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Abstract This paper studies the morning commute problem under a flat peak-period
toll (coarse toll) within the context of heterogeneous commuters. All the possible
cumulative departure curves resulting from different choices of toll level and
charging period are examined. The optimal toll schemes are then derived from
minimizing the total travel cost of all commuters, excluding toll cost. We prove that
at the optimum there will be no queue or capacity waste at the bottleneck at both the
starting and ending points of the charging period for the type of Value-Of-Time
(VOT) distribution considered in the paper. Moreover, the optimal coarse toll
scheme is pareto-improving. Different from the homogeneous case, which can be
regarded as a special case of the heterogeneous case, price discrimination occurs
when commuters have different VOT. The optimal solution depends on the units in
which the system cost is measured and we find that commuters in the middle pack of
the VOT distribution are worse off by higher toll charges if the system cost is
measured in money instead of time. A numerical example is provided at the end for
demonstration.

Keywords Morning commute - Nonidentical commuters - Heterogeneity -
Value-of-time - Coarse toll

1 Introduction

The morning commute problem has been widely studied since Vickrey published his
classical paper in the late 1960’s (Vickrey 1969). Equipped with a simple
deterministic queuing model now known as the bottleneck or point queue model
(e.g., Nie and Zhang 2005), Vickrey successfully explained the morning rush hour
congestion by defining an equilibrium based on commuters’ departure time
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decisions: commuters arriving at work too early or too late will experience more
schedule delay penalty, yet those arriving closer to the work starting time have to
spend more time waiting in the queue. In the next several decades, Vickrey’s
bottleneck model was broadly extended by assuming different work starting times
(e.g., Daganzo 1985), elastic demand (e.g., Amott et al. 1993), heterogeneous
commuters, and so on. Readers can refer to Ramadurai et al.’s paper (2010) for a
comprehensive literature review related to this subject.

The previous studies, however, assume a continuous strategy space of commuters’
departure time choices, which in real life is discrete in nature. This discreteness may
come from the discrete strategy space (Levinson 2005) or the discrete change of the
travel cost, e.g. a multi-step coarse toll during the rush hour (Arnott et al. 1990b; Laih
1994). Although in theory an optimal continuously changing toll scheme can totally
eliminate the queuing delay at the bottleneck (Vickrey 1969) and time-dependent fine
toll has been widely utilized to optimize the dynamic networks in theoretical studies
(Wie and Tobin 1998; Lin et al. 2010), it can hardly be implemented in reality, not
only because of the difficulty in collecting all the information required to derive the
optimal toll rate, but the confusion it may cause to the commuters with continuously
changing toll rate. In practice the coarse toll is more widely adopted.

The peak period coarse toll problem on a single bottleneck, where a flat toll is
charged during part of the morning commuting period, has been studied in the literature
in the context of homogeneous commuters. For the optimal toll charge and charging
period, Arnott et al. (1990b) pointed out that the queue at the bottleneck at the starting
and ending points of the charging period should be eliminated. Based on this
important property, the optimal toll level, optimal starting and ending times of the
tolling period, as well as the total system cost can all be easily calculated. The optimal
toll level was found to be independent of the Value-Of-Time (VOT) attached to
queuing delay. However, they did not provide details of how the queuing profile
changes with respect to toll level and the choices of the starting and ending times of
the tolling period, neither did they consider commuter heterogeneity. According to
their numerical example, the one-step coarse toll provides slightly less than half of the
efficiency of the fine (first-best) toll. Later they extended these results to a one-to-one,
bi-bottleneck parallel network (Amott et al. 1990a). Bernstein and El sanhouri (1994)
corrected an error in that paper by announcing that if the demands are inter-dependent,
the optimal toll level should depend on all the three VOT parameters attached to
queuing, schedule-early and schedule-late delays; Laih (1994) revisited the single-
bottleneck coarse toll problem by providing an easier way to calculate the optimal
coarse toll without discussing the explicit evolution of the queue. Unfortunately, the
methodology proposed in that paper is merely an approximation of the precise
solution. His analysis based on the assumption that the flat toll will not alter the trip
price of each commuter, which is generally not true. In fact, from our analysis we can
see that an arbitrarily high coarse toll may induce a period that no one departs from
home or even a period that no one passes the bottleneck. As a result, the coarse toll
does alter the trip cost of each commuter. Especially, when the coarse toll scheme is
optimized, everyone benefits, even if they have different values of time. Therefore,
Laih’s conclusion that for a one-step toll scheme, “the optimal toll level is half of the
maximum optimal time-varying toll and can at most eliminate half of the total queuing
time” no longer holds. Recently, Knockaert et al. (2009) studied the single step coarse
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toll on a single bottleneck with inelastic demand. Different from our study, which
assumes an anonymous coarse toll scheme for heterogeneous commuters, they
investigated the efficiency improvement by differentiating the level and timing of the
coarse toll across two groups of travelers, who still have the same VOT.

