eq. (4.7), 90% at NLO (k = 2) and
98.8% at NNLO (k = 3), using in both cases the lower expression in eq. (4.7) and ck = c̄(k).
For a process starting at order α2

s (i.e. l = 2) one predicts instead a degree of belief of 73%
at LO (k = 2), 96% at NLO (k = 3) and 99.5% at NNLO (k = 4). In this case the upper
expression in eq. (4.7) always applies.
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5 A realistic application: e+e− → hadrons

The total cross section σ(e+e− → γ → hadrons) is one of the best known observables in
perturbative QCD, its coefficients being known exactly up to order α3

s, and even c4 being
known approximately. This process is therefore an ideal place where to test the behaviour of
our Bayesian model, and compare it to the results of the conventional uncertainty estimate.

We write this cross section as

σ4(Q) = σ0(Q)(1 +
4∑

n=1

cnαn
s (Q)) (5.1)

and, for nf = 5 massless flavours, we have (the values are reviewed for instance in [13])

c1 = 0.31831, c2 = 0.142785, c3 = −0.412969, c4 ' −0.821356 (5.2)

These coefficients leads to following partial sums7 for σQCD,k(Q) ≡ σk(Q)/σ0(Q) − 1 and
αs(Q) = 0.118:

σQCD,1 = 0.0375606, σQCD,2 = 0.0395487, σQCD,3 = 0.0388702 (5.3)

where we have dropped for convenience the argument Q. One can now apply the conven-
tional uncertainty estimate method of section 2.1. Using for definiteness the convention in
eq. (2.9), one finds

[σ−QCD,1, σ
+
QCD,1] = [0.03401, 0.04197] (5.4)

[σ−QCD,2, σ
+
QCD,2] = [0.03871, 0.03980] (5.5)

[σ−QCD,3, σ
+
QCD,3] = [0.03855, 0.03893] (5.6)

One can compare these “uncertainty intervals” with the successive perturbative re-
sults given above, and see that indeed order by order the higher-order result is inside
the interval.8

This is as far as the conventional uncertainty estimate can go. At this point one can
use our model to do one of two things (or both): either one calculates the degree of belief of
the intervals given above, or one finds the intervals corresponding to given values of degree
of belief, for instance 68.3%, 95.5% and 99.7%.

For the first option, we find

C(σQCD ∈ [σ−QCD,1, σ
+
QCD,1]|c1) = 45.8% (5.7)

C(σQCD ∈ [σ−QCD,2, σ
+
QCD,2]|c1, c2) = 58.4% (5.8)

C(σQCD ∈ [σ−QCD,3, σ
+
QCD,3]|c1, c2, c3) = 77.2% (5.9)

7Note that in [13] σQCD is denoted by δQCD instead. We have modified the notation to avoid confusion

with our own definition for δk, which represents an uncertainty interval rather than a value of the truncated

series.
8These uncertainty intervals have been evaluated by using in all cases an evolution equation for αs up to

β2, i.e. what is needed for σQCD,3. One may have used lower-order accuracies when dealing with σQCD,1 or

σQCD,2, but we have explicitly checked that this changes at most the last significant figure in the numbers

given above.
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Figure 4. Comparison of the uncertainty intervals for the e+e− → hadrons process, as given by the
conventional method of scale variations (first interval on the left of each group) and by our model
(the latter for two different values of degree of belief, 68.3% and 95.5%, respectively middle and
right of each group), for αs = 0.118. We have used the definition σQCD,k(Q) ≡ σk(Q)/σ0(Q)− 1.

These values have been obtained via numerical integration of the density f(∆k|c1, . . . , ck)
in eq. (4.5). One can compare them to the values given by the analytical approximations
in eq. (4.7) for l = 1 and k = 1, 2, 3 respectively, i.e. nc = k + 1− l = 1, 2, 3. One obtains
45.8%, 54.8% and 98.8% respectively. The first two values (both obtained with the lower
expression in eq. (4.7)) can be seen to be in good agreement with the exact results. The
big discrepancy for the third one can be explained with the fact that the actual interval
[σ−QCD,3, σ

+
QCD,3] happens to be quite asymmetric with respect to the central value σQCD,3,

whereas in the approximation (4.7) the interval [−δk/2, δk/2] is symmetric. This serves as
a remainder that one should always resort to the full numerical evaluation of the degree of
belief whenever accurate results are sought.

