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Abstract

Background: For optimal guidance of walking rehabilitation therapy of stroke patients in an in-home setting, a small
and easy to use wearable system is needed. In this paper we present a new shoe-integrated system that quantifies
walking balance during activities of daily living and is not restricted to a lab environment. Quantitative parameters
were related to clinically assessed level of balance in order to assess the additional information they provide.

Methods: Data of 13 participants who suffered a stroke were recorded while walking 10 meter trials and wearing
special instrumented shoes. The data from 3D force and torque sensors, 3D inertial sensors and ultrasound
transducers were fused to estimate 3D (relative) position, velocity, orientation and ground reaction force of each foot.
From these estimates, center of mass and base of support were derived together with a dynamic stability margin,
which is the (velocity) extrapolated center of mass with respect to the front-line of the base of support in walking
direction. Additionally, for each participant step lengths and stance times for both sides as well as asymmetries of
these parameters were derived.

Results: Using the proposed shoe-integrated system, a complete reconstruction of the kinematics and kinetics of
both feet during walking can be made. Dynamic stability margin and step length symmetry were not significantly
correlated with Berg Balance Scale (BBS) score, but participants with a BBS score below 45 showed a small-positive
dynamic stability margin and more asymmetrical step lengths. More affected participants, having a lower BBS score,
have a lower walking speed, make smaller steps, longer stance times and have more asymmetrical stance times.

Conclusions: The proposed shoe-integrated system and data analysis methods can be used to quantify daily-life
walking performance and walking balance, in an ambulatory setting without the use of a lab restricted system. The
presented system provides additional insight about the balance mechanism, via parameters describing walking
patterns of an individual subject. This information can be used for patient specific and objective evaluation of walking
balance and a better guidance of therapies during the rehabilitation.

Trial registration: The study protocol is a subset of a larger protocol and registered in the Netherlands Trial Registry,
number NTR3636.
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Background
Impaired walking balance commonly follows a stroke,
which reduces the patient’s ability to walk and hence their
independence in daily life [1]. Clinical assessment meth-
ods of walking balance have been developed to grade a
patient’s ability to walk (independently) after stroke [2].
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Frequently used assessment scales result in ordinal values,
which do not objectively and quantitatively describe bal-
ance during walking. These assessment scales only quan-
tify walking balance during prescribed conditions, while
knowledge about underlying balance mechanisms is often
lacking [3]. This knowledge ismandatory for a better guid-
ance during the rehabilitation of walking and subsequent
assessment of walking balance performance during daily
life. However, existing systems for quantitative assessment
of balance during walking are lab restricted or can only be
used for a limited number of steps. For a better guidance
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during the rehabilitation of walking in a daily life set-
ting, a wearable sensing system that qualitatively evaluates
walking balance is needed [4]. This system should quan-
titatively estimate parameters to describe the movements
of the patients’ feet and body center of mass (CoM) during
walking in a daily life setting [5, 6]. Preferably, such a sys-
tem has small-embedded sensors which do not interfere
with daily life body movements and behavior [7].
During walking, the CoM is moving within the area

between both feet (i.e., base of support, BoS). To evaluate
a persons’ stability during walking the extrapolated center
of mass (XCoM) can be calculated, which is the position
of the CoM extrapolated using the velocity of the CoM. A
person will be dynamically stable when the vertical pro-
jection of the XCoM on the ground is within the BoS
[8–10]. Moments of dynamic instability need to be fol-
lowed by another step to prevent a fall [8, 10]. These
moments of instability normally occur during walking
and are necessary for forward progression. A decrease
of the distance between BoS and the vertical projection
of the XCoM is related to a lower walking speed or a
more affected walking pattern [8]. Objective evaluation of
walking balance parameters during daily life contributes
to insight in underlying mechanisms of balance during
community ambulation.
To continuously assess the dynamic stability of a per-