The commuter heterogeneity has been addressed differently in the literature due to
various assumptions made. One way to classify these studies is based on if their models
are discrete (there are finite classes of commuters) or continuous (the number of the
classes is infinite). Most previous studies assume finite multi-class users: Van der Zijpp
and Koolstra (2002) provided a generic algorithm that solves the departure time choice
equilibrium given heterogeneous departure time preferences, arbitrary origin-bound and
destination-bound rescheduling cost functions, and arbitrary queuing cost functions.
Ramadurai et al. (2010) developed a linear complementarity formulation for solving the
single bottleneck problem in discrete time and user classes. Lindsey (2004) investigated
the existence and uniqueness of departure-time user equilibrium in the bottleneck
model with multi-user classes. Li et al. (2008) studied a model combining the route,
departure time and parking location choices. In that model, they introduced multiple
groups of travelers, with each group having its own unit costs of queuing delay,
arriving early and late penalties. Unlike those discrete models, Newell (1987) obtained
certain analytical results from assuming a continuously distributed VOT. The queuing
pattern was derived for a certain class of cost models and it was shown that a stable
commuting pattern exists and is dictated by a certain fraction of travelers.

Existing models also differ by their definitions of heterogeneity: Newell (1987)
defined “nonidentical” as different ratios of queuing time cost and schedule delay cost
for each person. Since tolling was not considered, the departure time choice is only
dependent on the distribution of this ratio and has nothing to do with the absolute
VOT. Amott et al. (1988) analyzed the departure time decisions of morning
commuters who differ in three different ways: travel time and schedule delay costs,
relative costs of schedule-early and late delay and work starting time. Huang (2000)
dealt with pricing and modal split in a competitive mass transit/highway system with
two groups of commuters that differ in their disutility from travel time, schedule-early
delay and transit crowding. Instead of considering a coarse toll during the peak period
on a bottleneck with fixed demand, most of the studies focus on a uniform toll
throughout the whole rush hour, which makes the problem much easier to solve. Since
a uniform toll covering the whole time period will not influence the departure time
choices of the commuters when the number of commuters is fixed, people either
assume an elastic demand (Braid 1989) or a parallel link or travel mode competing for
the demand with the bottleneck (Tabuchi 1993; Braid 1996, Danielis and Marcucci
2002). The VI formulation proposed by Ramadurai et al. (2010) is capable of tackling
a general assumption of heterogeneity among commuters, who have different values
attached to not only queuing delay but schedule-early and schedule-late delays.
However, they didn’t examine the optimization problem with pricing.

In this paper we analytically solve the optimal one-step coarse toll scheme for a
single bottleneck with nonidentical commuters. The study can be considered as an
extension to Arnott et al.’s work (1990b) by involving heterogeneity of commuters."
To reasonably simplify the problem and obtain insightful analytical results, we

"It can be shown that Arnott et al.’s model is a special case of our heterogeneous model.

@ Springer



346 F. Xiao et al.

introduce just one random variable to describe the heterogeneity, which is dependent
on the income level of the commuters. Different from the methodology used in
Arnott et al. (1990b), we formulate a nonlinear optimization problem to solve the
resulting equilibrium under a general setting of VOT distribution. We show how the
departure profile evolves with respect to different choices of toll level and tolling
period, and the changes in each individual commuter’s cost after the coarse toll was
applied, which have not been explicitly provided in the previous studies. By
introducing the heterogeneity, we are also able to examine how the optimal departure
pattern changes when the toll operator makes tradeoffs between cost and time and
how the coarse toll benefits the commuters with different income levels.

2 No-toll equilibrium in the morning commute

In this section we first give a description for the no-toll equilibrium (NTE) at a single
bottleneck during the morning rush hour. Although these results are well known, we
include them here for completeness because it introduces the necessary concepts and
problem setting for our coarse toll problem. In all subsequent discussions, we assume all
the morning commuters have the same work starting time, /. The cumulative number
of arrivals at the bottleneck by time 7 is 4(f) and the waiting time in queue for any
commuter who passes the bottleneck at time ¢ is w(¢). The total number of people
commuting during the morning peak is N and the passing rate (bottleneck capacity) at
the bottleneck is s. Without loss of generality, we assume that there is no travel time
cost other than the queuing time cost at the bottleneck. Thus a commuter arrives at the
bottleneck as soon as s/he departs from home and arrives at work immediately after
leaving the bottleneck. First, the arrival rate at the bottleneck exceeds the passing rate
and a queue builds up from time 7,; After the arrival rate goes down below the
bottleneck capacity at point B, the queue dissipates linearly till it disappears at time .
From the definition, equilibrium is obtained when no individual has an incentive to
change his/her departure time. The cumulative departure curve (which in the rest of
this paper we briefly call “the profile”), is defined as the cumulative departures from
home as a function of time. The profile at NTE is drawn in Fig. 1.

We assume « is the unit monetary value attached to queuing delay time, 3 is the
unit monetary value of schedule-early delay and « is the unit monetary value of
schedule-late delay. In accordance with empirical evidences and for the existence and
uniqueness of the equilibrium, we assume the relation v>a>(3 holds. Here to locate the
profile accurately, we provide each endpoint of the departure curve a coordinate. The
queue starting time 7, is set to be the origin, i.e. #,=0. As described in Vickrey’s paper
(1969), at NTE the slope of OB is equal to as/(e — B) and the slope of BC is equal to
as/(a + y). Thus we can analytically solve the coordinates of point B
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Fig. 1 Profile of NTE

The work starting time " is equal to the x-axis coordinate of the point on line OC
(the queue discharge curve) which has y; as the y-axis coordinate. Thus it’s not hard
to obtain that

f=N-_7 =2 (3)

The total travel cost of an individual who arrives at time ¢ comprises two parts, the
queuing delay cost and the schedule delay cost. A general expression of an
individual’s travel cost when s/he passes the bottleneck at time ¢ is

C(t) = aw(t) + max (,B(t* - t) , y(t - t*)) (4)