For the second option, we find, using the notation C(p)
k to denote the minimal p%-

credible interval of the form [σk−d
(p)
k , σk+d

(p)
k ], where d

(p)
k is defined implicitly in eq. (2.35)

(see also appendix B.3),

C(68.3)
1 = [0.0307747, 0.0443465] (5.10)

C(68.3)
2 = [0.0390012, 0.0400962] (5.11)

C(68.3)
3 = [0.0387973, 0.0389431] (5.12)
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and

C(95.5)
1 = [−0.0023475, 0.0774687] (5.13)

C(95.5)
2 = [0.0376789, 0.0414185] (5.14)

C(95.5)
3 = [0.0387297, 0.0390107] (5.15)

These intervals9 can then be compared to those returned by the conventional method
in eqs. (5.4), (5.5), (5.6). This comparison is given in graphical form in figure 4. One
can see how the 68.3%-credible intervals are not too dissimilar from those predicted by
the conventional method of scale variations. It is worth noting how the former tend to
become smaller than the latter as the perturbative order increases, pointing to a potential
overestimate of the theoretical uncertainty by the conventional method at higher orders.

6 Discussion about the hypotheses of the model

Our model was built making the choices in eqs. (2.20) and (2.22) for the densities f(cn|c̄)
and fε(c̄). We made there the choice of using a flat prior for ln c̄ (rather than c̄ itself) in
eq. (2.22), and for cn instead in eq. (2.20). We discuss below the reasoning behind these
choices.

6.1 Choice of the density function f(cn|c̄)

The choice of exactly what variable to use to express a prior density, e.g. the logarithm
of a parameter rather than the parameter itself, is related to the assumed nature of said
parameter. Suppose we used ln cn instead of cn in eq. (2.20) and defined a uniform density

f(ln cn|c̄, h) =
1
2h

χln c̄−h≤ln cn≤ln c̄+h (6.1)

where h is an arbitrary parameter. This means to consider it as likely to find cn between
c̄/ exp(h) and c̄ as between c̄ and c̄ exp(h). One can debate whether this behaviour is
more or less appropriate than the one used in eq. (2.20) where cn is equally likely to lie
between −c̄ and zero as between zero and c̄. However, the main drawback of eq. (6.1) is
that it requires the introduction of a new, a priori unknown, parameter h which controls
the spread of the coefficients. At least three perturbative coefficients would then need to
be known before the model can estimate a credibility interval.

We have therefore concluded that the hypothesis in eq. (2.20) not only already describes
sufficiently well the observed typical relations between perturbative coefficients, but also

9These numerical values have been calculated discarding the coefficient of α0
s, on the ground that it

controls an exclusively electroweak process, and therefore it should not have a say on the size of the

coefficients of a perturbative expansion in αs. They differ very slightly (at the level of the third/fourth

significant figure) from those that can be obtained using eq. (4.6), since they have been calculated by

integrating numerically the credibility distributions. Note that in the definition of the model (and therefore

in the numerical evaluation of the credible intervals) one may employ for f(cn|c̄) a form which differs from

the uniform step function given in eq. (2.20), for instance a Gaussian distribution of mean 0 and standard

deviation c̄. We have checked that in this case the intervals are not modified in a significant way, showing

that the results of our model are robust with respect to reasonable variations of this initial hypothesis.

– 18 –



J
H
E
P
0
9
(
2
0
1
1
)
0
3
9

provides the simplest model (simplicity being a strong guiding principle of our model, as
we wish to be able to control well the information we introduce into it).

6.2 Choice of the density function f(ln c̄)

The value of the sum of a perturbative series depends on the value of c̄. Choosing a density
for c̄ which is uniform in c̄ itself rather than in its logarithm amounts to trying to predict
the precise value of such a series rather than just its order of magnitude. We find the former
too strong a constraint, and prefer therefore to limit ourselves to the second choice. On a
technical side, we also find that when using a prior uniform in c̄ one then needs at least
two calculated coefficients in order to have a non-null density on its theoretical uncertainty,
whereas in the ln c̄ case one coefficient is already sufficient to give an indication about the
order of magnitude of the higher order coefficients and therefore about the remainder of
the series.

Note also that it is sufficient to use in eq. (2.22) a density fε(ln c̄) that is uniform in
ln c̄ only in the ε → 0 limit. For finite values of ε this requirement is not necessary.