son, information on the position of the XCoM relative
to the BoS is necessary. For a continuous evaluation of
the BoS, information on movement of both feet relative
to each other is required. A feasible method for move-
ment assessment in a daily life setting is the use of inertial
measurement units (IMUs). This allows easy assessment
of foot movements in a daily life setting without the use
of an external physical reference system [11]. Previous
studies reported on the use of IMUs for the estimation
of qualitative and quantitative parameters of walking and
balance performance, such as cadence, stride length and
velocity [5, 12, 13]. However, using only IMUs it is not
possible to accurately evaluate parameters which depend
on the relative position of both feet, such as step length,
step width and size of the BoS. By their physical working
principle, IMUs do not provide information about relative
positions between sensors, only about changes of position
of the same sensor. This problem can be solved by fusing
data of IMUs and feet distance estimates of an ultrasound
sensors system [5].
For a continuous evaluation of CoM position as well as

the XCoM, ground reaction forces (GRF) beneath both
feet should be known [14] in addition to relative posi-
tions of both feet. For the estimation of the GRF beneath
both feet, traditionally, multiple force plates or sensorised
walkways are used in a lab situation [8, 15, 16]. These
systems mostly cause restriction in walking or are only
able to measure one or two steps. For the evaluation of

forces underneath both feet during daily life activities,
shoes instrumented with force or pressure sensors have
been investigated in several studies [17–21]. These shoe
integrated sensor systems allow ambulatory estimation of
ground reaction forces, making it suitable for monitoring
multiple steps and walking with changes in walking direc-
tion. However, there is no system available that allows
the assessment of dynamic stability in a daily life setting
and over multiple steps. Such a system would require an
ambulatory estimation of foot orientations, relative foot
positions and ground reaction forces simultaneously.
The objective of this study is to develop a method to

assess balance dynamics during gait in stroke patients in
an ambulatory setting and to relate our balance metrics
to standardized clinical stability parameters in order to
assess the additional information they provide. For this
purpose shoes, integrated with force and inertial sens-
ing and ultrasound transducers were combined into a
wearable gait measurement system. Quantitative param-
eters such as the dynamic stability margin, as well as
additional temporal, kinematic and kinetic gait param-
eters will be estimated using the system. Finally, these
parameters were related to a frequently used clinically
assessment scale of balance, the Berg balance scale (BBS),
to evaluate the predictability of the different parameters
by clinically-assessed levels of balance.

Methods
System setup
The ambulatory measurement system used in this study
consists of Xsens ForceShoes™ (Xsens Technologies B.V.,
Enschede, The Netherlands) additionally equipped with
ultrasound sensors. All sensors are integrated into an
extra sole underneath a pair of sandals. Per foot, each fore-
foot and heel segment contain one inertial measurement
unit (IMU) and one 3D force/moment sensor, see Fig. 1.
Only data of the IMUs in the forefoot segments were used.
Data of the two IMUs and four force/moment sensors
were collected with a sample frequency of 50 Hz. The
distance between the feet was estimated using two ultra-
sound transducers that were mounted near the IMUs in
the forefoot segment (Fig. 1). The distance between both
shoes was estimated by measuring the time of flight of
a 40 kHz ultrasound pulse, that was sent from one shoe
to the other. Accurate distance measurements were done
approximately 13 times a second [22].

Participants
For this study seventeen stroke patients from Roess-
ingh rehabilitation hospital, located in Enschede, the
Netherlands, were recruited. Recruited participants were
between 35 and 75 years of age and had a hemipare-
sis as a result of a single unilateral ischemic or hem-
orrhagic stroke, diagnosed at least six months earlier.
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Fig. 1Measurement setup. In this study Xsens ForceShoes™ were used, sandals with underneath one inertial measurement unit (IMU, dashed
orange square) and one force/moment (FMS, dashed green square) sensor per heel or forefoot segment. Near the IMU in the forefeet an ultrasound
transducer (US, dashed red circle) was mounted in each shoe. Kinematic and kinetic data were used to estimate the position of the center of mass
(CoM) relative to the position of both feet, the projection of the center of mass on the ground (CoM’-blue circle) within the base of support (BoS) and
the extrapolated CoM (XCoM’ - green circle)

Exclusion criteria were inability to perform given instruc-
tions, inability to understand questionnaires, a medical
history with more than one stroke or another medical
history which might negatively influence the participant’s
walking pattern. The study protocol is a subset of a larger
protocol approved by the local medical ethics commit-
tee (METC Twente, the Netherlands, P12-27) [11]. The
whole study is registered in the Netherlands Trial Reg-
istry, NTR3636. All participants signed written informed
consent before participating.

