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1 Introduction

In a companion paper [1], we have introduced a parton shower event generator, Deduc-

tor [2], that is designed to be amenable to improved treatments of spin and color. This

event generator is based on our earlier work [3, 4]. Methods for an improved treatment of

spin are described in ref. [5] and methods for an improved treatment of color1 are described

1The current Deductor code implements the LC+ treatment for color described in ref. [6], but in ref. [1]

we work only in the leading color (LC) approximation.
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in ref. [6]. This shower generator contains features that differ from other parton shower

event generators [7–14] even when one uses the leading color approximation and averages

over spins, as we do in ref. [1]. Two of these features are important for this paper.

The first feature is that we use a shower evolution variable defined by the virtuality in

a splitting divided by the energy of the mother parton. In a second companion paper [15],

we argue that this choice is advantageous because, at leading order in QCD, it factors hard

interactions from softer interactions at the amplitude level.

The second feature is that we allow initial state partons to have nonzero mass. We

regard up, down, and strange quarks to be effectively massless. The top quark is so heavy

that we do not treat it as a possible constituent of the proton. This leaves the bottom and

charm quarks, which do appear in the initial state as constituents of the proton. We take

mb and mc to be non-zero.

These two features of the parton shower evolution have implications for the parton dis-

tribution functions used in the shower. This paper concerns these implications, particularly

the implications of taking mb 6= 0 and mc 6= 0.

Do parton masses matter? We are interested in using parton shower evolution to

examine what happens when there is a hard process with a scale Q2 of 104 GeV2 or more.

At this scale, mb and mc do not matter. However, the idea of a parton shower event

generator is that it accurately covers all scales down to a shower-end scale on the order of

1 GeV2. Consider an initial state b-quark that participates in a hard interaction with large

scale Q2. This b-quark is a virtual constituent of the proton, described by a propagator

1/(q2 −m2
b + iε). Typically m2

b � |q2 −m2
b| � Q2. In calculating the cross section for the

hard interaction, we neglect |q2−m2
b| compared to Q2, thus approximating the b-quark as

being on shell. It would also be a good approximation to neglect m2
b at this stage if there

were a good reason to do so. However, if there is an initial state b-quark at later stages of

the shower when |q2−m2
b| ∼ m2

b, then it is not a good approximation to neglect m2
b in the

b-quark propagator. It is for this reason that we keep the physical value of m2
b throughout.

At even later stages of the shower, when |q2 −m2
b| � m2

b, there are no b-quarks. Shower

evolution turns them into gluons according to the splitting g→ b + b̄.

What do parton masses have to do with parton distribution functions used in a parton

shower event generator? We argue that the kernel for the evolution of parton distribution

functions needs to be matched to the functions that describe initial state splittings in a

parton shower. Since we include parton masses in the dynamics of initial state splittings,

we need evolution kernels for parton evolution that have non-trivial mass dependence. This

view is in accord with the work of Jadach, Kusina, Placzek, Skrzypek and Slawinska [16, 17],

who connect parton shower splittings with the parton distribution function kernels with

the aim of extending parton shower splittings to next-to-leading order in αs, albeit for

massless partons. In this paper, we work only at lowest order, but include masses.

We agree with Jadach et al. that the evolution kernel for parton distributions needs

to agree with the splitting functions of a parton shower at next-to-leading order. We hope

that in due course a general formulation of a parton shower will be available, so that one

will know how, in principle, to calculate shower splitting functions at any order in αs.

With that, one would know what evolution kernels are needed for the evolution of parton
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distribution functions to match a parton shower thus formulated. Of course, it would be

convenient if, for massless partons, the parton evolution kernels were those of MS parton

distribution functions.

There is another line of research that seeks to adjust parton distribution functions to be

more useful for parton shower event generators. Here, one recognizes that the splitting func-

tions used in parton showers are derived from QCD only at lowest order in αs. One would

surely prefer to use higher order splitting functions, but it is not known how to do that. In-

stead, one can try to modify the fitting procedure by which the parton distribution functions

are determined with the aim of improving the accuracy of the predictions obtained when

the modified parton distribution functions are used in existing shower programs. See, for

example, refs. [18, 19]. Such methods could potentially be applied to parton distributions

defined with the mass dependent evolution equations that are the subject of this paper.

The general analysis of ref. [3] gives the equations for parton shower evolution with a

full quantum treatment of color and spin. The analysis in ref. [1] makes the leading color

approximation and averages over spins. The issues of how masses enter the evolution equa-

tion for an initial state shower apply both with and without color and spin. Accordingly,

in this paper we address these issues using the definitions of ref. [3] with full color and spin.

We begin the analysis of this paper in section 2 by outlining some of the important

features of the shower evolution used in Deductor and then defining the general struc-

ture of the evolution equations needed for parton distributions used in the shower. This is

not completely straightforward because of the presence of quark masses and because the

shower evolution uses parton distribution functions at fixed shower time rather than fixed

MS renormalization scale. In section 3, we review the definitions from refs. [3, 4] of the op-

erators that generate shower evolution and relate these to “perturbative” versions of these

operators, which differ from the full versions by not containing factors of ratios of parton

distribution functions. In section 5, we use this analysis to argue that the kernels in the evo-

lution equation for parton distributions must bear a simple relationship to the splitting ker-

nels in the shower evolution operators. Some work is needed to derive the needed functions

from the shower evolution operators of refs. [3, 4]. This analysis is placed in an appendix A.

With the needed functions from shower evolution, one determines the part of the parton

evolution kernels that involve splitting variables z not equal to 1. There are δ(1− z) terms

that we find in section 6 by using flavor and momentum sum rules. We state the results for

the parton evolution kernels including masses in section 7. If one starts parton evolution

at a low scale Qfit with fixed input distributions, then at a high scale the parton distribu-

tions defined with shower evolution will differ from those defined with MS evolution. In

section 8, we derive a lowest order perturbative relation for this difference. In section 9, we

display numerical results for the difference between shower parton evolution and MS parton

evolution. In section 10, we record a modification at next-to-leading order to the parton

evolution that is used in Deductor. We offer some concluding remarks in section 11.

– 3 –
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2 Parton evolution and shower evolution

Consider the following scenario. Two hadrons, A and B, collide to produce a final state

system, for example a W boson plus a jet. The final state system has momentum Q0.

Now, the parton shower evolution simulates the development of the final state and also

the development of the initial state. In each case, the development works from relatively

hard interactions to softer interactions. In the case of the initial state, this means going

backwards in physical time [20, 21].

At each stage in the shower, the incoming partons are defined to be on shell with zero

momentum transverse to the beam directions. Of course, in the exact Feynman diagrams

that describe the shower, the initial state partons are not exactly on shell. It is part of the

shower approximation that we treat them as being on shell. It is also an approximation

to treat the incoming partons as if they had zero transverse momenta. However, this

approximation is not as drastic as it seems. At each initial state splitting, the momenta of

the final state particles are adjusted as described in section 7.3 and appendix A of ref. [15]

to account for the recoil from the transverse momentum of the initial state splitting. For

this reason, the transverse momentum of a Z-boson produced in the Drell-Yan process is

correctly generated [22].

2.1 Initial state parton splitting

Let us look at the kinematics of initial state parton splitting. We define momenta pA and

pB associated with the hadrons. These obey (pA + pB)2 = s, but we do not take pA and pB

to be exactly the hadron momenta. Rather, it is convenient to define pA and pB so that

p2
A = p2

B = 0.2 At any time in the shower, the incoming partons have momenta pa and pb.

These are defined to be on shell, with flavors a and b, with masses m(a) and m(b), and

with zero momentum transverse to the beam. We define momentum fractions ηa and ηb so

that the momenta pa and pb are

pa = ηapA +
m(a)2

ηaηbs
ηbpB ,

pb = ηbpB +
m(b)2

ηaηbs
ηapA .

(2.1)

Now suppose that parton “a” splits in the sense of backwards evolution. Before the

splitting, suppose that there were m final state partons plus the two initial state partons.

We denote momenta after the splitting by momentum vectors with hats, p̂. The momentum

of parton “b” remains the same: p̂b = pb. Parton “a” after the splitting has a new

momentum fraction η̂a and possibly a new flavor â:

p̂a = η̂apA +
m(â)2

η̂aηbs
ηbpB ,

p̂b = pb .

(2.2)

2We never need the exact hadron momenta, but note here that in the case that both hadrons are protons,

we have pexact
A = γpA + [M2

p/(γs)] pB and pexact
B = [M2

p/(γs)] pA + γpB where γ =
[
1 + (1−M2

p/s)
1/2
]
/2.

Thus pA and pB are close to the exact momenta of the incoming hadrons.
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The splitting creates a new final state parton with label m+1, flavor f̂m+1, and momentum

p̂m+1. Parton m+ 1 is on shell: p̂2
m+1 = m(fm+1)2 and typically has some transverse mo-

mentum. Momentum is not locally conserved in the splitting: p̂a− p̂m+1 6= pa. Rather, we

conserve momentum globally by making a small Lorentz transformation on the final state

spectator partons: p̂j = Λpj for j = 1, . . . ,m. (See section 7.3 and appendix A of ref. [15].)

The momentum fraction splitting variable is z = ηa/η̂a. The spacelike virtuality in the

splitting is

µ2 = −[(p̂a − p̂m+1)2 −m(a)2] . (2.3)

We divide the virtuality by 2ηa pA ·Q0 to define the shower time t of the splitting,3

e−t =
µ2

2ηapA ·Q0
=

µ2

ηaµ2
A

, (2.4)

where Q0 is the total momentum of the final state partons created by the hard process

that initiates the shower and where

µ2
A = 2pA ·Q0 (2.5)

is a parameter that is fixed throughout the initial state shower. Thus µ2
A is twice the energy

in the hard scattering process times the energy of hadron A, both as measured in the c.m.

frame of the hard scattering process.4

2.2 The strong coupling

The probability for an initial state splitting is proportional to αs. What should be the

argument of αs? We use αs(λRk
2
T), where λR ≈ 0.4 is given in eq. (10.3) below and k2

T =

(1−z)µ2. These choices are helpful for improving the summation of large logarithms arising

from the emission of soft gluons [22, 24]. However, for the analysis of the evolution of parton

distributions in this paper, it is more convenient to use αs(µ
2/z). These are related by

αs(λR(1− z)µ2) = αs(µ
2/z)− αs(µ

2/z)2 β0 log(λRz(1− z)) + · · · . (2.6)

where β0 = (33− 2nf)/(12π) is the first coefficient in the QCD β function. If we used this

order α2
s correction in the analysis of this paper, it would suggest order α2

s corrections to

parton evolution. However, higher order corrections to the shower splitting function would

also lead to order α2
s corrections to parton evolution. We do not know what the shower

splitting function should be beyond the leading order, so we ignore these corrections to

parton evolution with one exception: since the β0 log(λR) correction to parton evolution is

so simple, we add it in section 10 below.