6.3 Choice of the expansion parameter

Another modification of the model would be to use an expansion parameter that differs
from αs, so that

σ =
∑

cnαn
s =

∑
(λncn)

(αs

λ

)n
(6.2)

This corresponds to a redefinition of the coefficients cn into

c′n = λncn (6.3)

and the density function in eq. (2.20) would now be defined by

f(c′n|c̄′) =
1
2c̄

χ|c′n|≤c̄′ (6.4)

where c̄′ is a parameter that applies to the new set of coefficients c′n.
This choice would not modify the expressions for the densities over the unknown coef-

ficients f(c′n|c′0, . . . , c′k), but only the one over the residual sum f(∆k|c′0, . . . , c′k) since the
approximation (2.33) would now read

∆k ' c′k+1

(αs

λ

)k+1
(6.5)

so that eq. (2.34) is replaced by

f(∆k|c′0, . . . , c′k)'
(

k+1
k+2

)
1

2(αs/λ)k+1c̄′(k)

{
1 if |∆k| ≤ (αs/λ)k+1c̄′(k)
1

(|∆k|/((αs/λ)k+1c̄′
(k)

))k+2 if |∆k| > (αs/λ)k+1c̄′(k)
,

(6.6)
where now c̄′(k) is of course the maximum of the new known coefficients c′n.

Different values for λ relate to different speeds of convergence of the series, either
quicker (λ > 1) or slower (αs < λ < 1). Of course one must be careful not to end up with
an expansion parameter which is too large, because this will eventually invalidate the use
of the approximation in eq. (2.33).
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7 Partially known higher orders

The model we have considered so far assumes perfect knowledge of some coefficients, up
to order k, and total ignorance of those of higher order. In practice, it is often possible to
know part of a higher order coefficient, typically calculated within some approximation or
obtained as an expansion of an all-order resummation. It is yet straightforward to extend
the model to account for such cases.

Two new building blocks are required to adapt the model. First of all, if c̃k+1 is an
approximation of ck+1 it should not provide more information than the true value ck+1

itself. If the real value ck+1 is known, knowledge of the approximate value c̃k+1 must not
change anything: for a set of coefficients {ci} it must hold

f({ci}|ck+1, c̃k+1) = f({ci}|ck+1) , (7.1)

f(c̄|ck+1, c̃k+1) = f(c̄|ck+1) , (7.2)

f(c̄, {ci}|ck+1, c̃k+1) = f(c̄, {ci}|ck+1) . (7.3)

Secondly, one must decide how reliable a given approximation c̃k+1 of ck+1 is. We must
introduce a density function f(c̃k+1|ck+1) for the value c̃k+1, given the true ck+1. The choice
of this density will depend on the way c̃k+1 was obtained. One possible parametrisation is
for instance the log-normal density

f(c̃k+1|ck+1) =
1

|c̃k+1|
1√

2π ln f
exp

(
−(ln(c̃k+1/ck+1))2

2(ln f)2

)
. (7.4)

for some chosen value of the parameter f . It more or less corresponds to c̃k+1 estimating
ck+1 up to a factor of order f .

The densities on the true value of the coefficient ck+1 which is known only approxi-
mately, and on the completely unknown coefficients cn can then be written, up to normal-
isation factors collectively denoted by N , as (see appendix B.6)

f(ck+1|c0, . . . , ck, c̃k+1) = N f(ck+1|c0, . . . , ck)f(c̃k+1|ck+1) (7.5)

f(cn|c0, . . . , ck, c̃k+1) = N
∫

f(cn, ck+1|c0, . . . , ck)f(c̃k+1|ck+1) dck+1 (7.6)

More generally, for arbitrary sets of known coefficients CK = {ci}i∈[0,k], approximations
C̃A = {c̃i}i∈A of coefficients CA = {ci}i∈A and totally unknown coefficients CN = {ci}i∈N

we can write
f(CN , CA|CK , C̃A) = N f(CN , CA|CK) f(C̃A|CA) (7.7)

To get the density for the unknown coefficients, one then just integrates over CA. To get
the density over ∆k one replaces eq. (7.7) in the definition (2.32).