Two participants with severely affected lower extremity
function were not able to complete the task without assis-
tance due to unstable walking patterns. The correspond-
ing measurements were excluded from the analysis. Data
of two other participants were not fully recorded because
of a broken cable during the session or sensors that
were not properly functioning. Remaining were 13 partic-
ipants (8 male and 5 female) with an average age of 64.1
(SD ± 8.7) years, 2.4 (SD ± 1.8) years post stroke.
Participant-specific information is reported in Table 1 and

Table 1 General participant characteristics

IDa Gender Ageb Post Dominant Affected Weightc Heightd BBSe Walking
strokeb side side aidf

1 M 54 2.9 R L 109 1.74 35 St, AFO

2 M 69 4.0 R L 96 1.90 42 –

3 F 67 3.3 R L 80 1.62 43 St

4 M 75 1.6 R L 88 1.72 45 St

5 F 55 1.4 R L 87 1.68 49 –

6 M 70 7.4 R L 94 1.74 52 –

7 M 65 1.3 R L 92 1.86 52 OS

8 M 70 1.2 L L 99 1.81 52 –

9 M 47 1.8 R L 88 1.73 54 –

10 M 73 2.4 R R 82 1.78 54 –

11 F 60 0.7 R L 74 1.65 55 –

12 F 71 1.4 R R 67 1.53 56 –

13 F 56 1.6 R L 85 1.74 56 OS

aParticipant identification number (participants are ranked from a low to high BBS score)
bin years
cin kilograms
din meters
eBerg Balance Scale score (0–56 points)
fUse of walking aid during activities of daily living: St = Stick, AFO = Ankle foot orthosis, OS = Orthopedic Shoes
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includes gender, age, number of years post stroke, dom-
inant and affected side, weight, height, BBS score and
whether or not a walking aid is normally used during
activities of daily living. Participants were ranked from
low to high BBS score.

Experimental protocol
Participants performed twice a timed 10 meter walk at a
self-selected comfortable pace along a 10 meter path [23],
while wearing the instrumented shoes and without the use
of any walking aid. To relate results of the new setup with
a frequently used clinically assessment scale to assess bal-
ance, participants’ balance was evaluated using the Berg
balance scale (BBS) [24]. All assessments were performed
by the same technical physician who has adequate clinical
expertise to perform the assessment.

Data processing
Kinematic data
All data were processed offline and analyzed using
MATLAB� (MathWorks Inc., Natick,MA). Three dimen-
sional (3D) positions (p), velocities (v) and orientations (R)
were estimated using an extended Kalman filter (upper
part of Fig. 2). The filter fuses ultrasound range estimates
(dUS), essential for estimating relative foot positions, with
3D accelerations (yAcc), 3D angular velocities (yGyr), with
the goal to estimate the state vector:

x = (
pr pl vr vl θ ε,r θε,l bε,r bε,l

)T (1)

with position, velocity, orientation error (θ ε) and gyro-
scope bias error (bε) of each IMU. The subscripts r and
l indicates respectively the right and left foot. The filter
starts with an initialization in which the initial positions
and orientations are set based on the accelerometer sig-
nal and the initial ultrasound range, assuming the patient
is standing with both feet flat on the floor. When a step is
made, the 3D position, velocity and orientations of right
and left forefoot are predicted using the IMU data. After
this prediction, two measurement updates are performed.
First, height-, and velocity are updated to be zero when the
foot is in contact with the ground, which is detected using
the method presented by Skog and others [25]. Second,
when an accurate ultrasound range estimate is available,
estimated using:

dUS = vs · tToF (2)

based on the speed of sound (vs) and the time of flight
(tToF ) of an ultrasound pulse between both transducers,
the position of the (last) moving foot is updated according
to the estimated range. This estimated range is equal to
the distance between both feet:

|| pr − pl || = dUS (3)