3In ref. [15], we use the dimensionful variable Λ2 = Q2
0 exp(−t) to express the shower ordering definition,

but in this paper it is more convenient to use the dimensionless variable exp(−t).
4Compare this to the scale variable ζA = (2pA ·Q0)2/Q2

0 used in ref. [23] to aid in factoring transverse

momentum dependent parton distributions from the hard process.
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2.3 The role of parton distributions

What parton distribution function describes the mother parton at the time of the splitting?

We take it to be a function fa/A(ηa, µ
2). If all partons were massless, we could use the

MS definition [25] of parton distribution functions. These functions, fMS
a/A(ηa, µ

2), obey the

standard DGLAP evolution equations [26–28]. However, the partons are not all massless,

so fa/A is a possibly different function from fMS
a/A. We assume that the first order evolution

equation for fa/A has the form

d

d log(µ2)
fa/A(ηa, µ

2) =
∑
â

∫
dz

z

αs(µ
2)

2π
Paâ(z, µ

2/z) fâ/A(ηa/z, µ
2) . (2.7)

When all of the partons are massless, Paâ(z, µ
2/z) is the standard DGLAP kernel, which

does not depend on the scale parameter in this case. When some quarks have masses and

one uses MS parton distribution functions, then one conventionally switches between an

(n− 1) flavor scheme and an n flavor scheme when µ2 becomes large enough. Specifically

(working to order αs in the evolution equations), if m is the mass of one of the quarks q,

then for µ2 < m2 one sets fMS
q/A(ηa, µ

2) = 0, while for µ2 > m2 one lets fMS
q/A(ηa, µ

2) 6= 0,

with evolution determined by the normal DGLAP splitting functions with fMS
q/A(ηa,m

2) = 0

as a boundary condition. Thus effectively the g → q splitting kernel is

PMS
qg (z, µ2/z) = TR[1− 2z(1− z)] Θ(µ2 > m2) . (2.8)

We will see in this paper that, with masses, we will need some extra terms that depend

on the relevant squared parton mass m2. The mass dependence will not be the same as in

eq. (2.8). It will be a convenient convention for us to take the second argument of Paâ to

be µ2/z.

With our choice of shower time, the dimensionful variable µ2
Ae
−t defines the shower

time for an initial state splitting in hadron A. We have

µ2
Ae
−t = µ2/ηa . (2.9)

Inside of shower evolution, we use the function fa/A(ηa, µ
2) to describe the parton distri-

bution, but with a different notation that emphasizes the separate roles of the momentum

fraction ηa and the shower time t:

f̃a/A
(
ηa, µ

2/ηa

)
= fa/A

(
ηa, µ

2
)
. (2.10)

This function represents the probability to find a parton with flavor a and momentum

fraction ηa at shower time t given by eq. (2.9).

Using eq. (2.10), the corresponding evolution equation for f̃a/A
(
ηa, µ

2/ηa

)
is

d f̃a/A(ηa, µ
2/ηa)

d log(µ2)
=
∑
â

∫
dz

z

αs(µ
2)

2π
Paâ
(
z, µ2/z

)
fâ/A(ηa/z, µ

2)

=
∑
â

∫
dz

z

αs(µ
2)

2π
Paâ
(
z, µ2/z

)
f̃â/A(ηa/z, zµ

2/ηa) .

(2.11)
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This is the exact evolution equation for f̃a/A(ηa, µ
2/ηa). For our purpose of analyzing

shower evolution, we will want to drop some contributions that are higher order in αs so

that we write

d f̃a/A(ηa, µ
2/ηa)

d log(µ2)
=
∑
â

∫
dz

z

αs(µ
2/z)

2π
Paâ
(
z, µ2/z

)
f̃â/A(ηa/z, µ

2/ηa) +O(α2
s ) . (2.12)

On the right hand side of the equation, we have changed the scale argument of αs from

µ2 to µ2/z and we have changed the scale argument of f̃ from zµ2/ηa to µ2/ηa. Using the

renormalization group equation for αs and the evolution equation eq. (2.11) for f̃ , we see

that these scale changes correspond to higher order adjustments to the evolution equation,

denoted by the +O(α2
s ) notation in eq. (2.12). Since we will be dealing with parton shower

evolution only at leading order in αs, these higher order terms will not concern us. We

will find that when the partons have mass, terms beyond those of the customary DGLAP

evolution kernel are needed in the evolution kernel Paâ(z, µ
2/z) in eq. (2.12). These extra

terms appear at leading order in αs.

The evolution kernel Paâ
(
z, µ2/z

)
is not an ordinary function but a distribution, with

singular behavior as z → 1. We can specify part of the structure of the kernel and write

the same equation using ordinary functions by writing

d f̃a/A(ηa, µ
2/ηa)

d log(µ2)
=
∑
â

∫ 1−

0
dz

{
αs(µ

2/z)

2π

1

z
Paâ
(
z, µ2/z

)
f̃â/A(ηa/z, µ

2/ηa)

− δaâ
αs(µ

2)

2π

[
2Ca

1− z
− γa(µ2)

]
f̃a/A(ηa, µ

2/ηa)

}
+O(α2

s ) .

(2.13)

Here the lower limit of the z-integration is z = 0. However, we define f̃a/A(ηa, µ
2/ηa) = 0

for ηa > 1, so that in the first term f̃â/A(ηa/z, µ
2/ηa) = 0 unless z > ηa. The upper limit

is infinitesimally less than z = 1. The kernel Paâ
(
z, µ2/z

)
in the first term is an ordinary

function. We anticipate that for â = a, P has a singularity as z → 1 of the form 2Ca/(1−z).
Here, as we will find later, Ca is CF or CA for quarks and gluons, respectively. The same

constant Ca appears in the second term, so that the singular behavior is cancelled. There

is also a term γa, which we allow to depend on quark masses and on µ2. We will have to

determine γa.

3 The perturbative splitting operators

The shower evolution of ref. [3] is based on the evolution equation

d

dt
|ρ(t)) = [HI(t)− V(t)]|ρ(t)) . (3.1)

Here |ρ(t)) represents the state of the system at shower time t and HI(t) and V(t) are

operators on the space of states; HI(t) describes splitting, increasing the number of partons

by one, while V(t) describes virtual graphs and unresolved splittings, leaving the number

of partons unchanged. See ref. [1] and ref. [3] for a more complete description.

– 7 –
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The splitting operator HI(t) contains a factor with a ratio of parton distribution func-

tions. Specifically, suppose that we start with a basis state5 |{p, f, s′, c′, s, c}m) with m

final state partons. The partons have momenta {p}m = {pa, pb, p1, . . . , pm}, flavors {f}m,

colors {c′, c}m and spins {s′, s}m. After applying HI(t), we get a state with m + 1 final

state partons with new quantum numbers. The matrix element of HI(t) has the form

({p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1|HI(t)|{p, f, s′, c′, s, c}m)

=
nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

f̃â/A(η̂a, µ
2
Ae
−t)f̃b̂/B(η̂b, µ

2
Be
−t)

f̃a/A(ηa, µ2
Ae
−t)f̃b/B(ηb, µ

2
Be
−t)

× ({p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1|Hpert
I (t)|{p, f, s′, c′, s, c}m) .

(3.2)

Here there is a ratio of parton distribution functions after the splitting to parton distri-

bution functions before the splitting. That is because before the splitting, the probability

for the system to be in the specified state is proportional to parton distribution functions

f̃a/A(ηa, µ
2
Ae
−t) and f̃b/B(ηb, µ

2
Be
−t). After the splitting the probability is proportional

to parton distribution functions with the new variables. Thus we need to cancel the old

parton distribution functions and introduce the new ones. Coming along with the parton

distribution functions there is a ratio of kinematic factors ηaηb and there is a ratio of color

factors nc(a)nc(b), where nc(a) is the number of colors of a parton with flavor a. The

rest of the matrix element of HI(t), denoted here as a matrix element of a new operator

Hpert
I (t), is rather complicated but contains no factors of parton distribution functions.

It is precisely the ratio of parton distribution functions in eq. (3.2) that interests us

in this paper. This ratio is standard in modern parton shower event generators and it is

needed for an efficient generation of parton splittings. However, there is a sense in which

a dependence on parton distribution functions should not be there. The very splittings

described inHpert
I (t) are the splittings that generate the evolution of the parton distribution

functions. Thus we should not need parton distribution functions to describe the splittings.

The only parton distribution functions that we should need consist of one factor of parton

distributions at the low virtuality end of the parton shower. Indeed, roughly this idea

was present from the beginning of the development of parton showers with backwards

evolution [20, 21]. The formulation used in Deductor follows most closely that of ref. [20].

In order to investigate this idea, let us define an operator F(t) that multiplies by the

parton distribution factor that relates the cross section to a squared matrix element,

F(t)|{p, f, s′, c′, s, c}m)

=
f̃a/A(ηa, µ

2
Ae
−t)f̃b/B(ηb, µ

2
Be
−t)

4nc(a)nc(b) 4ηaηbpA ·pB
|{p, f, s′, c′, s, c}m) .

(3.3)

Then the operator Hpert
I (t) defined in eq. (3.2) is

Hpert
I (t) = F(t)−1HI(t)F(t) . (3.4)

5Recall that we work with the quantum density operator in color and spin, so there are two quantum

color states {c′}m and {c}m and two quantum spin states {s′}m and {s}m.