Let us study for instance the case of one known coefficient c0 and one approximation c̃1.
We want to obtain the density f(∆0|c0, c̃1). Depending on how much we trust the approx-
imation, the uncertainty over c1 or c2 will predominate. In general, we need to keep track
of both these coefficients in the expression for ∆0. We do not use the approximation (2.33)
but rather the more accurate one

∆0 ' c1αs + c2α
2
s . (7.8)
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Figure 5. Density f(c1 +αsc2|c0, c̃1) ' f(∆0
αs
|c0, c̃1) (solid curve) for c0 = 0.9, c̃1 = 0.83, αs = 0.12

and a log-normal density f(c̃1|c1) of width parameter ln f with f = 50; 2; 1.5; 1.2, from left to
right in the top row, and f = 1.2; 1.1; 1.05; 1.01, from left to right in the bottom row. The two
dashed curves represent 2f(c1|c0) ' 2f(∆0

αs
|c0) (flattest dashed curve) and f(c1 + αsc2|c0, c1 =

c̃1) ' f(∆0
αs
|c0, c1 = c̃1) (most peaked dashed curve). They correspond to the limits when c̃1 is not

trusted at all or when it is completely trusted. The last, dotted curve represents f(c1|c0, c̃1). It
coincides with f(∆0

αs
|c0, c̃1) until the uncertainty over c1 is the limiting one.

The result for the density is then

f

(
∆0

αs
|c0, c̃1

)
' f

(
c1 + c2αs =

∆0

αs
|c0, c̃1

)
(7.9)

The expression for f(c1 + c2αs = x|c0, c̃1) can be obtained as

f(c1 + αsc2 = x|c0, c̃1) =
∫

δ(x− (c1 + αsc2))f(c2, c1|c0, c̃1) dc2 dc1

=
∫

f(c2, c1 = x− αsc2|c0, c̃1) dc2

=
∫

f(c2, c1(x, c2)|c0)f(c̃1|c1(x, c2)) dc2 (7.10)

where we defined c1(x, c2) ≡ x−αsc2 to simplify the expression and we used equation (7.7).
The result for f(c2, c1(x, c2)|c0) is obtained in a similar way to f(cn|c0, . . . , ck) in (2.31):

f(c2, c1(x, c2)|c0) = lim
ε→0

fε(c2, c1(x, c2), c0)
fε(c0)

(7.11)

Using eq. (2.27) for k = 0 and k = 2 we find

f(c1 + αsc2 = x|c0, c̃1) = N
∫ (

1
c̄(2)(x)

)3

f(c̃1|c1(x, c2)) dc2 (7.12)

where we have defined c̄(2)(x) ≡ max(c0, c1(x, c2), c2).
In order to see how this works in practice, we choose c0 = 0.9 and c̃1 = 0.83 and we

plot eq. (7.12) as a function of x = ∆0/αs for various values of f . Figure 5 shows how the
density is modified when c̃1 is more and more trusted (f is smaller and smaller). Consider
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at first the top left plot. When the approximation is not much trusted and f is large
(f = 50 in this case), the only useful information that we can get from c̃1 is the sign of
c1. The total uncertainty over ∆0/αs ' c1 + αsc2 is largely dominated by the uncertainty
over c1. Its density coincides with two times the density f(c1|c0) for positive values of x

and with f(c1|c0, c̃1). The differences, originating from the uncertainty over c2 or from
the small information provided by the particular value of c̃1, are almost negligible (except
around zero).

As c̃1 gets more trusted, the uncertainty decreases and the degree of belief for ∆0/αs

to have a value around c̃1 increases (top middle plots). The uncertainty over c1 is still the
limiting one but the information provided by c̃1 is not negligible anymore. The full density
still coincides with f(c1|c0, c̃1) but is starting to be different from f(c1|c0).

Then comes a limit where the uncertainty over c1 is of the same order as the one over
αsc2 (top-right and bottom-left plots. They are the same plot, but shown for different
scales on the x-axis). The full density over c1 + αsc2 now differs from f(c1|c0, c̃1) and its
width is given both by this density and by the one over f(c2|c0, c1 = c̃1).

As c̃1 is considered to be a better and better approximation, the uncertainty over c2

prevails. The difference between c1 and c̃1 is now negligible and the total density approaches
the shape of f(c1 + αsc2|c0, c1 = c̃1) (bottom middle and right plots).

8 Conclusions and outlook

In this paper we have introduced a Bayesian model which allows one to characterise in
terms of intervals of a given degree of belief (or degree of belief of a given interval) the
residual theoretical uncertainty of a perturbative calculation. Our aim is to put on more
solid ground the estimate of the uncertainty of a known result, not to improve in any way
the calculation itself. This we try to achieve by formalising hypotheses on the behaviour
of the coefficients of perturbative series, and then by deriving from these hypotheses the
degree of belief values in a rigorous way.

