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Antimicrobial nodule-specific 
cysteine-rich peptides disturb the integrity 
of bacterial outer and inner membranes 
and cause loss of membrane potential
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Abstract 

Background: Certain legume plants produce a plethora of AMP-like peptides in their symbiotic cells. The cationic 
subgroup of the nodule-specific cysteine-rich (NCR) peptides has potent antimicrobial activity against gram-negative 
and gram-positive bacteria as well as unicellular and filamentous fungi.

Findings: It was shown by scanning and atomic force microscopies that the cationic peptides NCR335, NCR247 and 
Polymyxin B (PMB) affect differentially on the surfaces of Sinorhizobium meliloti bacteria. Similarly to PMB, both NCR 
peptides caused damages of the outer and inner membranes but at different extent and resulted in the loss of mem-
brane potential that could be the primary reason of their antimicrobial activity.

Conclusions: The primary reason for bacterial cell death upon treatment with cationic NCR peptides is the loss of 
membrane potential.
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Findings
One of the greatest challenges to fight bacterial infections 
in the medical practice is to find an antibiotic that can 
eliminate multidrug resistant pathogens [1]. Therefore, 
identification of novel antimicrobial agents that have dif-
ferent bacterial targets from those of classical antibiotics 
is necessary.

Among the potential antibiotic candidates are the anti-
microbial peptides (AMPs) that are small, mostly cationic 
and ribosomally synthesized molecules produced by all 
living organisms [2]. AMPs can have antibacterial and 
antifungal activities. Some of them kill only a few species 
while others are active against both gram-negative and 
gram-positive bacteria as well as fungi [2]. Many AMPs 
with net cationic charge and amphipathic nature interact 

with the negatively charged bacterial membranes [3–5] 
leading to cell lysis caused by membrane disruption. 
Alternatively, AMPs may enter cells and interact with 
their intracellular targets interfering with DNA, RNA, 
protein or cell wall synthesis [6–9].

Extremely rich sources of AMPs are the plants where 
up to several hundreds of peptide-coding genes can be 
expressed in specific organs constitutively or induced 
locally or systematically by the attack of pathogenic 
microbes. Interestingly, the AMP-like nodule-specific 
cysteine-rich (NCR) peptides play important role in the 
mutualistic nitrogen-fixing symbiosis of certain legu-
minous plants with rhizobia resulting in the formation 
of root nodules where plant cells contain thousands of 
intracellular endosymbionts. In Medicago truncatula 
nodule cells infected with Sinorhizobium meliloti, hun-
dreds of NCR peptides are produced which direct irre-
versible differentiation of the bacteria into large polyploid 
nitrogen-fixing bacteroids [10–13]. Over 600 potential 
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NCR peptides are predicted from the M. truncatula 
genome sequence [14] and almost 150 different NCR 
peptides have been detected in isolated bacteroids by 
mass spectrometry [15]. NCRs are characterized by a rel-
atively conserved secretory signal peptide (SP) and highly 
variable amino acid sequence and isoelectric point of the 
mature peptide where positions of four or six cysteines 
are conserved. The structure of NCRs resembles that of 
defensins, the most abundant plant innate immunity 
effectors, that have also a SP and a variable, usually cati-
onic mature peptide, however with eight cysteines [7]. 
Similarly to defensins, synthetic cationic NCR peptides 
with pI > 9 have antimicrobial activities while neutral and 
anionic ones, such as NCR001, are inactive. For example, 
NCR247 (pI = 10.15) and NCR335 (pI = 11.22) are both 
effective against gram-negative and gram-positive bac-
teria [16] as well as fungi [17], however their spectrum 
of activity is not identical (see [1] and Additional file 1) 
suggesting that in addition to the net positive charge, the 
amino acid composition and sequence contribute also to 
their activities. Investigation of NCR247 and NCR335 
treated Escherichia coli cells by atomic force microscopy 
(AFM) revealed increased surface roughness suggesting 
the damage of the cell envelope [18].