– 8 –
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How should we define the corresponding operator Vpert(t)? To find out, first define a

shower state vector |ρpert(t)) that has the parton distribution factor removed:

|ρ(t)) = F(t)|ρpert(t)) . (3.5)

The evolution equation for |ρpert(t)) can be determined from the evolution equation (3.1)

for |ρ(t)). We have[
d

dt
F(t)

]
|ρpert(t)) + F(t)

d

dt
|ρpert(t)) = [HI(t)− V(t)]F(t)|ρpert(t)) , (3.6)

so

d

dt
|ρpert(t)) = F(t)−1[HI(t)− V(t)]F(t)|ρpert(t))

−F(t)−1

[
d

dt
F(t)

]
|ρpert(t)) .

(3.7)

We can write this as

d

dt
|ρpert(t)) = [Hpert

I (t)− Vpert(t)]|ρpert(t)) . (3.8)

Here Hpert
I (t) is given in eq. (3.4) and Vpert(t) is

Vpert(t) = V(t) + F(t)−1

[
d

dt
F(t)

]
. (3.9)

Here we have noted that F(t) commutes with V(t) since V(t) does not change momenta or

flavors.

Now we can make a couple of observations. First, the starting value of |ρpert(t)) at

the time t0 that corresponds to the hard interaction does not contain parton distribution

functions because we removed this factor from |ρpert(t)). Second, if we let |ρpert(t)) evolve

to some late shower time tf , then we can recover the full shower state at tf using

|ρ(tf)) = F(tf)|ρpert(tf)) . (3.10)

Thus |ρ(tf)) contains the proper product of parton distribution functions as long as

|ρpert(tf)), like |ρpert(t0)), does not depend on parton distribution functions. This means

that the evolution from t0 to tf should not have introduced any dependence on parton dis-

tribution functions. Now, the operator Hpert
I (t) in the evolution equation (3.8) for |ρpert(t))

does not contain any parton distribution functions by construction. However, in eq. (3.9)

for Vpert(t), the operator V(t) does contain explicit parton distribution function factors.

Additionally, F(t)−1dF(t)/dt contains parton distribution functions. Because of the differ-

entiation with respect to t, it also contains the evolution kernel for the parton distribution

functions. Thus, what needs to happen is that the evolution kernel for the parton distribu-

tion functions has the right form compared to the functions in V(t) so that the dependence

on parton distribution functions cancels between the two terms in eq. (3.9), at least after

applying suitable kinematic approximations that correspond to the parton splittings in the

shower being approximately collinear or soft. This is the issue that we will investigate in

the following sections.
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4 Shower kinematics

We will want to examine the evolution of Vpert(t). For this purpose, we need some kinematic

variables for the initial state shower.

At shower time t, an initial state parton from hadron A with momentum fraction ηa can

become a new initial state parton with momentum fraction η̂a with the emission of a new

final state parton with momentum p̂m+1. The ratio of momentum fractions is ηa/η̂a = z.

It is useful to define a dimensionless virtuality variable

y = −(p̂a − p̂m+1)2 −m(a)2

ηaηbs
=

µ2

ηaηbs
=
µ2

A

ηbs
e−t . (4.1)

That is, y is the virtuality in the splitting divided by the total current squared c.m. energy

of the colliding partons, ηaηbs. At the first initial state splitting, y is much smaller than 1

as long as the first splitting is close to being collinear or soft. At each subsequent initial

state splitting, t is larger than in the previous splitting and ηb is the same or larger. Thus y

gets smaller at each splitting. For this reason, in a parton shower it is a good approximation

to assume y � 1.

It is also useful to define a dimensionless mass squared variable

ν(f) =
m(f)2

ηaηbs
, f = a, â, or f̂m+1 . (4.2)

For u, d, and s quarks we can take ν(f) = 0. For c and b quarks, ν(f) 6= 0. However,

we are interested in hard processes for which the scale is much greater than squared quark

masses:6 Q2
0 � m(f)2. Thus ν(f) � 1 at the start of the shower. At each subsequent

initial state splitting, ηa and ηb are the same or larger than they were at the start of the

shower. For this reason, in a parton shower it is a good approximation to assume ν(f)� 1.

5 Determining Paâ(z, µ2/z) at finite z

As argued in the section 3, we want to arrange that the virtual splitting operator

Vpert(t) = V(t) + F(t)−1

[
d

dt
F(t)

]
does not involve parton distribution functions after suitable kinematic approximations are

applied.

Let us look at the second term in Vpert(t). Our partonic basis states are eigenfunctions

of this operator:

F(t)−1

[
d

dt
F(t)

]
|{p, f, s′, c′, s, c}m)

= [λFa (a, ηa, t) + λFb (b, ηb, t)]|{p, f, s′, c′, s, c}m) ,

(5.1)

6If we wanted to consider b-quark production at the LHC with the b-quark transverse momentum similar

to the b-quark mass, then we would not have νb � 1. But then, we should not let the b quark be an active

parton that is treated as a constituent of the proton.
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where

λFa (a, ηa, t) =
d
dt f̃a/A(ηa, µ

2
Ae
−t)

f̃a/A(ηa, µ2
Ae
−t)

(5.2)

with a corresponding expression for λFb . Using the parton evolution equation (2.13), this is

λFa (a, ηa, t) = −
∑
â

∫ 1−

0
dz

{
αs(µ

2/z)

2π

1

z
Paâ

(
z,
µ2

z

)
f̃â/A(ηa/z, µ

2/ηa)

f̃a/A(ηa, µ2/ηa)

− δaâ
αs(µ

2)

2π

[
2Ca

1− z
− γa

(
µ2
)]}

+O(α2
s ) .

(5.3)

The first term in λFa involves a ratio of parton distribution functions. We need to somehow

make this term go away.

We now look at the first term in Vpert(t), namely V(t). This operator has a contribution

for each initial state or final state parton,

V(t)|{p, f, s′, c′, s, c}m) =

[
Va(t) + Vb(t) +

m∑
l=1

Vl(t)

]
|{p, f, s′, c′, s, c}m) . (5.4)

The contributions Vl(t) from final state partons do not contain any factors of ratios of

parton distributions, so we can ignore these terms. There are two choices for initial state

partons, but Vb(t) has the same structure as Va(t), so we can concentrate on Va(t).

The operator Va(t) contains two kinds of terms,

Va(t)|{p, f, s′, c′, s, c}m) =

Vaa(t) +
∑
k 6=a

Vak(t)

 |{p, f, s′, c′, s, c}m) . (5.5)

The term Vaa(t) is derived from parton splittings in which parton “a” splits in the ket state

and in the conjugate bra state. We will return to it shortly. The terms Vak(t) are derived

from interference graphs in which parton “a” emits a gluon in the ket state but a different

parton, k, emits the gluon in the bra state or in which parton “a” emits a gluon in the bra

state and parton k emits the gluon in the ket state. The action of Vak(t) on a basis state

has a simple form,

Vak(t)|{p, f, s′, c′, s, c}m) =
∑
c̄′c̄

λVak({p, f}m, t)c
′c
c̄′c̄|{p, f, s′, c̄′, s, c̄}m) . (5.6)

That is, Vak(t) leaves momenta, flavors, and spins unchanged but acts according to a matrix

in color space. The color-space matrix has the form

λVak({p, f}m, t)c
′c
c̄′c̄ =

∫ 1−

0
dz

αs(µ
2/z)

2π

1

z
gak

(
z, µ2/z, {p, f}m

)c′c
c̄′c̄

f̃a/A(ηa/z, µ
2/ηa)

f̃a/A(ηa, µ2/ηa)
. (5.7)

(We choose the scale arguments of αs and f̃a/A as discussed in sections 2.2 and 2.3.)

We need to understand the structure of the function gak. It contains a color matrix

that need not concern us here and a function Aak that defines how much of the interference
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graph is attributed to a splitting of parton “a” and how much is attributed to a splitting of

parton k. The only important feature of Aak is that it is everywhere finite. The essential

factor in gak is the eikonal approximation to the Feynman graph,

p̂a ·D(p̂m+1) · p̂k
p̂m+1 · p̂a p̂m+1 · p̂k

, (5.8)

where D(p̂m+1)µν is the polarization sum for the emitted gluon in Coulomb gauge. This

factor is singular in the region of wide angle soft gluon emission, but it is not singular when

gluon m+ 1 becomes collinear with pa or pk. Now, at small y, we integrate over z. There

are three integration regions to consider: the collinear region y � (1 − z) ∼ 1; the soft

region y ∼ (1− z)� 1; and the intermediate region, y � (1− z)� 1. However, only the

soft region y ∼ (1− z)� 1 is important. For that reason, in eq. (5.7) we can approximate

z by 1 in the parton distribution functions (and also elsewhere). This gives

λVak({p, f}m, t)c
′c
c̄′c̄ ∼

∑
â

∫ 1−

0
dz

αs(µ
2)

2π
gak

(
z, µ2/z, {p, f}m

)c′c
c̄′c̄
. (5.9)

There is no factor of the ratio of parton distribution functions in the contribution to V(t)

from λVak(t), so this contribution does not help to cancel the ratio of parton distribution

functions in eq. (5.3).

To avoid confusion, let us note that the functions gak are important in the parton

shower. They help determine the part of the development of the parton shower that comes

from soft gluon emissions. However, they do not play a role in the present analysis because,

in the limit of small y, they do not multiply parton distribution functions.

Next, we examine Vaa(t), which contains the functions that we will really need. The

states |{p, f, s′, c′, s, c}m) are eigenvectors of Vaa(t):

Vaa(t)|{p, f, s′, c′, s, c}m) = λVaa({p, f}m, t)|{p, f, s′, c′, s, c}m) . (5.10)

The eigenvalue λVaa is made of a factor of αs, a ratio of parton distribution functions, and

a certain function gaâ:

λVaa({p, f}m, t) =
∑
â

∫ 1−

0
dz

αs(µ
2/z)

2π

1

z
gaâ
(
z, µ2/z, {p, f}m

) f̃â/A(ηa/z, µ
2/ηa)

f̃a/A(ηa, µ2/ηa)
. (5.11)

Again, we choose the scale arguments of αs and f̃a/A as discussed in sections 2.2 and 2.3.