If commuters are identical, at NTE every commuter will incur the same travel
cost, which is equal to the schedule-early delay ¢* of the first individual who
experiences no queuing delay. Thus from Eq. (3), each commuter’s travel cost at
NTE can be calculated as

+ Py N
C=pt =——— 5
b=l 5)
And the total system cost at NTE is
2
7o Br N (6)
y+B s

In the real world, commuters differ in their VOT. The income level of an
individual largely determines how much the individual’s VOT, a, could be, yet the
relative value /3 depends mainly on how flexible one’s work schedule is. The
relationship between income level and the flexibility of the job may vary: sometimes
highly paid white-collar workers have more flexible work hours compared with
blue-collar workers; yet sometimes due to the job’s specific nature, high income
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commuters may still have rigid work schedules, while low income commuters could
have flexible work schedules. Nevertheless, it’s still reasonable to believe that people
who have a higher valuation of schedule delay will generally have a higher valuation
of the time spent waiting at the bottleneck. In the absence of adequate empirical
evidence, it’s difficult to establish a certain relationship between « and o/f. To
reasonably simplify the problem, we only focus on the heterogeneity in the valuation
of time causing by the income level, but assume that everyone has the same work
flexibility and the ratio between the unit penalties for the schedule-early delay and
schedule-late delay is the same for all the commuters, i.e. o/(F=constant, (/7=
constant, and « follows a distribution

F(w) =Pr{o < w} (7)
Then the cost of the vth person becomes

Cv,1) = a(v) (w(t) + max (n1 (t* - t) 1 (r - t))) (8)

where fg=amn;, y=amn,. From our assumption, it holds that 0<n;<1<mn,. For
convenience, we arrange the commuters in increasing order of a: a(v) gives the vth
person’s value of queuing delay and o(v) is monotone and increasing in v. It’s worth
noting that without a toll, based on our assumption that o/3 and (/7 are constant for
all the commuters, the order in which they depart in the equilibrium is indeterminate.

An optimal time-dependent toll can be found to totally eliminate the queuing delay in
the system. Under this optimal toll, the departure is evenly distributed throughout the
time interval (tq, tq/), at the rate of the bottleneck capacity, s. Arnott et al. (1994)
observed that at system optimum, the order of the commuters is dependent on the
absolute value of (3 and ~. Under our assumption of heterogeneity, 5 and  are both
proportional to . Thus in our case, commuters with higher value of o will depart
closer to the work starting time ¢ under the optimal time-dependent toll.

3 Departure profiles under coarse toll

In reality it is impractical to implement a continuously changing optimal toll because
of the difficulty in collecting all the information needed for deriving the toll, and the
confusion it could cause the public with its too frequent toll rate changes. On the
other hand, an approximate form to such a toll, which divides the peak periods into
several tolling intervals and a flat toll is charged in each tolling interval, can be
implemented with ease (Two examples are the multi-step tolling scheme on the State
Route 91 express lane in Orange County in California, U.S.A and the Stockholm
congestion charge in Sweden). In this paper, we deal with a special case of such
coarse tolls, one with only a single toll rate and tolling period. The solution of this
coarse toll problem provides insights to more refined coarse tolls with multiple toll
rates and tolling periods.

A coarse toll is defined to be a flat charge p to the commuters passing the bottleneck
within a time interval |7, 7~ |(Arnott et al. 1990b). Since the coarse toll is defined as a
rush hour tolling scheme, it’s reasonable to assume that the toll is applied at the time
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after the queue forms and before work starts, 1+ € [tq, t*] and lifted after work starts,
€ [t*,tq/] Thus every selection of the three parameters (p,¢",¢”) represents a
tolling pattern, which also determines a unique departure profile.

After a coarse toll is imposed, only those with high VOT will travel within
[#7,¢7]. If we assume that the V#h commuter is the commuter with the lowest VOT
among those traveling within the tolling period, then this commuter will have the
same VOT «(v) with the highest VOT among those people who travels outside
[#t,£7], i.e. there’s no difference to the Vih commuter whether he/she chooses to
travel inside or outside. The proof is straightforward: given a toll rate p, we assume
that at the equilibrium the difference of delay costs between traveling inside and
outside, which is measured by generalized queuing time (since we assume [,y are
both proportional to a, we can translate the schedule delay into equivalent queuing
delay), is At. Then the Vth commuter, where V is given by At =p/a(V), will
experience the same travel cost no matter traveling inside or outside [#7, 7. For any
commuter who has a VOT a(v) < a(V), s/he will stay outside because the cost of
traveling outside is lower than traveling inside, reversely.

Undoubtedly, compared with the no-toll case queue lengths at the bottleneck
within time interval ¢, 77] will be reduced after a flat toll is charged. Some of the
commuters who travel inside [¢7,¢] previously with low VOT will be forced to
travel outside of it, either before ¢ or after ¢, yet the profile within [¢,¢7] is still
similar with the original profile in NTE, because a uniform toll has no effect on the
departure time choices. For those commuters who travel outside [¢*, 7], they also
follow the same departure rate as in NTE. However, it’s not clear what the profile
will be like around the starting and ending points of the tolling period.

3.1 The profile without capacity waste

When the toll is relatively low, after some initial departures there could be a while no
one departs before #*, but commuters pass the bottleneck all the time (the capacity of
the bottleneck is fully utilized), as shown in Fig. 2.