In this study, we investigated how NCR247 and 
NCR335 affect the cell surface as well as the outer and 
inner membranes (OM and IM respectively) of the 
α-Proteobacterium S. meliloti, the natural target of the 
peptides. We compared the effect of these NCR pep-
tides to that of Polymyxin B (PMB), which alters bacte-
rial outer membrane permeability and then disrupts the 
cytoplasmic membrane of gram-negative bacteria [19]. 
Moreover, we used also the negatively charged peptide, 
NCR001 as a control possessing no antimicrobial activity. 
NCR247 and NCR335 inhibited the growth of rhizobia 
at 25 and 12 µg/ml (Minimal Inhibitory Concentration), 
respectively, in broth microdilution assays, and were able 
to decrease the number of living cells by two and four 
orders of magnitude, respectively, when they were used 
at 50 µg/ml concentration in phosphate buffer for three 
hours. In other—including clinically relevant—bacteria, 
the minimal bactericid concentration of the peptides 
varied between 20 and 125  µg/ml (Additional file  1). 
High-resolution AFM images of immobilized S. meliloti 
cells after treatment with 25 µg/ml of NCR247 revealed 
no change in the average height (~600  nm) of bacteria, 
while a clear difference was observed in the roughness 
of the cell surface (Fig.  1a–d). S. meliloti has a smooth 
curved surface (Fig.  1a, b), however, addition of the 
NCR247 peptide for 1 h increased the surface roughness 
(Fig.  1c, d) while no surface alterations occurred in the 
mock- and NCR001-treated cells. Prolonging the treat-
ment for 3 h caused no further changes, cells treated for 

1 and 3 h were alike. These observations were in line with 
reported surface corrugation of the E. coli cell envelope 
by NCR247 [18]. Similar study on the NCR335 treated S. 
meliloti cultures could not be performed as the bacteria 
lost their attachment to the poly-l-lysine coated musco-
vite mica surface.

The differences in the effect of the two peptides on the 
bacterial cell envelop were further observed by scanning 
electron microscopy (SEM) (Fig.  1e–l). The treatment 
with the NCR247 peptide caused cell aggregation and 
the formation of large, network-like creations (Fig.  1g, 
h), while cells treated with NCR335 remained separated 
or formed small aggregates (Fig.  1i, j). Higher magni-
fications revealed that the NCR247-treated cells are 
connected with thread-like structures that seem to be 
formed by materials released from destabilized cell sur-
faces (Fig.  1h). In contrast, the majority of the NCR335 
treated cells were collapsed and emptied, while from the 
other cells vesicular structures were released that might 
indicate the outflow of the cell content before collapsing 
of the cells (Fig. 1j). PMB provoked also the aggregation 
of S. meliloti cells but networks were not formed and the 
middle part of bacteria showed swelling (Fig. 1k–l).

The changes in the surface and the shape of the bacte-
ria observed by the microscopic studies may have been 
triggered by the effects of the peptides on the bacterial 
membranes, however, it remained unclear whether and 
how NCR247 and NCR335 affect the integrity and per-
meability of OM and IM. The integrity of the OM can be 
tested with the hydrophobic 1-N-phenylnaphthylamine 
(NPN) probe which cannot enter the intact OM but can 
pass the destabilized one and by entering the phospho-
lipid layer gives rise to strong fluorescence [20]. PMB as 
expected but also NCR335 and to lesser extent NCR247 
treatment of S. meliloti resulted in NPN fluorescence 
(Fig. 2a) indicating the damage of the OM by these pep-
tides. Yet, the extent and the kinetics of OM damage were 
different and dependent on the peptide concentrations 
(Additional file 2). PMB provoked the most pronounced 
effect, however with a slower kinetics at lower concentra-
tions. NCR335 was equally efficient at 50, 25 and 12.5 µg/
ml but provoked a weaker OM permeabilization than 
PMB with the same or comparable kinetics. NCR247 
caused only a mild damage at 50 µg/ml and even weaker 
at 25  µg/ml and had no effect at lower concentrations. 
NCR001 (pI = 5.01) did not increase the OM permeabil-
ity suggesting that binding of cationic NCRs to a nega-
tively charged site in the lipopolysaccharide layer could 
be responsible for the OM permeability.