The function g corresponds to parton splittings in which a is the flavor index of the parton

after the splitting and â is the flavor index of the parton before the splitting (thinking of the

process going forward in time). We need to understand the structure of the functions gaâ.

The function gaâ is rather complicated, but it is simple when y � 1 and ν(f) � 1

for f = a, â, b, with no requirement on the ratio of y to ν(f). This function appears

inside an integration over z and both the regions of finite (1 − z) (the collinear region)

and of (1− z) ∼ y � 1 (the wide angle soft region) are important in the integration. The
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intermediate region, y � (1− z)� 1, is also important. In the wide angle soft region, the

structure of gaâ is particularly simple,

gaâ ∼ δaâ2Ca
[

1

1− z
− y

(1− z)2

]
Θ((1− z) > y) , (5.12)

where

Ca =

{
CF a 6= g

CA a = g
. (5.13)

The constraint (1− z) > y arises from the kinematics. It is useful to write this as

gaâ ∼ δaâ
2Ca

1− z
− δaâ

2Ca
1− z

Θ((1− z) < y)− δaâ
2Ca y

(1− z)2
Θ((1− z) > y) . (5.14)

With this notation, we find that when y � 1 and ν(f)� 1 we have

gaâ
(
z, µ2/z, {p, f}m

)
∼ Gaâ

(
z, µ2/z

)
− δaâ

2Ca
1− z

[
Θ((1− z) < y) +

yΘ((1− z) > y)

(1− z)

]
.

(5.15)

The function Gaâ is an ordinary function of its arguments. We leave a detailed determina-

tion of this function for the appendix A.

Inserting eq. (5.15) into eq. (5.11), we have

λVaa({p, f}m, t) =
∑
â

{∫ 1−

0
dz

αs(µ
2/z)

2π

[
1

z
Gaâ

(
z, µ2/z

) f̃â/A(ηa/z, µ
2/ηa)

f̃a/A(ηa, µ2/ηa)

− δaâ
1

z

2Ca
1− z

[
Θ((1− z) < y) +

yΘ((1− z) > y)

(1− z)

]
×
f̃â/A(ηa/z, µ

2/ηa)

f̃a/A(ηa, µ2/ηa)

]

+O(y, ν(a), ν(â))

}
.

(5.16)

Now, consider the second term on the right hand side of eq. (5.16). The only region of the

z integration that matters for y � 1 is the region (1− z) . y. We can make further use of

the approximation y � 1 by replacing z by 1 in the factor 1/z, the argument of αs, and,

more importantly, in the argument of the parton distribution functions. This removes the

ratio of parton distribution functions from this term. We are left with

λVaa({p, f}m, t) =
∑
â

∫ 1−

0
dz

{
αs(µ

2/z)

2π

1

z
Gaâ

(
z, µ2/z

) f̃â/A(ηa/z, µ
2/ηa)

f̃a/A(ηa, µ2/ηa)

− δaâ
αs(µ

2)

2π

2Ca
1− z

[
Θ((1− z) < y) +

yΘ((1− z) > y)

(1− z)

]
+O(y, ν(a), ν(â)) +O(α2

s )

}
.

(5.17)
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Combining eqs. (5.3) and (5.17) we have

λFa (a, ηa, t) + λVaa({p, f}m, t)

=
∑
â

{∫ 1−

0
dz

[
αs(µ

2/z)

2π

1

z

f̃â/A(ηa/z, µ
2/ηa)

f̃a/A(ηa, µ2/ηa)

×
{
Gaâ

(
z, µ2/z

)
− Paâ

(
z, µ2/z

)}
+ δaâ

αs(µ
2)

2π

2Ca
1− z

[
Θ((1− z) > y)− yΘ((1− z) > y)

(1− z)

]
− δaâ

αs(µ
2)

2π
γa
(
µ2
) ]

+O(y, ν(a), ν(â)) +O(α2
s )

}
.

(5.18)

We see that the ratio of parton distribution functions disappears from Vpert(t) if

Paâ
(
z, µ2/z

)
= Gaâ

(
z, µ2/z

)
. (5.19)

We compute G directly from the splitting functions in the shower and this determines the

evolution kernel P for the parton distributions at finite values of (1− z).

6 Determining γa(µ̄2)

Eq. (5.19) gives us Paâ
(
z, µ2/z

)
at finite (1 − z) from the small y limit Gaâ of the initial

state splitting functions in the shower. However the full splitting function is actually a

distribution, with singular behavior at z → 1, as indicated in eq. (2.13). We need to deter-

mine the constants γa(µ̄
2) that appear in eq. (2.13). Essentially, these constants multiply

δ(1− z) in the evolution kernel and are thus not present at finite (1− z). However, we can

determine the constants γa(µ̄
2) from the momentum and flavor sum rules that guarantee

that the total longitudinal momentum of the partons sums to the total longitudinal mo-

mentum of the proton and that the total flavor quantum numbers of the partons sums to

the total flavor quantum numbers of the proton.

To proceed in a unified fashion, consider the quantity

− d

dt

∑
a

ca

∫ 1

0
dηa η

N
a f̃a/A(ηa, µ

2
Ae
−t) .

If we take

ca = 1 for all a ,

N = 1 ,
(6.1)
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then the momentum sum rule implies that this quantity should be zero. If we let q be a

quark flavor and take

ca =


1 a = q

−1 a = q̄

0 otherwise

,

N = 0 ,

(6.2)

then the flavor sum rule for flavor q implies that this quantity should be zero. Using

eq. (2.13), we see that for either kind of sum rule

0 = − d

dt

∑
a

ca

∫ 1

0
dηa η

N
a f̃a/A(ηa, µ

2
Ae
−t)

=
∑
a,â

ca

∫ 1

0
dηa

∫ 1−

0
dz ηNa

αs(ηaµ
2
Ae
−t/z)

2π

1

z
Paâ
(
z, ηaµ

2
Ae
−t/z

)
f̃â/A(ηa/z, µ

2
Ae
−t)

−
∑
a

ca

∫ 1

0
dηa

∫ 1−

0
dz ηNa

αs(ηaµ
2
Ae
−t)

2π

[
2Ca

1− z
− γa(ηaµ

2
Ae
−t)

]
f̃a/A(ηa, µ

2
Ae
−t)

+O(α2
s ) .

(6.3)

In the first term we change variables from ηa to η̂a = ηa/z, giving

0 =
∑
a,â

ca

∫ 1−

0
dz

∫ 1

0
dη̂a z

N η̂Na
αs(η̂aµ

2
Ae
−t)

2π
Paâ
(
z, η̂aµ

2
Ae
−t) f̃â/A(η̂a, µ

2
Ae
−t)

−
∑
a

ca

∫ 1−

0
dz

∫ 1

0
dηa η

N
a

αs(ηaµ
2
Ae
−t)

2π

[
2Ca

1− z
− γa(ηaµ

2
Ae
−t)

]
f̃a/A(ηa, µ

2
Ae
−t) .

(6.4)

With a little manipulation, this is

0 =
∑
â

∫ 1

0
dηa η

N
a

αs(ηaµ
2
Ae
−t)

2π
f̃â/A(ηa, µ

2
Ae
−t)

×
∑
a

ca

{∫ 1−

0
dz

[
zN Paâ

(
z, ηaµ

2
Ae
−t)− δaâ 2Ca

1− z

]
+ δaâγâ(ηaµ

2
Ae
−t)

}
.

(6.5)

The coefficient of f̃â/A(ηa, µ
2
Ae
−t) must vanish. Thus we need (setting ηaµ

2
Ae
−t = µ̄2)

câγâ(µ̄
2) = −

∑
a

ca

∫ 1−

0
dz

[
zN Paâ

(
z, µ̄2

)
− δaâ

2Ca
1− z

]
. (6.6)

We now write this out in detail. The only nonzero functions Pâa are those for which there

is a first order splitting graph for â → a + f for some flavor f . Thus for any quark or

antiquark flavors q′ and q, Pq′q = 0 unless q′ = q.

Let us examine the flavor sum rule for flavor q. Taking â = q, we have

γq(µ̄
2) = −

∫ 1−

0
dz

[
Pqq
(
z, µ̄2

)
− 2CF

1− z

]
. (6.7)
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Taking â = g we have

0 =

∫ 1−

0
dz
[
Pqg
(
z, µ̄2

)
− Pq̄g

(
z, µ̄2

)]
. (6.8)

Taking â = q′ for any other flavor, we have simply 0 = 0. Now, charge conjugation

invariance for the splitting functions dictates that

Pqg
(
z, µ̄2

)
= Pq̄g

(
z, µ̄2

)
. (6.9)

Thus eq. (6.8) is automatically satisfied. This leaves eq. (6.7), which determines γq.

Now let us examine the momentum sum rule. Taking â = g, we have

γg(µ̄
2) = −

∫ 1−

0
dz

[
z Pgg

(
z, µ̄2

)
− 2CA

1− z

]
− 2

∑
q∈Q

∫ 1−

0
dz z Pqg

(
z, µ̄2

)
. (6.10)

Here we sum over quark flavors Q = {u, d, c, s, b}, not antiquark flavors, and then multiply

the quark term by 2. Taking â to be a quark or antiquark flavor q, we have

γq(µ̄
2) = −

∫ 1−

0
dz

[
z Pqq

(
z, µ̄2

)
− 2CF

1− z

]
−
∫ 1−

0
dz z Pgq

(
z, µ̄2

)
. (6.11)

Now, eq. (6.10) determines γg. Then eq. (6.11) would determine γq except that we have

already determined γq in eq. (6.7). For these equations to be consistent, we need

0 =

∫ 1−

0
dz
[
z Pqq

(
z, µ̄2

)
− Pqq

(
z, µ̄2

)]
+

∫ 1−

0
dz z Pgq

(
z, µ̄2

)
. (6.12)

Changing variables from z to 1− z in the second integral, this is

0 =

∫ 1−

0
dz (1− z)

[
−Pqq

(
z, µ̄2

)
+ Pgq

(
1− z, µ̄2

)]
. (6.13)

The two functions Pqq and Pgq both describe the splitting q → q+ g and differ by whether

it is the quark or gluon that goes on to the hard interaction. We will find that these two

functions are related by

Pqq
(
z, µ̄2

)
= Pgq

(
1− z, µ̄2

)
. (6.14)

Because of this relation, the two formulas for calculating γq give the same result.