Fig. 2 Sensor fusion. The upper part (kinematics) is an extended
Kalman filter that fuses the signals from the accelerometer (yAcc) and
gyroscope (yGyr ) and applies zero velocity, height and ultrasound
range measurement updates (dUS). Outputs are 3D position (p),
velocity (v) and orientation (R) estimates of the forefoot segments.
For kinetic estimation, data from the 3D force/moment sensors (yF
and yM) are used to estimate 3D CoM. With yM) are used to estimate
3D CoM. With subscript k the samples are indicated. The estimation
frequency is 50 Hz and ultrasound range updates are applied at
approximately 13 Hz

Subsequently, the orientation and gyroscope bias are
updated based on the error states. More details can be
found in [5].
These algorithms were validated in healthy subjects

using an optical reference system. Mean absolute differ-
ences in estimated step lengths and step widths were
below 2 cm [5] andmean absolute differences in estimated
feet distances were below 1 cm [22].

Kinetic data
The trajectories of the center of pressure per foot (CoPr or
CoPl) in the global frame were estimated using measured
forces (yF ) and moments (yM) of the two force/moment
sensors of one foot, using:

CoPi =
⎛
⎜⎝

−My,i
Fz,i

Mx,i
Fz,i
0

⎞
⎟⎠ (4)
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in which subscript i indicates the right or the left foot, Fz,i
is the vertical component of the GRF and Mx,i and My,i
are the horizontal components of the moments [14]. After
combining (relative) foot positions (p) and estimated CoP
trajectories of each foot, the total CoP was estimated by
weighting the CoP trajectories of the right (CoPr) and left
(CoPl) foot by the relative magnitude of the GRF of the
right (Fr) or the left (F l) foot:

CoP = ||Fr||
||F l + Fr||CoPr + ||F l||

||F l + Fr||CoPl (5)

Knowing the relative foot positions and the position of
the total CoP, the position of the CoM was obtained using
the method of Schepers and others [14]. In this method
the CoM position estimation is a summation of the low-
pass filtered component of the total CoP movement and
the high pass filtered component of the double integrated
CoM acceleration (lower part of Fig. 2).
Schepers and others evaluated their method in which

they assume a known relative distance between both feet
( || pr − pl || ), by comparing their method and an opti-
cal reference system in seven stroke patients. They found
small positional differences between methods, rms values
were equal or below 2 cm (± 0.7 cm) in all directions [14].

Data analysis
Parameter selection
Hemiparetic stroke patients use different walking strate-
gies to stay comfortable and in balance. To be able to com-
pensate for their reduced coordination of their affected
side, they often reduce their walking speed, make shorter
steps, a longer stance time on their non-affected side and
lean more towards their non-affected side [26–29]. This
results in a more asymmetrical walking pattern of the
more affected patients. Using the complete kinematic and

kinetic reconstruction during walking, temporal, kine-
matic and kinetic parameters can be calculated to quantify
these typical walking patterns.
First, walking speed was calculated as the average

velocity of both feet during walking, estimated with the
extended Kalman filter. As a reference of the current
protocol, walking speed was estimated by measuring the
duration of 10 meter walking using a stopwatch, which
includes gait initiation. Next, stance times were calculated
for the affected and non-affected side. Stance times were
defined as the period between first contact of the foot
(heel or forefoot) with the ground until end of contact of
the foot. Contact of the forefoot and heel segments with
the ground were evaluated per segment at any time, by
thresholding the magnitude of the 3D force at 20 Newton.
From the estimated 3D positions of the left and right foot,
step lengths (LSL and RSL respectively) were calculated
using themethod as described by Huxham and others [30]
(see Fig. 3).
Asymmetries in stance times and step lengths between

the non-affected and the affected side were calculated
using:

SI = pA − pN
pN

(6)

with SI the symmetry index value, pA the parameter value
for the affected side and pN the parameter value for
the non-affected side. Larger positive and negative val-
ues indicate a greater asymmetry towards the affected
and non-affected side respectively. SI values equal to zero,
indicate a perfect symmetry.
Furthermore, position and velocity of the CoM rela-

tive to the BoS were evaluated. The participants’ BoS was
defined by the area between all foot segments which were
in contact with the ground. Knowing the position of the

Fig. 3 Top-down view of foot positions. Top-down view of foot positions from four steps of participant number 3. For both left and right foot, the
step lengths (LSL and RSL respectively) are calculated using triangles obtained from the positions during stance and indicated in the left part of the
figure. The CoM’ and its trajectory (blue) and the XCoM’ (green) together with the front line of the BoS, just before heel-off (pink) are shown on the
right. The shortest distance from the XCoM’ to the front line of the BoS (in walking direction, to the right in this figure) is calculated (DSM) and
indicated in the figure with a black line
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CoM (relative to the BoS) and the velocity of the CoM, the
XCoM’ was calculated as [10]:

XCoM’ = CoM’ + vCoM
ω0

(7)

with CoM’ the position of the vertical projection of the
CoM on the ground, vCoM the velocity of the CoM
in the transversal plane and ω0 = √

g/l0, in which
g = 9.81 m/s2 (earth gravitational acceleration) and l0 the
greater trochanter height, as we estimated from a propor-
tion of the total body height [31]. Knowing XCoM’ relative
to BoS, a dynamic stability margin (DSM) was calculated
as the shortest distance from the XCoM’ to the front line
(in the walking direction) of the BoS. When one foot is in
swing phase, i.e., the BoS is restricted to the size of only
the other foot, no estimation of DSM was made.
We define negative DSM values as dynamically stable,

the XCoM’ is within the BoS and positive DSM values
as dynamically unstable, the XCoM is outside the BoS.
Figure 3 shows a top down view of four consecutive steps
of a walking trial of participant #3. In this figure XCoM’
and the front-line of the BoS just before heel-off are
indicated, including the shortest distance between them.

Statistical analysis
To exclude gait initiation and termination steps, from each
of the two walking trials per participant, the first two and
last two steps were removed. For both walking trials of
each participant the mean of all parameters was calcu-
lated per side. The mean DSMwas not calculated per side.
To be able to compare different participants, parameters
were normalized to body size as described by Hof and oth-
ers [32]. Velocity values were normalized to v0 = √

gl0,
stance times to t0 = √

l0/g and step length and DSM
values to l0.
Linear regression analysis using Pearson’s correlation

coefficients (r) was performed to relate the different
parameters with the clinically-assessed levels of balance.
The temporal and kinematic parameters, were taken as
dependent variables, and the BBS score (assessed using
the instrumented shoes) as independent value. When
investigating correlation between BBS with symmetry
indices, the absolute value was used, to neglect to which
side the asymmetry occurs. Statistical significance was
determined as a p-value of less than 0.05. The explained
variance (R2) was calculated and assumed to be low when
this value is less than 0.5, i.e., less than 50 % of the variance
can be explained by the linear regression model.

Results
For all participants the normalized walking speed in walk-
ing direction (vn) was estimated. Table 2 shows the mean
velocity during the selected steps for each participant, as

Table 2 Velocity for each participant

IDa BBSb vref v� vn� SIStance SIStep

1 35 0.43 0.49 0.15 –0.16 0.16

2 42 0.62 0.68 0.21 –0.19 0.08

3 43 0.54 0.58 0.16 –0.13 –0.33

4 45 0.60 0.63 0.19 –0.19 0.02

5 49 0.74 0.87 0.25 –0.05 –0.06

6 52 0.76 0.86 0.26 –0.20 0.04

7 52 0.94 1.03 0.32 0.01 0.07

8 52 0.91 1.13 0.35 –0.04 0.03

9 54 0.95 0.99 0.30 –0.13 –0.08

10 54 0.96 1.11 0.34 –0.03 –0.05

11 55 1.28 1.45 0.41 0.00 0.01

12 56 0.63 0.73 0.20 –0.08 0.12

13 56 0.83 0.96 0.28 –0.08 –0.02

aParticipant identification number
bBerg Balance Scale score (0-56 points). vref : velocity (m/s) calculated from the time
to pass 10 meters, measured using a stopwatch. v� : velocity during selected steps
(m/s) estimated by the extended Kalman filter. vn� : velocity v� normalized to
v0 = √