To investigate the possible damage to the IM we took 
advantage of the fact that the IM is not permeable for 
ortho-nitrophenyl-β-galactoside (ONPG), the artificial 
substrate of the cytoplasmic β-galactosidase enzyme, 
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Fig. 1 The effect of peptides on the morphology of S. meliloti. Images (a, b) and height measurement data (c, d) obtained by atomic force micros-
copy before (a, c) and after (b, d) NCR247 treatment reveal surface roughness caused by the peptide. Scanning electron micrographs of untreated 
cultures (e, f) as well as cultures treated with NCR247 (g, h), NCR335 (i, j) or PMB (k, l) at 25 µg/ml for 30 min show cell aggregation (g, k) where cells 
are connected with thread-like structures (h) or have swollen middle part (l) indicated by arrows
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thus, the enzyme activity can be measured only after the 
disruption of the membrane [21]. Treatment of S. meliloti 
cells expressing constitutively the lacZ gene with the 
cationic peptides resulted in measurable β-galactosidase 
activity (Fig.  2b) that was 2–20  % of the total enzyme 
activity obtained after disrupting the cells with SDS and 
chloroform. In contrast to the OM, the IM disruption 
was more effective by NCR335 than PMB even when 
PMB was used in ~sixfold higher molar concentration. 
The IM damage was further confirmed by measuring the 
membrane potential of the peptide treated cells using the 
fluorescent membrane-potential indicator dye, DiOC2(3), 
provided in the BacLight™ Bacterial Membrane Poten-
tial Kit (Thermo Fisher Scientific) (Fig. 2c) [22]. Likewise 
carbonyl cyanide m-chlorophenyl hydrazone (CCCP), 
a known protonophore, PMB, NCR247 and NCR335 
caused the loss of membrane potential that was not 
observed when the cells were treated by NCR001.

To conclude, we have shown that the cationic symbi-
otic peptides, NCR247 and NCR335 destabilize and dis-
rupt the integrity of the cell envelope acting both on the 
outer and inner membranes of the bacteria, as they dis-
rupt the cytoplasmic membrane of fungi, too [17]. Their 
effects are similar but not identical to each other and to 
PMB. Their antibacterial properties are due to the loss 
of membrane potential leading to the inhibition of cellu-
lar processes and cell death, however, we cannot exclude 
that the peptides have intracellular targets, as it was 
shown for NCR247 [23]. Their broad-spectrum antimi-
crobial property [16, 17] and low cytotoxicity [17] qualify 
cationic NCRs as potential therapeutic compounds, how-
ever, their use may be limited as systemic agents because 
of the inhibition of their activity by bivalent cations and 
serum [12, 16, 17].
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Additional file 2. The concentration dependence of the hydrophobic 
1-N-phenylnaphthylamine (NPN) probe. The outer membrane permeabil-
ity measured (A) at 50 µg/ml; (B) at 25 µg/ml; (C) at 12.5 µg/ml; and (D) at 
6.25 µg/ml peptide concentrations.

Additional file 3. Description of the methods used.

Fig. 2 The effect of NCR peptides and PMB on membrane integrity 
of S. meliloti. a Outer membrane permeability measured by the 
fluorescence of NPN at 50 µg/ml (NCR335: 6.4 µM; NCR247: 16.6 µM; 
NCR001: 9.5 µM) peptide concentrations, and at 12.5 (9 µM) and 
50 µg/ml (36 µM) for PMB. b Inner membrane permeability measured 
by β-galactosidase activity at 50 µg/ml peptide concentrations. c 
Membrane potential of the S. meliloti cells measured by the red/green 
fluorescence ration of DiOC2(3). This dye “exhibits green fluorescence 
in low concentration in all bacterial cells, however, it accumulates and 
self-associates in cells that are maintaining a membrane potential 
resulting in the fluorescence emission to shift from green to red” 
(Thermo Fisher Scientific)
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