We have chosen to try to translate as closely as possible into our model the assumption
which is implicitly made when employing the conventional method (scale variations) for
estimating the uncertainty, namely that successive coefficients of a perturbative series tend
to have similar size. One may or may not believe this hypothesis to be well grounded,
and our choice is not necessarily true or even just the best possible one. However, what
matters, and what this paper wants to provide, is not so much which hypotheses are made,
but rather the formalism that allows one to derive from them a proper characterisation of
the residual theoretical uncertainty: our framework can then be considered as a box into
which to input one’s favourite hypothesis about the behaviour of a series, and from which
to extract the appropriate degree of belief values.

We have found that, under the quite general assumption mentioned above and within
the Bayesian framework formalised in section 2.2.1, the p%-credible interval [σk−d

(p)
k , σk +

d
(p)
k ] of a series calculated up to order k,

σk = clα
l
s + · · ·+ ckα

k
s , (8.1)
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with l ≥ 0 and k ≥ l, is given by

d
(p)
k =

 αk+1
s max{|cl|, . . . , |ck|}nc+1

nc
p% if p% ≤ nc

nc+1

αk+1
s max{|cl|, . . . , |ck|} [(nc + 1)(1− p%)]−1/nc if p% > nc

nc+1

, (8.2)

with nc = k + 1 − l the number of known perturbative coefficients. The full credibility
distribution can also be obtained, and is given in section 2.2.3.

In the calculation of QCD corrections to a simple process like e+e− → hadrons we
see that the intervals given by the conventional renormalisation scale variation are not too
dissimilar from the 68.3%-credible intervals given by our Bayesian model. These findings,
detailed in section 5 and shown in graphical form in figure 4, are perhaps not surprising: the
conventional method itself has been built and refined over the years into a form that often
returns results compatible with the calculation of successive perturbative orders and with
intuitive expectations, and the same hypothesis that it makes implicitly we have made
explicitly. Nevertheless, within our method one can now state a precise interval and in
addition a detailed degree of belief for it (and possibly bet on it). A Mathematica package
implementing the results of this paper is available from the authors.

Obviously this is not the final word in terms of a rigorous characterisation of theo-
retical uncertainties. We have chosen a very simple process, and we have found a nice
self-consistent picture. However, much more work remains to be done in order to extend
the method to more complex processes. For one thing, one may wish to accommodate also
the presence of a factorisation scale, and therefore additional ingredients like parton distri-
bution or fragmentation functions. Secondly, our Bayesian model as it is now formulated
inevitably fails when the behaviour of a physical process is known not to be self-similar to
all orders: an obvious example is a process for which a new production channel opens at
some perturbative order, or for which a particular kinematical configuration is selected. In
such cases, an extension of our hypotheses is obviously called for. We are looking forward
to exploring these new avenues in the future.
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A Partial cross section, coefficients and renormalisation scale

Let

σ(Q) =
∞∑
i=0

ci(Q, µ)αi
s(µ) (A.1)

be the total sum of a perturbative series of expansion parameter αs, which evolves
according to

dαs

d lnµ2
= β(αs) = −α2

s

∞∑
j=0

βjα
j
s . (A.2)
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where β(αs) is the beta function. µ is an arbitrary renormalisation scale, so that it holds

dσ

d lnµ2
= 0 =

∞∑
i=0

 dci

d lnµ2
αi

s − iciα
i−1
s

∞∑
j=0

βjα
j+2
s


=

∞∑
i=0

αi
s

 dci

d lnµ2
−

i−1∑
j=0

jβi−1−jcj

 (A.3)

so that
dci

d lnµ2
=

i−1∑
j=0

jβi−1−jcj ∀i ≥ 0 (A.4)

This equation already tells us that the µ-dependence of the coefficient ci is controlled by
the lower-order coefficients cj , j ≤ i−1. Moreover, it shows that c0 and c1 are independent
of µ. It is then straightforward to conclude that ci is a polynomial of degree less than or
equal to i− 1 in ln µ2

Q2 :

ci(Q, µ) =
i−1∑
l=0

ci,l

(
ln

µ2

Q2

)l

∀i ≥ 1 (A.5)

This is true for i = 1 since the derivative of c1 with respect to µ is zero. Assuming that it
is true up to some i, eq. (A.4) shows that dci+1

d ln µ2 is a polynomial in ln µ2

Q2 of degree less than
or equal to i− 1, which makes ci+1 itself a polynomial of degree less than or equal to i.