In this figure, let B denote the last departure leaving the bottleneck before tolling, C
the first departure after B, D the tolling start time, £ the departure who arrives at work
on time, F the last tolled departure and G the last departure. From the definition of
equilibrium, the last person who passes the bottleneck before toll starts should have
the same cost as the first person who pays the toll. Thus the commuter departing at
point B experiences a longer queuing time of BD than the commuter departing at point
C who experiences a queuing time CD and an additional toll p. s/(1 —n,) and
s/(1 4+ m,) represent respectively the departure rates for the commuters who
experience queuing delay and schedule delay. We define m = BC — BD to indicate
if the capacity of the bottleneck is fully used during the whole commuting period.
Here m stands for the difference between the departure gap before the tolling period
and the queuing delay of the last commuter who passes the bottleneck before toll. If
m<0, which is the case here, the capacity is not wasted; if m>0, there is capacity
waste, which will be discussed later. It’s not hard to obtain the relationship that

BC =y /s +m —xi. 9)
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Fig. 2 Profile 1 without capacity waste

And because the two commuters departing at B and C experience the same
schedule-early delay, the toll should be equal to the difference between the queuing
delay cost, i.e.

p=a(V)BC (10)

Similarly, at the time when the toll is lifted, the last person who pays the toll
should have the same travel cost as the first person who passes the bottleneck after
the toll is lifted. Under the equilibrium, the rest of commuters will depart together
immediately after the toll is lifted. Otherwise, the commuter who passes the
bottleneck later will experience both more queuing delay and schedule delay, which
does not satisfy the equilibrium condition. Since the position in the queue for these
commuters is random, everyone has the same expectation of queuing and schedule-
late delays. The expected total travel cost is p units higher than the total cost of the
commuters traveling inside the tolling period. From 0, we observe that the expected
travel cost for passing the bottleneck after # should be equal to that of the middle
commuter who arrives simultaneously at the bottleneck after the toll is lifted. It can
be easily calculated that the size of the number of commuters passing the bottleneck
after the tolling period is

FG = 25p/(a(V)(1+m)) (1)
3.2 Profiles with capacity waste
When the toll is set too high or charging time interval is over-stretched, there could
be a while that no one travels through the bottleneck, which we refer to as “capacity

waste”. As we will show in the following, the capacity waste could happen not only
at the starting point but also the ending point of the toll.
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3.2.1 Capacity waste at the starting point of the toll

This profile represents the situation when there is a while that no one travels through
the bottleneck immediately after the toll is imposed, which could be caused by either
a high toll level or a 7" far from ¢~ or both (See Fig. 3).

Now at 7, the last person who passes the bottleneck without paying the toll
experiences a longer schedule-early delay than the first person who pays the toll. In
this case, Eq. (9) still holds, except that m>0. There will be an early time interval in
the tolling period that no one departs from home until a commuter’s schedule-early
delay decreases sufficiently to compensate for the toll charge. Thus in this profile,
the capacity waste exists during the tolling period [¢T,#7]. The toll should be equal to
the sum of the differences between the queuing and schedule-early delay costs, i.e.

p =a(V)(BD + n,CD) (12)

3.2.2 Capacity waste at the ending point of the toll

Similar with the case of capacity waste at the starting point of the toll, when toll is
too high or ¢ is far away from ¢, there could also be capacity waste at the ending
point of the toll (See Fig. 4).

3.2.3 Other profiles

Obviously, there could be another possible profile which combines the two profiles
with capacity wastes in Figs. 3 and 4, e.g. capacity waste exists at both the starting
and the ending points of the toll (as shown in Fig. 5).

And for the extreme situation that when the toll is sufficiently high, there could
even be a while around 7" that no one will pass the bottleneck (as shown in Fig. 6).
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4 The optimal coarse toll scheme

As we have discussed in Section 3, there could be totally five profiles under different
settings of coarse toll. In this section, we want to find the optimal profile through

solving a series of optimization problems. For the convenience of discussion, we
first define several quantities used later in this section

A = /OVa(v)dv (13)

Cumulative departures & arrivals

NS :
1,(0) t ror by
Fig. 5 Profile 4 with capacity waste at both " and ¢~
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Fig. 6 Extreme profile 5 when no one passes the bottleneck between ¢ and ¢~

v
~

Ay = /N a(v)dv (14)

Vv

K:A1+A2:/Na(v)dv (15)
0

where V' is the number of the commuters who travel outside the charging time
interval [, 7], which, in Figs. 2, 3, 4, equals to y; + FG.

4.1 The optimal coarse toll scheme for profile 1

When the toll level and tolling period are such that profile 1 results (See Fig. 2), one
can find the optimal toll scheme by minimizing the system cost, 7C (which takes
into consideration both delay cost and toll revenue), subject to the constraints that
are defined from this profile. With 4,4, and K introduced earlier, the resulting
nonlinear constrained optimization problem is:

my2

A A
min 7C = 1224, 4 (2 — )4, Il e i BT (16)
V.x2. 2 N N S
s.t.
Y1 S
L ° 17
xi l—m (17)
Ww—wnm S

—L-m 1-n
___2p
N a(V)(14+m,) 2 — S (19)
X3 — X2 I+m
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Y1 P
21 = — 20
s T TRELm (20)
m<0 (21)
2sp
N a(V)(1+n,) > (22)
X3 -
25,
P + (23)

“ a1+ m)