7 The result

We compute the small y limit G of the shower splitting functions and set the parton

evolution kernels P for finite (1− z) equal to G according to eq. (5.19). This gives

Pqq(z, µ
2/z) = CF

[
2

(1− z)+
− (1 + z)− 2z

m(q)2

µ2

]
Θ
(
(1− z)m(q)2 < µ2

)
+ γq(µ

2) δ(1− z) ,

Pgg(z, µ2/z) = 2CA

[
1

(1− z)+
− 1 +

1− z
z

+ z(1− z)
]

+ γg(µ2) δ(1− z) ,

Pqg(z, µ2/z) = TR

[
1− 2 z (1− z) + 2z

m(q)2

µ2

]
Θ
(
m(q)2 < (1− z)µ2

)
,

Pgq(z, µ
2/z) = CF

[
1 + (1− z)2

z
− 2z

m(q)2

µ2

]
Θ
(
z2m(q)2 < (1− z)µ2

)
.

(7.1)
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The constants γa(µ̄
2) are computed according to eqs. (6.10) and (6.7), with the result

γg(µ̄2) =
11

6
CA −

2TR
3

∑
q

√
1− 4m(q)2

µ2

(
1 +

2m(q)2

µ2

)
Θ
(
4m(q)2 < µ2

)
,

γq(µ̄
2) = CF

{
3

2
+ 2 log

(
1 +

m(q)2

µ2

)
+
m(q)2

µ2

(2 +m(q)2/µ2)

2(1 +m(q)2/µ2)2

}
.

(7.2)

Note that the relation (6.14) that allows a consistent calculation of γq(µ
2) does indeed hold.

The theta functions that provide a lower limit on µ2 for a given z in eq. (7.1) are easy

to understand. For Pqq we consider a splitting of a quark with momentum p̂a = (p̂+
a , p̂

−
a , p̂a)

given by

p̂a =

(
1

z
p+

a , z
m(q)2

2p+
a
, 0

)
. (7.3)

A daughter gluon is emitted into the final state with momentum

p̂m+1 =

(
1− z
z

p+
a ,

z

1− z
k2

2p+
a
, k

)
. (7.4)

This leaves a daughter quark heading toward the hard interaction carrying momentum

p̂a − p̂m+1. The daughter quark has virtuality µ2 = −(p̂a − p̂m+1)2 +m(q)2 given by

µ2 = (1− z)m(q)2 +
1

1− z
k2 . (7.5)

The minimum virtuality occurs when the transverse momentum k vanishes and we find

(1− z)m(q)2 < µ2, as in the first equation in eq. (7.1). The other cases follow similarly.

The momentum sum rule constant γg(µ2) is of special interest. When µ2 is very large,

each of Nf flavors of quark contributes and we have

γg(µ2) =
11

6
CA −

2TR
3
Nf . (7.6)

However, when µ2 decreases to close to 4m(q)2 for some flavor of quark, the contribution

of that flavor begins to turn off because the splittings g → q+ q̄ turn off. For µ2 < 4m(q)2,

the contribution from quark q turns off entirely.

The functions Pqq and Pqg, without γq and without the theta functions, are derived

and used as splitting functions in the initial state shower of Pythia [29]. The analogous

final state splitting functions with masses are derived for dipole splitting in ref. [30].

8 Difference between pdf’s with and without mass

The parton distribution functions fa/A(ηa, µ
2) evolve according to eqs. (2.7), (7.1),

and (7.2). The MS parton distribution functions evolve according to the same equation

with all of the quark masses set to zero, but with boundary conditions that set the quark

distributions for heavy quarks to zero for µ2 < m2, as in eq. (2.8). For the purposes of this

section, let us choose a modification of the MS scheme in which the boundary condition
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is at µ2 = λm2 for some λ that is possibly not 1. We can call this the MSλ prescription.

Thus the effective g → q evolution kernel is

PMSλ
qg (z, µ2/z) = TR[1− 2z(1− z)] Θ(µ2 > λm2) . (8.1)

Let us work in a five flavor theory with the charm and bottom quark masses non-zero,

while other quark masses are set to zero. Let us suppose that we set parton distribution

functions fa/A(ηa, µ
2) equal to the MSλ parton distribution functions when the scale is

smaller than the charm mass squared:

fa/A(ηa, µ
2) = fMSλ

a/A (ηa, µ
2) , µ2 < λm(c)2 . (8.2)

Define the differences

∆fa/A(ηa, µ
2) = fa/A(ηa, µ

2)− fMSλ
a/A (ηa, µ

2) . (8.3)

It is of interest to calculate the order αs contribution to these differences.

Consider, for example, the change in the bottom quark distribution. Evidently

d

d log(µ2)
∆fb/A(ηa, µ

2) =
∑
â

∫
dz

z

αs(µ
2)

2π
∆Pbâ(z, µ

2) fMSλ
â/A (ηa/z, µ

2) +O(α2
s ) , (8.4)

where

∆Pbâ(z, µ
2) = Pbâ(z, µ

2/z)− PMSλ
bâ (z, µ2) . (8.5)

We first note that the contribution from â = b can be neglected because fMSλ
b/A (ηa/z, µ

2)

is nonzero only for µ2 > λm(b)2 and the kernel is significantly nonzero only for µ2 ∼ m(b)2.

In this region fMSλ
b/A (ηa/z, µ

2) is itself of order αs, so that â = b contribution to eq. (8.4) is

of order α2
s .

This leaves the contribution from â = g. If we integrate the differential equation, we

have

∆fb/A(ηa, µ
2) =

∫
dz

z

∫ µ2

0

dµ̄2

µ̄2

αs(µ̄
2)

2π
∆Pbg(z, µ̄2/z) fMSλ

g/A (ηa/z, µ̄
2) +O(α2

s ) . (8.6)

Because of the structure of ∆Pbg(z, µ̄2/z), the most important contributions for large µ2

to the integration over µ̄2 come from µ̄2 somewhere around m(b)2. A reasonable estimate

of the most important integration region is µ̄2 ∼ 4m(b)2. Thus at order αs we can set

µ2 = 4m(b)2 in the argument of fMSλ
â/A (ηa/z, µ

2) and αs(µ
2). This gives

∆fb/A(ηa, µ
2) =

∫
dz

z

αs(4m(b)2)

2π
∆Rbg(z, µ2) fMSλ

g/A

(
ηa/z, 4m(b)2

)
+O(α2

s ) , (8.7)

where

∆Rbg(z, µ2) =

∫ µ2

0

dµ̄2

µ̄2
∆Pbg(z, µ̄2) . (8.8)

We learn three things. First, ∆fb/A(ηa, µ
2) = 0 for µ2 < min(1, λ)m(b)2 because

both versions of the parton distribution for b quarks vanish there. Second, ∆fb/A(ηa, µ
2)
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changes as µ2 increases; if λ = 1, it becomes negative because the splittings g→ b+b̄ turn

on more slowly with a physical treatment of the threshold than with the MS treatment.

Third, for very large µ2, the difference stays finite because the integral in eq. (8.8) is finite

in the limit µ2 →∞. In fact

∆Rbg(z,∞) = TR

{
[1− 2z(1− z)] log(λ(1− z)) + 2z(1− z)

}
. (8.9)

This function is negative with a logarithmic singularity for z → 1. For small z it is positive.

If we choose the standard MS prescription λ = 1, then the relevant convolution with the

gluon distribution is negative, so that there are fewer bottom quarks with the shower

evolution of the partons than with MS evolution, as we will see in section 9. Increasing λ

makes the difference with the MSλ bottom quark distribution smaller.

Evidently, analogous results apply for the charm quark distribution.

For the gluon distribution, similar reasoning gives

∆fg/A(ηa, µ
2) =

∫
dz

z

αs(4m(b)2)

2π
∆Rgg(z, µ2) fMSλ

g/A

(
ηa/z, 4m(b)2

)
+O(α2

s ) , (8.10)

where

∆Rgg(z, µ2) =

∫ µ2

0

dµ̄2

µ̄2
∆Pgg(z, µ̄2) . (8.11)

The evolution kernel Pgg is the same as the MSλ version except for the term γg(µ2) δ(1−z).
Thus

∆Rgg(z, µ2) = δ(1− z)
∫ µ2

0

dµ̄2

µ̄2

[
γg(µ2)− 11

6
CA +

2TR

3

∑
q

Θ(λm(q)2 < µ2)

]
. (8.12)

After performing the integration, the result for large µ2 is very simple

∆Rgg(z,∞) = δ(1− z) 10TR

9

(
1− 3

5
log(λ)

)∑
q

Θ(0 < m(q)2) . (8.13)

The sum simply counts the number of quarks treated as massive, which is normally 2. The

coefficient of δ(1 − z) is generally not large. It is positive for λ = 1 and vanishes when

λ = e5/3 ≈ 5.3.