gl0. SIStance symmetry index value for stance times. SIStep symmetry index
value for step lengths

estimated by the extended Kalman filter (v). As a refer-
ence, the velocity estimated from the stopwatch (vref ) of
the complete timed 10 meter walk is also listed. More-
affected participants with a lower BBS score show a sig-
nificantly lower walking speed (r = 0.71, p < 0.01). All
correlation values (r) of the different parameters and BBS,
their significance levels and the explained variance (R2)
are presented in Table 3.
Figure 4 shows the dynamic stability margin of partici-

pant #3, during the selected steps of a single walking trial,
over time. If one foot is in swing phase no estimation of
DSM is made, which is represented as a gap in Fig. 4. The
four steps that are shown in Fig. 3 are indicated by the
rectangular box and a zoom of these steps is shown in the
inset of the figure. The mean DSM of this trial is 0.00 m.

Table 3 Relation quantifying parameters and BBS

Parameter (related to BBS1) r R2 p

Velocity 0.71 0.50 < 0.01

Stance time affected side –0.69 0.48 < 0.01

Stance time non-affected side –0.80 0.64 < 0.01

Symmetry Index stance time –0.58 0.34 < 0.05

Step length affected side 0.77 0.59 < 0.01

Step length non-affected side 0.74 0.55 < 0.01

Symmetry Index step length –0.51 0.26 0.074

Dynamic stability margin 0.41 0.17 0.168

aBerg Balance Scale score. r is Pearson’s correlation coefficient and R2 the explained
variance. p values < 0.05 indicates significant correlations
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Fig. 4 Example of the dynamic stability margin over time. The the
DSM evaluated during the double stance phases for one walking trial
of participant number 3. Negative values indicate that the XCoM’ is
inside the BoS. Mean DSM for this trial was 0.00 m. The inset is a
magnification (indicated by the box) and corresponds to the time
window (12.00-14.75 s) of which the steps are shown in Fig. 3

The normalized mean DSM values were estimated for
both walking trials of each participant and related to par-
ticipant’s average normalized walking speed (vn), as shown
in Fig. 5. The average DSM is positive, i.e., XCoM’ is
outside the BoS. Especially participants with lower BBS
scores show a lower walking speed and small positive
mean DSM values. No significant correlation between
BBS and DSM was found (r = 0.41, p = 0.167).
Results of the mean normalized stance times for the

affected side versus the non-affected side are shown in
Fig. 6. Overall, participants show a longer stance time on
their non-affected leg and participants with lower BBS
scores (below 45) show longer stance times for both sides.
Furthermore, more asymmetry in stance times is visi-
ble for the participants with a lower BBS score (see also
Table 2). Although participants 6 and 9 (having higher BBS
scores) show large asymmetries in stance time as well, the
asymmetry in stance times significantly correlates with
the BBS score (r = −0.58, p < 0.05).
The mean normalized step lengths for the affected side

versus the non-affected side are shown in Fig. 7. The step
lengths are relatively symmetric, except for the two tri-
als of participant number 3 (±0.4 versus ±0.6 normalized
step length for the affected and non-affected side respec-
tively). Overall the step lengths are smaller for participants
with a smaller BBS score. The asymmetry in step length
(see Table 2) is not significantly correlated with the BBS
score (r = −0.51, p = 0.074).