The objective function (16) calculates the total system cost excluding toll
revenue, which is equal to the total delay cost (including queuing delay and
schedule delay). The first term in the objective function calculates the total delay
cost of the commuters traveling outside the charging time interval by looking at
the first commuter passing the bottleneck with only schedule delay; while the
second term calculates the total delay cost of the commuter traveling inside the
interval by looking at the commuter who arrives at work on time, experiencing
only queuing delay. Constraints (17), (18) and (19) guarantee the departure rates
satisfying the equilibrium. Constraint (20) is from Egs. (9) and (10). Constraints
(22) ensures that the queue at time ¢ is greater than or equal to 0. In other words,
constraints (17)—(22) ensures that the toll scheme produces a profile consistent
with the one shown in Fig. 2. Constraint (23) states that the total number of
commuters whose VOT are greater than «(}) should be equal to the number of
commuters traveling within the time interval [¢7,77]. From some straightforward
algebraic manipulations, the above optimization problem can be simplified (See
Appendix A for details)

: _ (4m)mK p N _ 2p B
pin 7C ==, (a(V)(l—m + (? G(V)(an)) T x3) (24)
(w5 —4) 7
S.t.
N 2
L (25)
s a(V)(1+m)
142 4
(Z(V) 1+ m N
m<0 (27)

Obviously, the simplified problem still has three variables (x3, V', p)to be solved.
From the first-order optimality conditions one can show that constraint (25) should
be binding, which indicates that the queue at time ¢ is equal to O at the optimum.
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Therefore the problem can be further simplified by removing constraints (25)
and (26)

KN 1 K

min TC — mn ( +1m Ay — m )m
V.m (m +m)s L+2n+m, m +m (28)

1+mn, mK \V

+m 41— —

L+2n +m, m+m/) s

s.t.

m <0 (29)

We call this Problem L.
4.2 The optimal coarse toll scheme for profile 2

Under profile 2 (See Fig. 3) we cannot simply tell if the system cost is reduced by
moving ¢ to the right: on one hand, the capacity waste and the total delay cost of
each individual are reduced; yet on the other hand, the area of the triangle OBD is
increased, which indicates less toll revenue and more deadweight loss of queuing
delay. However, one can find the optimal toll scheme for this profile by solving a
nonlinear optimization problem

min 7C = n, ()2 + m)A1 + ()2 +m— xz)Az (30)
V.x2,2 S S
S.t. y s
1
s 31
xp l—=mn G1)
2 =N s
X—"2-—m 1-n (32)
N—__ 2
a(im) — Y2 _ S (33)
X3 — X 1+mn,
N1 P
s RV 34
s TR =00 (34)
m>0 (35)
N — 2sp
= a(N)(+m) > (36)
X3 —m
25
V= P + ¥ (37)

a(V)(1 +m)
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The total system cost is calculated by summing up the total delay costs of the
commuters passing the bottleneck within and outside the tolling interval. Constraint
(37) ensures that the total number of commuters whose VOT are greater than (V)
should be equal to the number of commuters traveling within the time interval
[#7,¢7]. The problem can be further simplified (See Appendix B for details)

. (1+772)771K< P (N 2p ) ! )
TC = 5 B *
Vo nm \a0)U—m) s a)+m)) Tem " (38)
K P
a —4)
(1—7]1 1) a(V)
S.t.
N_ZA%P
3 _M+m (39)
s
1+2 Vv
. P tom+mn ¥V (40)
mea(V) 1 +mn s
p
0<m< 41
- T ma(V) “

Again, from first-order optimality conditions one finds that constraint (39) is
binding, indicating that there is no queue attime ¢ at the optimum. By replacement of
variables, we obtain the following simplified problem, which we refer as Problem II.

K N 1 1+ m)K
minTC:%_+< m(l+m) A]+771( + 1) )m
Vim m+m s 1420, 4+, n+ W)
1+m mK \V
+ m A1 — —
L +2n +n, m+m/)s
s.t.
p
O<ms< 43
ma(v) (43)

4.3 The optimal coarse toll scheme for profile 3

Similarly, under profile 3 (See Fig. 4) we still cannot tell if the system cost is
reduced by simply moving ¢ to the left: On the one hand, the capacity waste and the
total delay cost of each individual are reduced; while on the other hand, the number
of commuters traveling after the toll is increased, which indicates more deadweight
loss of queuing delay. If we assume the capacity waste before ¢ is m’, we have

2772 /_x _ E_ 2Sp
o=~ (5 i ) o
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Thus when capacity waste exists at the ending point of the toll, it has to be
satisfied that
N 2p

X3 > — —

SR )

The optimal toll scheme for this profile can be solved by the following nonlinear
optimization problem:

A+ A4
min 7C = MAl + ()Q —x2>A2 - M” — Ayxy (46)
VX202 S N N
S.t.
Y1 S
AL 47
x 1—m 7
Y2 =N §
= 48
Xo—%-m 1-mn ()
X38 —y2 S
= 49
X3 — X3 1+ M ( )
V1 P
s oy = — 50
s TTRELm (50)
m<0 (51)
N 2
AN, (52)
s a(V)(1+m)
25,
V= P +y1 (53)

a(V)(1 +m)

By simplifying this problem, we have

K K
min 7C = <A1 __M > P + UiLE X3 (54)
Vxs.p m+m/)alV) nm+m
S.t.
N 2p
X2 > - - 55
s a1+ 59
1+2 V
a(V) 1+n N
m<0 (57)
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Again, from first-order optimality conditions one finds that constraint (55) is
binding, which indicates that at optimum, the capacity waste does not exist. By
replacing the variables, we find this problem reduces to Problem .