9 Behavior of the parton distributions

The parton distribution functions introduced in this paper have a different definition from

the conventional MS parton distributions. Thus one should fit them to data using per-

turbation theory for deeply inelastic lepton scattering and other hard scattering processes

that help to determine parton distributions. Needless to say, this is a very big project

and we have not attempted it. However, parton showers are, at least at present, accurate

only to lowest order in QCD perturbation theory. At this order, we may hope that the

following scheme suffices. We take a standard set of MS parton distributions. For this

paper, we have used the MSTW 2008 leading order central fit [31].7 These are defined by

7In refs. [1] and [15], we use a different set.
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Figure 1. Ratio of the shower b-quark distribution to the MS b-quark distribution as it applies to

the hard scattering at scale µ. Also shown is the ratio of the MSλ b-quark distribution with λ = 4

to the standard MS b-quark distribution.

applying ordinary MS evolution to the parton distributions at a starting scale Qfit. For

the MSTW 2008 set, the starting scale is Qfit = 1 GeV. Instead, we can define shower

parton distributions by applying the evolution equation (2.7) to the parton distributions

at the starting scale Qfit. In this section, the parton distributions thus defined are labelled

simply as “shower.” We also display distributions labelled as MS, which are defined by

applying the standard MS lowest order evolution to the parton distributions at the starting

scale Qfit. This is the same as the MSTW 2008 LO set. Finally, we display distributions

labelled as MSλ, which are defined by letting the partons evolve from the starting scale

Qfit using the standard MS lowest order evolution kernels but with the boundary condition

that heavy quark evolution (for c and b quarks) starts at µ2 = λm2, as discussed in the

previous section. This amounts to redefining the renormalization prescription for the heavy

quark distribution functions so that one subtracts not only an ultraviolet pole term and a

conventional finite term proportional to (log(4π)− γE), but also a finite term proportional

to log(λ). Naturally, this would entail a corresponding change in the factorization subtrac-

tion for next-to-leading order hard scattering graphs. In this section, we choose λ = 4, so

that the heavy quark threshold is at µ2 = 4m2.

Consider first what happens at the hard scattering that serves as the starting point for

parton showers. Suppose that the hard scattering has scale µ2 = ŝ. Then the partons that

produce the hard scattering have momentum fractions η given by ŝ = ηaηbs. Assume that

the hard scattering is at central rapidity, so that ηa ≈ ηb. Then ηa ≈ ηb ≈ µ/
√
s. Thus we

use parton distribution functions fa/A(µ/
√
s, µ2). We take

√
s = 14 TeV. In figure 1, we

plot the ratio of fa/A(µ/
√
s, µ2) for b quarks to the corresponding b-quark distribution func-

tion in the MS prescription. We see that in the interesting range 100 GeV < µ < 2000 GeV

this ratio is around 0.8. The reason, of course, is that physical b-quark evolution starts more

slowly than MS evolution. This is a perturbative effect, as analyzed in the previous section.
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Figure 2. Development of the b-quark distribution with increasing scale parameter. In each plot

we show the η dependence at fixed shower time t, so that q2 = µ2
Ae

−t is fixed. There are curves for

shower, MS, and MSλ parton distributions for λ = 4.

We show also the ratio of fb/A(µ/
√
s, µ2) in the MSλ prescription with λ = 4 to the b-quark

distribution function in the standard (λ = 1) MS prescription. This ratio is also around 0.8.

Now we look at the parton distributions from the point of view of the shower. We con-

sider f̃a/A(η, q2) as a function of the momentum fraction η at fixed shower time t, with q2 =

µ2
Ae
−t. These functions are related to the functions fa/A(η, µ2) by eq. (2.10), which gives

f̃a/A(η, q2) = fa/A(η, η q2) . (9.1)

In figure 2, we plot the b-quark distribution in a proton, fb/p(η, η q2), as functions of η

at fixed q2. If we imagine starting at a hard interaction at central rapidity with a scale

Q2
0 ≈ (640 GeV)2, then η ≈

√
Q2

0/s ≈ 0.05. With ηq2 = Q2
0 we have q ≈ 3000 GeV. In the

first panel of figure 2, we show fb/p(η, η q2) versus η at q = 3000 GeV. We also show the

– 21 –



J
H
E
P
0
6
(
2
0
1
4
)
1
7
9

MSλ

Shower

MS

gluon, q2 = (3000GeV)2

η

η
f
g
/
p
(η
,
η
q
2
)

10.10.010.001

30

25

20

15

10

5

0

Figure 3. Dependence of the gluon distribution on η at a large value q = 3000 GeV of the shower

evolution scale parameter. There are curves for shower, MS, and MSλ parton distributions for

λ = 4. However, the differences are small.

b-quark distributions in the MS convention and in the MSλ convention with λ = 4. Now

with “backward evolution” for the initial state, we move to smaller q2 and larger η. In

the second panel of figure 2, we show the b-quark distribution versus η at q = 1000 GeV.

The value of the b-quark distribution has started to decrease, which means that shower

evolution will often turn a b quark into an incoming gluon. In the third panel, we show the

b-quark distribution versus η at q = 300 GeV. The value of the b-quark distribution has

now decreased dramatically: a substantial fraction of the b quarks have been turned into

incoming gluons. Finally, in the fourth panel, we show the b-quark distribution versus η at

q = 20 GeV. This is very close to the threshold. All but a small fraction of the b quarks have

disappeared and only a limited range of η is allowed for those that remain. With MS evo-

lution, many more b quarks would remain. That is, the discrepancy is substantial between

evolution that follows the Feynman diagrams for g→ b+b̄ with mb > 0 and MS evolution.

One may wonder what happens to the gluon distribution. In figure 3, we show the

distribution fg/p(η, η q2) for gluons at fixed q2 = (3000 GeV)2 for shower, MS, and MSλ

parton distributions for λ = 4. We note that there is hardly any difference.

10 A small modification

If we were to add one more order of perturbation theory to our parton evolution, we would

have the evolution equation

d f̃a/A(ηa, µ
2/ηa)

d log(µ2)
=
∑
â

∫
dz

z

αs(µ
2/z)

2π
Paâ
(
z, µ2/z

)
f̃â/A(ηa/z, µ

2/ηa)

+
∑
â

∫
dz

z

[
αs(µ

2/z)

2π

]2

P
(2)
aâ

(
z, µ2/z

)
f̃â/A(ηa/z, µ

2/ηa) .

(10.1)
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In our analysis, we have regularly dropped contributions to P
(2)
aâ , since we have only a

leading order shower. However, we find it helpful to use a limited version of P
(2)
aâ in our

parton evolution:

P
(2)
aâ (z, µ2/z) = −2πβ0 log[λR]Paâ

(
z, µ2/z

)
, (10.2)

where β0 = (33− 2nf)/(12π) is the first coefficient in the QCD β function and where [24]

λR = exp

(
−CA(67− 3π2)− 10nf

3(33− 2nf)

)
≈ 0.4 . (10.3)

The terms in eq. (10.2) proportional to 1/(1− z) appear in the exact MS parton evolution

kernel at next-to-leading order. This modification of the evolution kernel amounts to

changing µ2 in the argument of αs in the evolution equation to λR µ
2.

In fact, we do include a factor λR in the argument of αs in shower evolution, as discussed

in section 2.2. Accordingly, we also use αs(λRµ
2) in place of αs(µ

2) in the evolution equation

for the parton distributions. Thus we effectively include the term given in eq. (10.2) in

the evolution of the parton distributions used in Deductor. However, we have not used

this modification in the comparisons of massive and massless evolution presented in the

sections 8 and 9.

11 Conclusions

When the initial state evolution of a parton shower is organized according to the standard

prescription of ref. [20], the probabilities for parton splittings involve ratios of parton dis-

tribution functions. With the aid of the parton distribution functions, the event generator

creates a hard scattering and then the initial state shower algorithm generates configura-

tions of radiated partons as the shower runs from the very large hard-scattering scale to a

shower-end scale on the order of 1 GeV2. We have argued that the probability with which

a certain parton configuration is generated should depend on parton distribution functions

at the shower-end scale, but should not depend on the parton distribution functions at

larger scales. That is, the dependence on parton distribution functions at larger scales

should cancel. For this to happen, the kernels of the evolution equation for the parton

distributions need to be consistent with the splitting functions in the shower. In the case

that the initial state partons can have non-zero masses, as in Deductor [1], this means

that the parton evolution kernels cannot be the standard MS kernels.

In this paper, we have deduced what the revised parton evolution kernels should be in

order to match the shower evolution in Deductor to first order in αs.

Numerical investigations presented in section 8 show that the modification of the evo-

lution strongly affects the distribution functions for heavy quarks at evolution scales com-

parable to the square of the heavy quark mass. This effect shrinks as the evolution scale

increases. The gluon distribution function is not much affected at any scale.

There is work to be done to understand these issues better. We would like to see

what happens, for instance, if we keep non-zero masses but use kT ordering for the shower

evolution instead of the ordering specified in eq. (2.4). We would also like to have an
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operator definition of the modified parton distribution functions, analogous to that for MS

parton distribution functions [25].
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A The splitting functions

We have argued that the parton splitting functions Paâ
(
z, µ2/z

)
should be given by

eq. (5.19), which equates these functions to functions Gaâ
(
z, µ2/z

)
that are defined in

eq. (5.15) to be the small virtuality limits of parton splitting functions gaâ
(
z, µ2/z, {p, f}m

)
.

In this appendix, we calculate the functions Gaâ
(
z, µ2/z

)
.

A.1 The virtual splitting operator and the splitting functions

In order to find Gaâ
(
z, µ2/z

)
, we seek the splitting function gaâ that appears in eq. (5.11),

which we repeat here:

λVaa({p, f}m, t) =
∑
â

∫ 1−

0
dz

αs(µ
2)

2π

1

z
gaâ
(
z, µ2/z, {p, f}m

) f̃â/A(ηa/z, µ
2/ηa)

f̃a/A(ηa, µ2/ηa)
. (A.1)

Here λVaa is the eigenvalue of a part Vaa(t) of the virtual splitting operator, as defined in

eq. (5.10),

Vaa(t)|{p, f, s′, c′, s, c}m) = λVaa({p, f}m, t)|{p, f, s′, c′, s, c}m) . (A.2)

In general, the virtual splitting operator V(t) is determined from the real splitting operator

HI(t) by eq. (3.47) of ref. [3],

0 = (1|[HI(t)− V(t)] , (A.3)

where multiplication by (1| represents making an inclusive measurement and the inner

product of (1| with a statistical basis state is

(1|{p, f, s′, c′, s, c}m) = 〈{s′}m|{s}m〉〈{c′}m|{c}m〉 . (A.4)

Thus

〈{s′}m|{s}m〉〈{c′}m|{c}m〉λVaa({p, f}m, t) = (1|HI,aa(t)|{p, f, s′, c′, s, c}m) . (A.5)

As explained in section 5, the subscript “aa” here means that we are to take the part

of HI(t) that describes splittings of incoming parton “a” and comes from graphs (in a

physical gauge) in which parton “a” splits in both the quantum ket state and the quantum

bra state. There are other contributions Vak that come from interference graphs. As
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explained in section 5, these are soft gluon contributions and do not contain a ratio of

parton distribution functions, so we can ignore them.