Fig. 5Mean DSM versus velocity. Mean DSM (normalized to l0) versus
velocity (normalized to v0) estimated by the filter (vn in Table 2), for all
13 participants (indicated with the numbers). Numbers indicate
participant identification number, which are ranked from a low to
high BBS score. Filled data markers are of those participants with a
BBS score below or equal to 45

Fig. 6 Stance time of the affected side versus the non affected side.
Mean stance time for affected versus non-affected side (normalized
to t0 = √

l0/g). Numbers indicate participant identification number,
which are ranked from a low to high BBS score. Filled data markers are
of those participants with a BBS score below or equal to 45. Both trials
of a patient are averaged. The line x = y is plotted to indicate a
symmetric walking pattern
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Fig. 7 Step length of the affected side versus the non affected side.
Mean step length for affected versus non-affected side (normalized to
leg length l0). Numbers indicate participant identification number,
which are ranked from a low to high BBS score. Filled data markers are
of those participants with a BBS score below or equal to 45. Both trials
of a patient are averaged. The line x = y is plotted to indicate a
symmetric walking pattern

Discussion
The objective of this study was to develop a method
to quantitatively assess balance dynamics during gait in
stroke patients in an ambulatory setting. Our balance
metrics were related to standardized clinical stability
parameters (i.e., BBS scores) in order to assess the addi-
tional information they provide. By combining Xsens
ForceShoes™ and ultrasound modules, we were able to
completely reconstruct kinetics and kinematics of both
feet as well as the position of the CoM relative to both
feet during walking, without the use of a lab restricted
setup. All underlying physical parameters of the pre-
sented system have been validated against a gold standard
[5, 14, 22].
Although no parts of the BBS include assessment of

walking, a high correlation was found between walking
speed and BBS scores. As in Liston, et al. [27, 33], par-
ticipants show a higher walking speed with an increase
of BBS score. During walking, step lengths and stance
times for both the affected side and the non-affected side
show correlations with the BBS scores. Participants with
a higher BBS score, show an increase of step length on
both sides and a decrease of stance times on both sides.
A significant negative relation in stance time asymmetry
and BBS was found, stance times of both sides are get-
ting more symmetrical with a higher BBS score. However,

no significant relation between step length symmetry and
BBS was found. These results are contradictory to earlier
findings of Lewek and others [16]. Compared to our study,
they describe slightly different correlation values out of
which they conclude the presence of a negative (weak-
to-moderate) correlation between BBS and step length
asymmetry and the absence of a relation between BBS
and stance time asymmetry measured using a sensorised
walkway. These different outcomes could be related to, for
example the difference between average age and number
of months post stroke of the groups of participants or the
larger sample size compared to our study. The sample size
in our study is relatively small and the participants’ BBS
scores are limitedly distributed, which is a limitation of
our study.
By extrapolating the CoM’ using its velocity, the XCoM’

was estimated. This XCoM’ can be used to examine sta-
bility during walking, by evaluating the distance between
XCoM’ and the front-line of the BoS (i.e., DSM). Over-
all, participants with higher BBS scores show larger (as
expected, however not significantly larger) average DSM
values. More-affected participants – especially the ones
with BBS score of 45 or lower, who have a higher risk of
falling – show smaller velocities and smaller and almost
negative average values for their DSM. In case of a
negative mean DSM value during walking, a person is
dynamically stable during walking, which means that after
each step made, no extra step is needed to prevent a
fall (on average). Nevertheless, positive DSM values, e.g.,
moments of dynamical instability, are necessary for for-
ward progression. Participants with a lower BBS score
might decrease their average DSM value as a conservative
balance strategy in order to be more stable during walk-
ing. Although, this may cause interruptions in walking
and possible risk of falling backwards [34]. Furthermore, a
smaller walking velocity may be less efficient [35].
By estimating the walking speed, asymmetry in walking