4.4 The unified optimal coarse toll problem

In the previous discussion we have already shown that the queue at the ending point
of the toll will be eliminated by optimizing the system cost. Here we further combine
Problems I and 1II together to form a unified problem. The benefit is that constraints
(29) and (43) related to m will be removed. The optimal coarse toll scheme for a
bottleneck with nonidentical commuters can thus be solved by the following
nonlinear optimization problem

K N 1 K V
min 7C = 12 —+/l|m|+n1( RSN )— (58)
v n+m s L +2n +m, m+m/) s
S.t.
K 1
K + 1 A, m<0
m+m 1420 +mn
A= (59)
ni(1+m) 1 m (1 +m)K Ocm<_P
L+2n +m, m+m ~ma(V)
Because 07, 17,, the term
(A+2m+m)n, _ m+2mm+m mm=0 ()
(m+m)(L+m)  m+m+mn+m M+ 1+ M+
And because 4,<K, from (60) we have
K 1 1 142 K
mK___ l4m ,_ 1+m (( + 201 +m)m, A1> =0 (61)
m+m 1+2n+mn L4+2n +m \ (m +m) (1 +m,)

Since the coefficient of m is always greater than zero, to reduce the system cost m
has to be 0. The two profiles then reduce to the same profile without capacity waste
or queue at the starting time of the toll and the minimized total system cost is the
same.

Following a similar deduction procedure, it’s not hard to conclude that profile 4 in
Fig. 5 will reduce to the same profile when optimized and profile 5 in Fig. 6 is not
optimal. To save space, the proofs are not presented here.

From all the above discussions, we are thus able to conclude that for
heterogeneous commuters, where heterogeneity is defined by Eq. (8), there will be
no queue or capacity waste at times ¢ and ¢, when the total system cost is
minimized with optimal coarse toll level p,; and optimal tolling window (ts*, t; )

The optimal coarse toll level and the charging time interval can be calculated
when the system cost is measured in money

1 V
s (I+m)m Y.,

= 4 62
Po=Tiam+m s ) (62)

@ Springer



The Morning Commute Problem with Coarse Toll and Nonidentical Commuters 359

1 V
th= _lrm 7 (63)
- 1 + 27’]1 + m S
N 2 V
=—- . (64)
s 14+2m+m s
The minimum total system cost is
KN 1
Oy = KN 2y mdm) (65)
(n1 +m)s (1+2m +my)s
Substituting (62) into (28) we have
KN 1 K V
(n1 +m)s 1+2n +m, m+m/ s
It can be shown that 57|, <0, == OTC V,_y > 0 and 2190 > 0, which ensures
arc >

optimal V falls in [0,N]. By taking
condition with only V as variable:

g m(l+2n +m) [V
/0 avdv+Va(y) = (m +m)(1+m) / a(vdv (67)

Equation (67) implicitly determines the amount of commuters /" who are traveling
outside the tolling period after toll is imposed, as long as the VOT distribution of the
commuter population is known. Generally we cannot get the explicit expression of V'
except for simple forms of VOT distribution. For instance, if VOT follows a uniform
distribution, i.e. @(v) = b + av, a>0, b>0 we can obtain that

= 0, we obtain the first-order optimality

i +n)(1+m)
3a

\/4b2 + 64 BUIIIT (pN 4 LaN?) — 2

(68)

5 Discussions and examples
5.1 A special case: identical commuters

A special case is that the commuters are identical. If every commuter has the same «,
the number of commuters who pass through the bottleneck outside [¢*,77] can be
easily solved from Eq. (67)

y(y + o +28) N
AUy S
et Bty 2

Equation (69) states that more commuters will choose to pass the bottleneck

outside [tj, t ] to avoid the toll. In other words, to minimize the system cost, the

(69)
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tolling time window cannot be longer than half of the entire morning commute
period. Solving for the optimal toll gives

which is consistent with the optimal coarse toll level obtained by Arnott et al.
(1990b).

Furthermore, we use a numerical example to show the change in system cost with
respect to the combination choices of p and m when all the commuters have the same
VOT. For comparison, we adopt the same VOT as the example provided in Arnott et
al’s paper (1990b): a=6.4, 3=3.9 and v=15.21. To compare the total costs under
different pairs of (p,m), we assume the demand N=100 and the passing rate s=50.
The results are shown in Fig. 7.

We notice that no matter how much the coarse toll is, the system cost is always
minimized at m=0. The inspiration from this result is that once a toll level is decided,
the tolling time interval has to be carefully chosen: when the time interval is too long,
the capacity of the bottleneck cannot be fully utilized, while if the time interval is too
short, an additional amount of deadweight loss of queuing delay is induced. The
optimum is obtained at a toll level of $3.1, which is consistent with the result in Arnott
et al. (1990b). The total travel cost saved by the optimal coarse toll is 27.08%.