Rewriting eq. (A.4) order by order in ln µ2

Q2 , we can also obtain a recurrence relation
giving the values of all ci,l in terms of the cj,0 = cj(Q, Q), j < i, and the βj :

ci,l =
1
l

i−1∑
j=0

jβi−1−jcj,l−1 (A.6)

Hence, given the calculated values for ci(Q, Q) one can easily reconstruct the full renor-
malisation scale dependence of the coefficients and of the partial sums σk =

∑k
i=0 ciα

i
s.

Once again, note that only the coefficient ci(Q, Q) = ci,0 needs to be explicitly computed
at each order.

Finally, we give the expression of the derivative of a partial sum σk with respect to
ln µ2

Q2 . From eqs. (A.3) and (A.4) we get

dσk

d lnµ2
=

∞∑
i=k+1

αi
s

k∑
j=0

jβi−1−jcj (A.7)

showing that, as expected, the residual scale dependence of σk is of higher order αk+1
s . If we

now consider that αs � 1, observe that the known coefficients βi are such that βi . β0 (see
table 1), and assume all the |ci| are of the same order, we can approximate this result as

dσk

d lnµ2
' αk+1

s kβ0ck . (A.8)
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k i=1 i=2 i=3 i=4
1 0.61 - - -
2 0.24 1.22 - -
3 0.07 0.49 1.83 -
4 0.19 0.15 0.73 2.44

Table 1. First values of iβk−i, calculated with nf = 5. The first column gives the first four
coefficients of the beta function.

B Derivations of density distributions and uncertainty intervals

B.1 Derivation of f(cn|c0, . . . , ck) in eq. (2.24)

We wish to derive derive eq. (2.24). We first compute the density fε(cn|c0, . . . , ck) for ε 6= 0.
Using the definition of conditional density, we have

fε(cn|c0, . . . , ck) =
fε(c0, . . . , ck, cn)

fε(c0, . . . , ck)
∀n > k (B.1)

Both densities fε(c0, . . . , ck) and fε(c0, . . . , ck, cn) are obtained from the independence hy-
pothesis (2.21) and the expressions of the densities of the model (2.20) and (2.22). We
have then

fε(c0, . . . , ck) =
∫

fε(c0, . . . , ck, c̄) dc̄

=
∫

fε(c0, . . . , ck|c̄)fε(c̄) dc̄

=
∫ [ k∏

i=0

f(ci|c̄)

]
fε(c̄) dc̄

=
∫ [ k∏

i=0

1
2c̄

χ|ci|≤c̄

] [
1

2| ln ε|
1
c̄
χε≤c̄≤1/ε

]
dc̄

=
1

2k+2

1
| ln ε|

∫ 1/ε

max(|c0|,...,|ck|,ε)

1
c̄k+2

dc̄ . (B.2)

A similar calculation gives for fε(c0, . . . , ck, cn):

fε(c0, . . . , ck, cn) =
1

2k+3

1
| ln ε|

∫ 1/ε

max(|c0|,...,|ck|,|cn|,ε)

1
c̄k+3

dc̄ . (B.3)

We can then obtain the expression for the density fε(cn|c0, . . . , ck)

fε(cn|c0, . . . , ck) =
1
2

− 1
k+2 [c̄−(k+2)]1/ε

max(|c0|,...,|ck|,|cn|,ε)

− 1
k+1 [c̄−(k+1)]1/ε

max(|c0|,...,|ck|,ε)

(B.4)

and, going to the limit ε → 0,

f(cn|c0, . . . , ck) =
1
2

k + 1
k + 2

max(|c0|, . . . , |ck|)k+1

max(|c0|, . . . , |ck|, |cn|)k+2
. (B.5)
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Note that in this equation the value k+1 represents the total number of known perturbative
coefficients c0, . . . , ck used to estimate cn with n > k, rather than simply one unit above
the last calculated perturbative order k. Similarly, k + 2 is this total number plus one. If
a series starts at a non-zero order αl

s, its last known perturbative order k plus one will not
give anymore the number of known coefficients. We detail in section 4 the modifications
to be made to account for such a case.