To analyze eq. (A.5), we begin with eqs. (12.20) and (12.21) of ref. [3]. We construct

HI,aa(t) by keeping only the terms corresponding to “aa” graphs:

(1|HI,aa(t)|{p, f, s′, c′, s, c}m) =∑
â

∫
dζp θ(ζp ∈ Γa({p}m, ζf)) δ

(
t− log

(
ηa µ

2
A

|(p̂a − p̂m+1)2 −m(a)2|

))

× nc(a) ηa

nc(â) η̂a

f̃â/A(η̂a, µ
2
Ae
−t)

f̃a/A(ηa, µ2
Ae
−t)
〈{s′}m|{s}m〉

×
{
θ(â 6= a) 〈{c′}m|{c}m〉TR waa({f̂ , p̂}m+1)

− θ(â = a)
∑
k 6=a

〈{c′}m|gak({f̂}m+1)|{c}m〉waa({f̂ , p̂}m+1)

}
.

(A.6)

This formula requires a bit of explanation. We examine the integration measure dζp in the

following subsection. The delta function defines the shower time according to eq. (2.4),

which is different definition than that used in ref. [3]. The parton flux factor is described

in eq. (3.2). The splitting functions waa are given in ref. [3]. The symbol gak represent an

operator on the color space8 that obeys the color identity∑
k 6=a

〈{c′}m|gak({f̂}m+1)|{c}m〉 = −〈{c′}m|gaa({f̂}m+1)|{c}m〉 . (A.7)

Furthermore,

〈{c′}m|gaa({f̂}m+1)|{c}m〉 = 〈{c′}m|{c}m〉 C(â, a) , (A.8)

where

C(â, a) =


CF (â, a) = (q, q), (q̄, q̄), (g, q) or (g, q̄)

CA (â, a) = (g, g)

TR (â, a) = (q, g) or (q̄, g)

. (A.9)

Thus (1|HI(t)|{p, f, s′, c′, s, c}m) contains factors of 〈{s′}m|{s}m〉 and 〈{c′}m|{c}m〉, so that

we can identify the eigenvalue λVaa according to eq. (A.5). We find

λVaa({p, f}m, t) =∑
â

∫
dζp θ(ζp ∈ Γa({p}m, ζf)) δ

(
t− log

(
ηa µ

2
A

|(p̂a − p̂m+1)2 −m(a)2|

))

× nc(a) ηa

nc(â) η̂a

f̃â/A(η̂a, µ
2
Ae
−t)

f̃a/A(ηa, µ2
Ae
−t)

C(â, a)waa({f̂ , p̂}m+1) .

(A.10)

8We hope that these color operators gak({f̂}m+1), defined in ref. [3], will not be confused with the

functions gak

(
z, µ2/z, {p, f}m

)c′c
c̄′c̄

and gaa

(
z, µ2/z, {p, f}m

)
used in section 5.
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A.2 Initial state splitting kinematics

In order to proceed, we need to specify in some detail the kinematics of an initial state

splitting in our version of a parton shower, in which partons can have non-zero masses and

in which we implement momentum conservation in a somewhat different way from other

parton shower algorithms.

We consider a splitting of initial state parton “a” with momentum pa. In general, we

denote the momentum of parton i before the splitting by pi and after the splitting by p̂i.

Before the splitting, there are m final state partons. The splitting creates a new final state

parton with momentum p̂m+1. Here “before” and “after” are in the sense of backward

evolution, so that the initial state parton with momentum p̂a evolves going forward in

physical time to the partons with momenta pa and p̂m+1. The two initial state partons

have momenta given by eq. (2.1), in which ηa and ηb are the respective momentum fractions

and pA and pB are the initial hadron momenta modified slightly so that they are lightlike,

with 2pA · pB = s.

It will prove convenient to define lightlike vectors na and nb by

na = ηa pA , nb = ηb pB . (A.11)

Then

2na · nb = ηaηbs . (A.12)

We also define dimensionless mass squared variables by

νa =
m(a)2

2na · nb
, ν̂a =

m(â)2

2na · nb
, νb =

m(b)2

2na · nb
, ν̂m+1 =

m(f̂m+1)2

2na · nb
. (A.13)

This is a somewhat more compact version of the definition in eq. (4.2). With this notation,

the incoming parton momenta are

pa = na + νa nb ,

pb = nb + νb na .
(A.14)

After the splitting, parton “b” remains the same,

p̂b = pb . (A.15)

However, parton “a” gets a new momentum,

p̂a =
η̂a

ηa
na +

ηa

η̂a
ν̂a nb . (A.16)

We define a momentum fraction for the splitting,

z =
ηa

η̂a
. (A.17)

Then

p̂a =
1

z
na + z ν̂a nb . (A.18)
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We define a virtuality variable y by

(p̂a − p̂m+1)2 −m(a)2 = −y 2na · nb . (A.19)

We can express this using p̂a · p̂m+1 as

2p̂a · p̂m+1 = [y + ν̂a + ν̂m+1 − νa] 2na · nb . (A.20)

It is well to note here that we will later use approximations based on y � 1, ν̂a � 1,

νa � 1, νb � 1, and ν̂m+1 � 1. However, we do not take y to be either much larger

or much smaller than the dimensionless mass variables. When shower evolution reaches a

stage near to heavy quark thresholds, these variables are comparable.

At this point, we need to remind ourselves about a subtle point that affects shower

kinematics. Before the splitting, we know pa. At the splitting, partonm+1 with momentum

p̂m+1 is emitted. Since p̂m+1 has four components but p̂2
m+1 = m(fm+1)2, the momentum

p̂m+1 can be described using three splitting variables. Knowing p̂m+1 should then determine

p̂a. However, we cannot simply set p̂a to pa + p̂m+1 because then p̂a will not be on-shell and

it will not have zero components transverse to the beam. Instead, we need to take a small

amount of momentum from elsewhere in the event and supply it to p̂a. The method chosen

in ref. [3] is to apply a Lorentz transformation to all of the final state partons: p̂i = Λpi
for i = 1, . . . ,m. For this to work, we need

(p̂a + pb − p̂m+1)2 = (pa + pb)2 . (A.21)

In one way of proceeding, this condition determines z in eq. (A.18) in terms of the three

free components of p̂m+1. We will follow a slightly different alternative as follows. We need

three splitting variables. Let one of them be z. Let the second be y. Let the third be the

azimuthal angle φ of p̂m+1 around the beam axis. Then eq. (A.21) determines p̂m+1 as a

function of y, z, and φ.

To proceed with this program, we write p̂m+1 as

p̂m+1 = xana + xbnb + k⊥ . (A.22)

Here the direction of k⊥ defines the azimuthal angle φ and the magnitude of k⊥ is given by

− k2
⊥ = [xaxb − ν̂m+1] 2na · nb . (A.23)

After a little bit of algebra, we find

xa =

[
1

z
− 1− y (1 + zνb)− (1− z) νaνb − zν̂m+1νb

]
×
[
1− z2ν̂aνb

]−1
,

xb = z

[
y + ν̂m+1 − νa + (1 + y) zν̂a + zν̂aνb (νa − zν̂a)

]
×
[
1− z2ν̂aνb

]−1
.

(A.24)

This decomposition of p̂m+1 is not exactly simple, but it is straightforward.
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In the case of gluon emission, f̂m+1 = g, the matrix element is singular in the limit

(1 − z) → 0. It is important in this case that there is a lower limit on (1 − z). When

f̂m+1 = g, we have ν̂m+1 = 0 and ν̂a = νa. Then the condition xa > 0 gives

(1− z) > y
z(1 + zνb)

1− zνaνb
, (A.25)

The exact condition is a little complicated, but with the approximations y � 1, νa � 1,

and νb � 1 it is simple:

(1− z) & y . (A.26)

Notice that we do not assume any relation between y, νa, and νb, only that all three are

small compared to 1.

We need the integration measure dζp, which is given in ref. [3] eq. (4.71):

dζp = (2π)−3d4p̂m+1 δ(p̂
2
m+1 −m2(f̂m+1))

α+ β/η2
a

α̂+ β̂/η̂2
a

, (A.27)

where α, β, α̂ and β̂ are given in ref. [3]. When we introduce the variables y, z, φ and

compute the jacobian to d4p̂m+1 δ(p̂
2
m+1 −m2(f̂m+1)), we find

dζp =
2na · nb

4(2π)2

1− νaνb

1− z2ν̂a νb
dy

dz

z

dφ

2π
. (A.28)

Notice that the mass dependent factor here is simply 1 in the limit νa � 1, ν̂a � 1, and

νb � 1.

A.3 Identifying the splitting function

With this information, we are prepared to identify splitting function gaâ in eq. (5.11). From

eq. (A.10), we have

λVaa({p, f}m, t) =

2na · nb

4(2π)2

∑
â

∫
dy

∫
dz

z

∫
dφ

2π

1− νaνb

1− z2ν̂a νb
Θ(ζp ∈ Γa({p}m, ζf))

× δ
(

log y − log

(
ηaµ

2
A

2na · nb
e−t
))

× nc(a)

nc(â)
z
f̃â/A(ηa/z, µ

2
Ae
−t)

f̃a/A(ηa, µ2
Ae
−t)

C(â, a)waa({f̂ , p̂}m+1) .

(A.29)

Here ζp stands for the splitting variables and ζp ∈ Γa means that the variables are within

their kinematic bounds. The bounds are determined by 0 < xa, 0 < xb, and νm+1 < xaxb.