0.1 ;'Jr /&1: /ﬂ '6 [ 3 ._.-’/f/,’?/‘ :/r / '1//__\\' \ }5"&,\ \ ‘% ]\li é %ﬂ:
owf | [ / / 1/ /7 N\ \\ \ nan
|5 J / ,-?x&.-’?,-” [ F / P g ¥ \\ \ \:”‘ \ Ql \
u.us-g/ ,‘// / //l}///!f // /&sb % \ ll\'ll \Im! \ \.i \ 1
0.04 ~/ f;'; “ K /K I.f[/// System optimum -\'\ 2‘\"35 ﬁ'\ \ \\I \ x
o | / / g/ Wi/ / W% l\ is

el 81151117/ \ L3l lelsee
N I
8 LIl R\ yrreI 3
004} \ \ \ \ '\l \ '-.‘Il \\ \ A | N / // / / / / .
i RN /// /1/]]s
 JRERIUARN 4
.0.08 -1\ ]l a{\ \ \"'. I\%}%g\%\\& r , // f/ .‘; ’( / é’ 7
0.1 |I%} | % \ \\’\.‘\ A \\. Eh—;./ A X'//;é:/fp/ / r. f';’ j—?/ ;/ II z;ﬂ
1 15 2 25 3 35 4 45 5

p

Fig. 7 System cost with respect to p and m
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5.2 Minimizing total system cost in time unit

It is well known that in a static transportation network, the optimal flow pattern
derived from minimizing the total system cost measured in time could be different
from that derived by minimizing the total system cost measured in money (Yang and
Huang 2002). We note that the same phenomenon can be found here. Under our
assumption of heterogeneity, if we minimize the total system cost in time unit using
the coarse toll, the optimal solution will be identical with what we get from the
homogeneous case. We provide the optimal toll for minimizing the total generalized
travel time without proof here

s MmN < Mm(n + 1+ 2n)) >
p; = o N
2s(m +m)  \2(1 +m)(m +m)

(71)

We can see p; is generally different from the optimal toll level p?, corresponding
to minimal total cost measured in monetary unit. Another observation can be made
by comparing the results from homogeneous and heterogeneous cases. To be
comparable, we assume the parameter values attached to queuing and schedule
delays in the homogeneous case are the expectations of the VOT distributions in the
heterogeneous case, represented by @, ,7. Then from Eq. (70) the optimal toll for

homogeneous case becomes
5 M N > _
P 2(m +m) (S 72)

Noting that fOV a(v)dv < Va(V) (“=" obtained when a(¥) is a constant), from Eq.
(67) we have

(14 2n; + 1) N
Valy) 2 2(my +m) (1 +m) /0 alvdv 73)

Substituing Eqgs. (62) and (72) into (73), we have

s o at) 7
p’ Na
Inequality (74) implies that for any kind of VOT distribution a(¥), simply
assuming homogeneity over the commuters will lead to an under-estimation of the
optimal toll level. From Egs. (62)—(64) we also can obtain that the under-estimation
of the toll level will correspondingly lead to a longer charging time interval.
We know that the total system cost under NTE is

1 KN
(m +m)s

By comparing Egs. (65) and (75), we find the coarse toll scheme reduces the total
system cost. But since everyone has a different VOT, naturally we will ask the
question: does the coarse toll scheme reduce everyone’s travel cost in the monetary
unit? We will answer this question in Section 5.3.

TC = (75)
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5.3 The pareto-improving property of the optimal coarse toll

The total system cost excluding toll revenue can be reduced by the coarse toll, but
the toll scheme may still increase the travel costs of some individuals. In this section
we examine the performance the coarse toll from the perspective of individual
commuters.

For the homogeneous case, since all the commuters are identical, to see if the
coarse toll is pareto-improving, we only need to examine whether the total delay cost
under the optimal coarse toll, 7Cycy,,, is reduced. It can be easily proven that

N? — —
TCetay = (ﬁ_y _> (1 _ w> C (76)
Bty s 2B+7)(r+a)
Thus for the homogeneous case, the optimal coarse toll is pareto-improving.
For heterogeneous case, before tolling the vth commuter’s travel cost is

N
mmn a V)

Cmm s

(77)

After the optimal coarse toll is imposed, the commuters traveling outside [t 7]
experience the same reduction of generalized travel time. Thus we only need to
observe the cost of the first commuter who experienced only schedule early delay y-/s.
By solving constraints (17), (18), (19), (20) and (22) with m=0 (See Appendix C for
details), we have the generalized travel time for the commuters traveling outside
[t7,¢7] be

mm N n(ny — 1 4
Tout:nlg_ 12— 1( 2 ) —_ (78)

s mA+m s  (m+m)(l+2n+mn) s

Thus the change of travel cost for the vth commuter who travels outside the
tolling window is

ni(m —1) Va(v)
(m +m)(1+2n +m,) s

Recall that at equilibrium, the Vth commuter will incur the same travel cost
whether he chooses to travel outside or inside the tolling window [T, "], and since a
uniform toll will not influence the departure time choices for the commuters
traveling inside the tolling window, we obtain the generalized travel time for the
commuters traveling inside the tolling window by examining the Vth commuter

ACyy = — <0 (79)

N 2(ny — 1 14
ro— mm N_ ni(m —1) Vv.op (80)

CmAms (m+m)(+2m+m) s alV)
Thus for the vth commuter who travels inside the tolling window, the change of
travel cost can be calculated as
2(n, — 1 V

AC, — ( mm N ni(m —1) Vo p )a(v)+p
m+m s (m+m)(+2n+m) s alV)

o mmo) v ()
(m +m)(1+2m +m) s a(V)

~

(81)
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To sum up Egs. (79) and (81), the changes of travel cost for nonidentical
commuters across the population are given as a piece-wise linear function:

2(n, — 1 V
_ n](qZ 2) 70,(‘}), V§V
Ac— ) (m +nz)(V+ m+m) s (82)
fﬂ—a(v)er, V<v<N
m+n s

We can see from Egs. (79) and (81) that AC is always negative for the whole
population, which implies that the optimal coarse toll is still pareto-improving in the
heterogeneous case. We also observe form Eq. (82) that the coefficient of a(v) in the
second function is greater than first one, which indicates that for the commuters
traveling inside the tolling period [¢T,#7], their benefits from the coarse toll increase
more quickly than those traveling outside as their VOTs become higher. The latter
aspect is shown in Fig. 8 for the special case that VOT follows a uniform distribution.