B.2 Derivation of f(c̄|c0, . . . , ck) in eq. (2.23)

The result (2.23) is obtained in a way similar to the one discussed in appendix B.1. We find

fε(c̄|c0, . . . , ck) =
fε(c̄, c0, . . . , ck)
fε(c0, . . . , ck)

=
fε(c̄, c0, . . . , ck)∫
fε(c̄, c0, . . . , ck) dc̄

=
fε(c0, . . . , ck|c̄)fε(c̄)∫
fε(c0, . . . , ck|c̄)fε(c̄) dc̄

=
1

2k+2
1

| ln ε|
1

c̄k+2 χmax(|c0|,...,|ck|,ε)≤c̄≤1/ε

1
2k+2

1
| ln ε|

∫
1

c̄k+2 χmax(|c0|,...,|ck|,ε)≤c̄≤1/ε dc̄
. (B.6)

Taking the limit ε → 0 and using the notation c̄(k) = max(|c0|, . . . , |ck|) we get

f(c̄|c0, . . . , ck) = (k + 1)
c̄k+1
(k)

c̄k+2
χc̄≥c̄(k)

. (B.7)

B.3 Derivation of the smallest p%-credible interval in eq. (2.36)

The density f(∆k|c0, . . . , ck) in eq. (2.34) is symmetric for negative and positive ∆k, and
decreases monotonically from ∆k = 0 to infinity (see figure 2). The smallest interval of
fixed p% degree of belief, which we denote by [−d

(p)
k , d

(p)
k ], will then also be symmetric.

Two cases apply. With p sufficiently large, this interval will extend beyond the
[−αk+1

s c̄(k), α
k+1
s c̄(k)] range, so that the density’s expression in eq. (2.34) can be simpli-

fied as

f(∆k|c0, . . . , ck) =
(

k + 1
k + 2

)
1

2αk+1
s c̄(k)

1
(|∆k|/(αk+1

s c̄(k)))k+2
for ∆k 6∈ [−d

(p)
k , d

(p)
k ]

(B.8)
Noting that the degree of belief outside of [−d

(p)
k , d

(p)
k ] is 1− p% and that the interval and
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the density are symmetric, we have

1− p%
2

=
∫ ∞

d
(p)
k

f(∆k|c0, . . . , ck)d∆k

=
∫ ∞

d
(p)
k

(
k + 1
k + 2

)
1

2αk+1
s c̄(k)

1
(|∆k|/(αk+1

s c̄(k)))k+2
d∆k

=
1
2

(
k + 1
k + 2

)
(αk+1

s c̄(k))
k+1

∫ ∞

d
(p)
k

d∆k

∆k+2
k

=
1
2

(
k + 1
k + 2

)
(αk+1

s c̄(k))
k+1 1

k + 1

(
1

d
(p)
k

)k+1

(B.9)

From this we obtain

d
(p)
k = αk+1

s c̄(k)[(k + 2)(1− p%)]−1/(k+1) (B.10)

If, on the other hand, the interval is smaller than the [−αk+1
s c̄(k), α

k+1
s c̄(k)] range, it

is the upper expression in eq. (2.34) that enters the calculation of the degree of belief.
One finds

p%=
∫ d

(p)
k

−d
(p)
k

f(∆k|c0, . . . , ck)d∆k =
∫ d

(p)
k

−d
(p)
k

(
k + 1
k + 2

)
1

2αk+1
s c̄(k)

d∆k =d
(p)
k

(
k + 1
k + 2

)
1

αk+1
s c̄(k)

(B.11)
so that

d
(p)
k = αk+1

s c̄(k)
k + 2
k + 1

p% (B.12)

One can see that the first case, leading to eq. (B.10), applies for p% > k+1
k+2 , whereas

the second one, leading to eq. (B.12), holds for p% ≤ k+1
k+2 .

B.4 Derivation of the approximate f(∆k|c0, . . . , ck) in eq. (2.37)

From eq. (2.32) and making the approximation ∆k ' αk+1
s ck+1 we get

f(∆k|c0, . . . , ck) =
∫ [

δ(∆k −
∞∑

n=k+1

cnαn
s )

] ∞∏
n=k+1

f(cn|c̄) f(c̄|c0, . . . , ck) dc̄ dck+1dck+2 . . .

'
∫ [

δ(∆k − ck+1α
k+1
s )

] ∞∏
n=k+1

f(cn|c̄) f(c̄|c0, . . . , ck) dc̄ dck+1dck+2 . . .

=
∫ [

δ(∆k − ck+1α
k+1
s )

]
f(ck+1|c̄) f(c̄|c0, . . . , ck) dc̄ dck+1

=
1

αk+1
s

∫
f(ck+1 =

∆k

αk+1
s

|c̄) f(c̄|c0, . . . , ck) dc̄ (B.13)

We can reinstate explicitly the ε-dependence in the equation above, and rewrite the density
f(c̄|c0, . . . , ck) in terms of the elementary densities of the model, so that the resulting
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expression can be used with any density distributions. We obtain

fε(∆k|c0, . . . , ck) =
1

αk+1
s

∫
f(ck+1 =

∆k

αk+1
s

|c̄) fε(c0, . . . , ck|c̄)fε(c̄)
fε(c0, . . . , ck)

dc̄

=
1

fε(c0, . . . , ck)
1

αk+1
s

∫
f(ck+1 =

∆k

αk+1
s

|c̄) f(c0|c̄) . . . f(ck|c̄)fε(c̄) dc̄

(B.14)

Under this form, the evaluation of fε(∆k|c0, . . . , ck) can be performed numerically with
ε 6= 0.