The delta function that defines the shower time t serves to eliminate the integration over

y. Also, as we will see, waa does not depend on φ so we can immediately perform the

integration over φ. This gives

λVaa({p, f}m, t) =
2na · nb

4(2π)2

∑
â

∫
dz

1− νaνb

1− z2ν̂a νb
θ(ζp ∈ Γa({p}m, ζf))

× nc(a)

nc(â)

f̃â/A(ηa/z, µ
2
Ae
−t)

f̃a/A(ηa, µ2
Ae
−t)

C(â, a) y waa({f̂ , p̂}m+1) ,

(A.30)
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where we understand that

y =
ηaµ

2
A

2na · nb
e−t . (A.31)

This enables us to identify the function gaâ in eq. (5.11),

αs

2π

1

z
gaâ
(
z, µ2/z, {p, f}m

)
=

2na · nb

4(2π)2

1− νaνb

1− z2ν̂a νb
Θ(ζp ∈ Γa({p}m, ζf))

× nc(a)

nc(â)
C(â, a) y waa({f̂ , p̂}m+1) .

(A.32)

Here µ2 us the virtuality in the splitting, µ2 = y 2na · nb.

A.4 The splitting functions waa

Let us begin with (â, a, fm+1) = (q, q, g). The spin averaged splitting function is given in

eq. (2.26) of ref. [4],

waa =
4παs

2(na ·nb)2

1

(2 p̂a ·p̂m+1)2
Dµν(p̂m+1, Q̂)

× 1

4
Tr
[
[/̂pa +m(a)]γµ[ /P a +m(a)]/nb[/pa

+m(a)]/nb[ /P a +m(a)]γν
]
.

(A.33)

Here Pa = p̂a− p̂m+1 and Dµν is the polarization sum for the emitted gluon, using timelike

axial gauge with gauge fixing vector Q̂ = p̂a + pb:

Dµν(p̂m+1, Q̂) = −gµν +
p̂µm+1Q̂

ν + Q̂µp̂νm+1

p̂m+1 · Q̂
−
Q̂2p̂µm+1p̂

ν
m+1

(p̂m+1 · Q̂)2
. (A.34)

The genesis of this splitting function is described in ref. [3]; evidently it is quite directly

derived from the Feynman rules.

The function waa is a rather complicated function of y, z, νa and νb, with ν̂a = νa and

ν̂m+1 = 0. However it is simple in the collinear limit λc → 0 with y ∝ λc, νa ∝ λc, νb ∝ λc.

It is also simple in the soft limit, λs → 0 with y ∝ λs, (1 − z) ∝ λs, νa ∝ λs, νb ∝ λs. A

straightforward calculation gives the following form, which contains the leading behavior

in both limits:

yz waa ∼
8παs

2na ·nb

(
2

1− z
− (1 + z)− 2z

νa

y
− 2y

(1− z)2

)
. (A.35)

In the collinear limit, the first, second, and third terms in the parentheses are important.

In the soft limit, the first and fourth terms in the parentheses are important.

In eq. (A.32), there is also a theta function that gives the limits of integration over y

and z. This is, in the soft or collinear limits

Θ(ζp ∈ Γa({p}m, ζf)) ∼ Θ((1− z)νa < y < (1− z)) . (A.36)

The restriction (1− z)νa < y, which applies in the collinear limit, comes from xb > 0. The

restriction y < (1− z), which applies in the soft limit, comes from xa > 0.
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Let us turn to (â, a, fm+1) = (g, g, g). The spin averaged splitting function is obtained

by combining in eqs. (2.40), (2.45), (2.54), and (2.55) of ref. [4],

waa =
παs

2(p̂a ·p̂m+1)2

× vαβγ(p̂m+1,−p̂a, p̂a − p̂m+1)Dγν(p̂a − p̂m+1, nb)

× vα′β′γ′(p̂m+1,−p̂a, p̂a − p̂m+1)Dγ′ν′(p̂a − p̂m+1, nb)

×Dαα′(p̂m+1, Q̂)Dββ′(p̂a, Q̂)Dνν′(pa, Q̂) .

(A.37)

Here the three gluon vertex is

vαβγ(pa, pb, pc) = gαβ(pa − pb)γ + gβγ(pb − pc)α + gγα(pc − pa)β (A.38)

and Dµν(p, Q̂) is given in eq. (A.34). The numerator function Dγν(p̂a − p̂m+1;nl) projects

onto the physical polarization states for the off-shell gluon. It is given by eq. (A.34), where

now the gauge fixing vector is nb, the lightlike vector in the direction of hadron B, as in the

quark splitting function in eq. (A.33). The genesis of this splitting function is described in

ref. [3]; evidently it is quite directly derived from the Feynman rules.

The function waa is a rather complicated function of y, z, and νb. However it is simple

in the collinear limit λc → 0 with y ∝ λc, νb ∝ λc. It is also simple in the soft limit, λs → 0

with y ∝ λs, (1− z) ∝ λs, νb ∝ λs. A straightforward calculation gives the following form,

which contains the leading behavior in both limits:

yz waa ∼
16παs

2na ·nb

(
1

1− z
+

1

z
− 2 + z(1− z)− y

(1− z)2

)
. (A.39)

In the collinear limit, the first four terms in the parentheses are important. In the soft

limit, the first and fifth terms in the parentheses are important.

In eq. (A.32), there is also a theta function that gives the limits of integration over y

and z. This is, in the soft or collinear limits

Θ(ζp ∈ Γa({p}m, ζf)) = Θ(y < (1− z)) . (A.40)

The restriction y < (1− z), which applies in the soft limit, comes from xa > 0.

Let us turn next to (â, a, fm+1) = (g, q, q̄). The spin averaged splitting function,

derived from the definitions in ref. [3], has a form similar that in eq. (A.33). In terms of

dot products, it is given in eq. (A.3) of ref. [4],

waa =
4παs

p̂a ·p̂m+1

[
p̂a ·nb

pa ·nb
− (p̂a − p̂m+1)·nb

pa ·nb

p̂µm+1Dµν(p̂a, Q̂) p̂νm+1

p̂a ·p̂m+1

]
. (A.41)

The function waa is a fairly simple function of y, z, νa, and νb, with ν̂a = 0 and ν̂m+1 = νa.

It is even simpler in the collinear limit λc → 0 with y ∝ λc, νa ∝ λc, νb ∝ λc. It is not

more singular in the soft limit, λs → 0 with y ∝ λs, (1 − z) ∝ λs, νa ∝ λs, νb ∝ λs. A

straightforward calculation gives the following form, which contains the leading behavior

in both limits:

yz waa ∼
8παs

2na ·nb

(
1− 2z(1− z) + 2z

νa

y

)
. (A.42)
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We also need the theta function in eq. (A.32) that gives the limits of integration

over y and z. In the soft limit, there is a lower bound on (1 − z) that comes from the

requirement xa > 0: (1 − z) > y. However, this bound is not relevant because there is

no soft singularity in the case (â, a, fm+1) = (g, q, q̄). There is, however, a restriction that

arises from eq. (A.22). In order to have |k2
⊥| > 0, we need xaxb > νa. In the collinear limit,

this gives νa < y(1− z). Thus

Θ(ζp ∈ Γa({p}m, ζf)) ∼ Θ(νa < y(1− z)) . (A.43)

We turn finally to (â, a, fm+1) = (q, g, q). The spin averaged splitting function, derived

from the definitions in ref. [3], has a form similar that in eq. (A.33). In terms of dot

products, it is given in eq. (A.2) of ref. [4],

waa =
8παs

(p̂a − p̂m+1)2

[
−1 +

(
p̂a ·nb

(p̂a − p̂m+1)·nb

)2 2 p̂µm+1Dµν(pa, Q̂) p̂νm+1

(p̂a − p̂m+1)2

]
. (A.44)

The function waa is a fairly simple function of y, z, ν̂a, and νb, with νa = 0 and ν̂m+1 = ν̂a.

It is even simpler in the collinear limit λc → 0 with y ∝ λc, ν̂a ∝ λc, νb ∝ λc. It is not

more singular in the soft limit, λs → 0 with y ∝ λs, (1 − z) ∝ λs, ν̂a ∝ λs, νb ∝ λs. A

straightforward calculation gives the following form, which contains the leading behavior

in both limits:

yz waa ∼
8παs

2na ·nb

(
1 + (1− z)2

z
− 2z

ν̂a

y

)
. (A.45)

We again need the theta function in eq. (A.32) that gives the limits of integration

over y and z. In the soft limit, there is the bound (1 − z) > y. However, this bound is

not relevant because there is no soft singularity in the case (â, a, fm+1) = (q, g, q). There

is a restriction that arises from eq. (A.22): xaxb > ν̂a. In the collinear limit, this gives

z2ν̂a < y(1− z). Thus

Θ(ζp ∈ Γa({p}m, ζf)) ∼ Θ(z2ν̂a < y(1− z)) . (A.46)

A.5 The approximate splitting functions

We can now use eq. (A.32) to identify the functions gaâ in eq. (5.11). We are interested in

the leading y → 0 behavior, accounting for both the collinear limit and the soft limit. In

these limits, we have

αs

2π
gaâ
(
z, µ2/z, {p, f}m

)
=
nc(a)

nc(â)
C(â, a) Θ(ζp ∈ Γa({p}m, ζf))

× 2na · nb

4(2π)2
yz waa({f̂ , p̂}m+1) .

(A.47)

Here we use the limiting forms for waa and for the theta function that we worked out in

the previous section. Using our results, gaâ has the form

gaâ
(
z, µ2/z, {p, f}m

)
∼
[
Gaâ

(
z, µ2/z

)
− δaâ

2Ca y

(1− z)2

]
Θ(y < (1− z)) , (A.48)
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where

Gqq = CF

[
2

1− z
− (1 + z)− 2z

νa

y

]
Θ((1− z)νa < y) ,

Ggg = 2CA

[
1

1− z
+

1

z
− 2 + z(1− z)

]
,

Gqg = TR

[
1− 2z(1− z) + 2z

νa

y

]
Θ(νa < y(1− z)) ,

Ggq = CF

[
1 + (1− z)2

z
− 2z

ν̂a

y

]
Θ(z2ν̂a < y(1− z)) .

(A.49)

These are the results used in eq. (5.12) for the soft limit and eq. (7.1) for the collinear limit.
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