and especially the size of patients’ DSM during walking,
it may be possible to objectively follow up improvement
or deterioration of daily life ambulation. These parame-
ters offer additional information not only on activity level
(using the BBS) but also on the level of body function. This
information may be of importance during rehabilitation
training, because it provides extra information on impair-
ment level (during a functional task). Monitoring these
parameters adds insight whether or not changes on abil-
ity level are associated with changes on impairment level.
Thus providing insight whether improvement is due to
restoration of body function or whether these changes are
related to compensation and adaptive strategies are used
to overcome the problems on impairment level. The abil-
ity to control the position of the XCoM’ with respect to
the BoS might for instance be a compensatory mechanism
for preventing falls during walking [34]. Furthermore,
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using the presented system it is possible to gather patient
specific information. Although most parameters are sig-
nificantly related to the BBS, when evaluated in a group of
stroke patients, the explained variances (R2, see Table 3)
are low. Therefore this patient specific information esti-
mated using the described setup, cannot accurately be
predicted by just evaluating the BBS score. The additional
information such as average walking speed andDSMvalue
during walking, along with clinically evaluated balance
scores, can be used as a guidance for patient specific clini-
cal practice. For instance, if a patient shows high clinically
evaluated balance scores but small DSM values, increased
walking speedmay be advised. Alternatively, a patient who
shows large DSM values but low clinical balance scores,
might have a higher risk of falling and should be advised
to adapt their walking pattern to their balance capacity.
This approach should be evaluated in future research to
demonstrate the effectiveness of using these parameters
for the guidance in rehabilitation practice.
In addition to the average DSM values over multiple

double stance phases, the time course of the DSM value
(as shown in Fig. 4)may provide additional insight in walk-
ing balance and continuity of the walking pattern. In case
of a negative DSM value at the beginning of a double
stance phase gait can be terminated without an additional
step. However, if the minimum value of the DSM during
the double stance phase is positive, an additional step is
always needed before gait can be terminated.
Future research should focus on the sizes of the used

sensors, which were integrated in the instrumented shoes.
Although previous research found only limited influence
on walking patterns of patients with knee osteoarthri-
tis while wearing these instrumented shoes [21], walking
might be more exhausting and chances of a trip are higher
by the design of the shoes. Currently the shoes are rela-
tively heavy (±1 kg per shoe) and the sole height is rela-
tively high (±2.5 cm). New technical developments in the
use of smaller and lighter force/moment sensors [36] inte-
grated in shoes and the already widely available smaller
inertial sensors, may result in instrumented shoes that can
be used in daily life [7]. In addition, the number of sen-
sors may be reduced depending on the actual research
question. We presented a system using one IMU, two
force/moment sensors and an ultrasound transducer per
shoe (data of the inertial sensors in the heel part of
the shoes was not used), which are all required for the
dynamic balance parameters shown in Figs. 4 and 5. Using
a reduced set of sensors, several relevant objective param-
eters can still be determined. For example, for the esti-
mation of stance and swing times (as in Fig. 6), a system
with only inertial sensors or only 1D force sensors could
be used. For the evaluation of step lengths and step widths
(as in Fig. 7), a systemwith inertial sensors in combination
with ultrasound transducers suffices, as was shown in [37].

Although not used in the presented methods, the inertial
sensor data of the heel segments can be used to addition-
ally evaluate orientations of heel segments, the rolling of
the feet or heel contact times.
Besides the evaluation of straight line walking, it is pos-

sible to evaluate other phases of walking, such as gait ini-
tiation and termination, standing, transfers, turning and
non-repetitive walking patterns. Especially in an ambula-
tory setting, the stability of a stroke patient during these
phases might be of interest, because of the high incidence
of falls during these non-stationary walking phases [38].
In addition to stroke patients, the presented system might
be of interest in other groups of patients with difficulties
in walking (e.g. before and after knee or hip surgery).

Conclusions
We demonstrated a method to assess walking balance in
stroke patients under ambulatory conditions. Using the
described setup, objective evaluation of walking is no
longer restricted to a lab setting. Quantitative parameters
can be used for describing walking patterns of the indi-
vidual patient. DSM values and the asymmetry in step
lengths, are not significantly correlated with participants
BBS scores. Walking velocity, step lengths of both feet,
stance times of both feet and the asymmetry in stance
time are significantly correlated with participants BBS
score, although the explained variance of the velocity of
walking, stance time on the affected side and asymme-
try in stances time is limited to approximately 0.5. The
presented system provides important information about
the walking balance in addition to parameters describ-
ing the walking pattern of an individual subject, which
is only partly predictable in the individual person using
BBS.
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