B.5 Derivation of the degree of belief of the scale variation bands in eq. (3.5)

The result in eq. (3.5) for the degree of belief of an interval [− δk
2 , δk

2 ] can be easily obtained
by recalling the derivation in appendix B.3 of eq. (2.36) and inverting the final result, i.e.
expressing the degree of belief as a function of the interval width rather than viceversa.
One easily obtains

C(∆k ∈ [−δk

2
,
δk

2
]|c0, . . . , ck) =


1− 1

k+2

[
αk+1

s c̄(k)

δk/2

]k+1

if δk
2 ≥ αk+1

s c̄(k)

k+1
k+2

δk/2

αk+1
s c̄(k)

if δk
2 < αk+1

s c̄(k)

(B.15)

and, using the result in eq. (2.13),

δk ' 3kβ0α
k+1
s |ck| , (B.16)

we get

C
(
∆k∈

[
− δk

2
;
δk

2

]
|c0, . . . , ck

)
=


1− 1

k+2

[
2

3kβ0

c̄(k)

|ck|

]k+1
if δk

2 ≥ αk+1
s c̄(k) ⇔ |ck| ≥ 2

3kβ0
c̄(k)

k+1
k+2

3kβ0

2
|ck|
c̄(k)

if δk
2 < αk+1

s c̄(k) ⇔ |ck| < 2
3kβ0

c̄(k)

(B.17)

B.6 Derivation of f(cn|c0, . . . , ck, c̃k+1) in eq. (7.6)

Let us first derive the expression of f(ck+1|c0, . . . , ck, c̃k+1).

fε(ck+1|c0, . . . , ck, c̃k+1) =
fε(c0, . . . , ck, ck+1, c̃k+1)∫
fε(c0, . . . , ck, ck+1, c̃k+1) dck+1

=
fε(c0, . . . , ck|ck+1, c̃k+1)fε(ck+1, c̃k+1)∫
fε(c0, . . . , ck|ck+1, c̃k+1)fε(ck+1, c̃k+1) dck+1

(B.18)
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Using the fact that when a coefficient is fully known knowing it approximately adds nothing
(see eqs. (7.1), we can rewrite this as

fε(ck+1|c0, . . . , ck, c̃k+1) =
fε(c0, . . . , ck|ck+1)fε(ck+1, c̃k+1)∫
fε(c0, . . . , ck|ck+1)fε(ck+1, c̃k+1) dck+1

=
[fε(c0, . . . , ck, ck+1)/fε(ck+1)][fε(c̃k+1|ck+1)fε(ck+1)]∫
[fε(c0, . . . , ck, ck+1)/fε(ck+1)][fε(c̃k+1|ck+1)fε(ck+1)] dck+1

=
fε(c0, . . . , ck, ck+1)fε(c̃k+1|ck+1)∫
fε(c0, . . . , ck, ck+1)fε(c̃k+1|ck+1) dck+1

= Nεfε(ck+1|c0, . . . , ck)f(c̃k+1|ck+1) (B.19)

where with Nε we denote the normalisation factor. In the limit ε → 0 we can therefore
write

f(ck+1|c0, . . . , ck, c̃k+1) = N f(ck+1|c0, . . . , ck)f(c̃k+1|ck+1) (B.20)

The density f(cn|c0, . . . , ck, c̃k+1), for n > k + 1, is then simply

f(cn|c0, . . . , ck, c̃k+1) =
∫

f(cn, ck+1|c0, . . . , ck, c̃k+1) dck+1

=
∫

f(cn|c0, . . . , ck, c̃k+1, ck+1)f(ck+1|c0, . . . , ck, c̃k+1) dck+1

= N
∫

f(cn|c0, . . . , ck, ck+1)f(ck+1|c0, . . . , ck)f(c̃k+1|ck+1) dck+1

= N
∫

f(cn, ck+1|c0, . . . , ck)f(c̃k+1|ck+1) dck+1 (B.21)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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