5.4 Efficiency gain from the coarse toll: a comparison

We propose a numerical example to compare the optimal solutions under different
problem settings. We assume the demand N=100 and the capacity of the bottleneck
s=50. The value attached to queuing delay a/(v)=0.128v, and 7,=0.609, 1,=2.377.
Thus « is uniformly distributed within [0,12.8] and we can calculate the means
o =6.4,=3.9andy = 15.21, which are equal to the values used in the example
for the homogeneous case. We list the optimal solutions when total system cost is
measured in time and monetary units in Table 1. For comparison, the results for the
homogeneous case are also listed.

From Table 1, if we measure the system cost in money, we find the heterogeneous
case has a shorter tolling period and higher toll charge which is consistent with the
conclusion derived from inequality (74). Moreover, for this special example of uniform
VOT distribution, the total percentage saving of the heterogeneous case is around
40%, greater than that calculated under the homogeneous case, which implies that the
benefit of coarse toll will be underestimated if heterogeneity is not considered.

Figure 9 shows the difference between the two optimal profiles. Without loss of
generality, the work starting time is set to be the origin point. We observe that for

Fig. 8 Utility (=—cost) change ~—AC()
with VOT across the population A
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Table 1 Optimal solutions

Homogeneous Heterogeneous (in time) Heterogeneous (in money)
Total saving 27.08% 27.08% 40.06%
Commuters travel inside 45.84% 45.84% 39.91%
Length of toll interval 1.40 1.40 1.34
Optimal toll level 3.10 3.36 4.14
Commute starting time —1.526 —1.526 -1.518
Toll revenue 142.3 154.1 165.2

both cases the departure time of the first person will move to the right compared with
NTE, which implies that both coarse-toll schemes are cost-efficient. Less commuters
are charged in the peak period and the total percentage cost saving is greater for the
heterogeneous case.

When minimizing the total cost in time unit, we get the same profile with the
homogeneous case (See columns 1 and 2 in Table 1). In this special example, the
distribution of the benefits of the coarse toll differentiates across the population
when the system performance is measured by money instead of time. More benefits
are given to the two tails of the population (the poor and the rich), while the middle
class receives less benefits because the higher toll forces them to change their
commute from inside to outside of the tolling period and the saving from not paying
the toll cannot offset the increase in their delay costs.

6 Conclusions

This study investigates how a single-step coarse toll affects the departure profiles in the
morning commute and the properties of the optimal coarse toll when commuters have
diverse values of time. All possible departure patterns under various levels of toll rate
and tolling durations are thoroughly examined, from which the optimal coarse toll
scheme is obtained through minimizing the total system cost. We prove that under the

Fig. 9 Profiles for numerical
examples

......... homogeneous
—— heterogeneous
- --NTE

Cumulative Departures & Arrivals
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optimal coarse toll, there will be no waste of capacity at both the starting and ending
times of the tolling period. Although this optimal coarse toll scheme cannot completely
eliminate congestion, it has the dual advantages of simplicity and congestion relief: the
flat toll is easy to implement and a suitably chosen toll level and tolling window can
make every commuter better off than before such a toll is levied.

There could also be a range of optimal coarse toll schemes, if the system cost
function is weighed differently between money and time. We cannot tell if the
optimal toll charged is higher or lower when changing the weights, because it also
depends on the form of VOT distribution. But we know that a higher toll charge will
narrow the tolling window and for those who are forced to transfer from inside to
outside of the tolling window, they will have an increase in their generalized cost.

We also show that the coarse toll problem under identical commuters considered
by Arnott et al’s work (1990b) is a special case of our heterogeneous model. By
considering heterogeneity, we found that the toll level and toll revenue all increase,
while the number of commuters being tolled is smaller. The tolling period, and the
total system cost are all being reduced if the cost/benefit is measured in monetary
terms. The consideration of heterogeneity also delays the starting time of the
morning commute when money is used to measure costs and benefits.

The problem can be extended in several ways: 1) The assumption of
proportionality in characterizing heterogeneity can be relaxed. We can assume that
the «, B and -y parameters have separate distributions and are independent with each
other. This, however, will complicate the problem and makes it harder, if not
impossible, to obtain analytical results, and even to define what one means by
optimum; 2) Multi-step coarse toll may be considered as a more general case of the
one-step coarse toll. In fact when each step becomes infinitely small, the multi-step
toll approaches to a fine toll. Clearly, more efficiency gain can be achieved at the
price of identifying many more possible profiles, thanks to the increase of degrees of
freedom in the optimization; and 3) Instead of a single bottleneck, we may consider
a corridor with multiple bottlenecks and multiple OD pairs, rather than a one-to-one
network with a single bottleneck. The problem becomes to determine not only how
much and when to charge the toll, but also where to charge the toll.
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Appendices
Appendix A. Simplifying the problem corresponding to profile 1

From Egs. (17) and (20) we have
s P
=—|—F——=—m 83
n = (&) )
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From Egs. (18) and (83) we have

S P
n=— (X — —— 84
= (e 565) (4
Substituting (84) into the objective function (16) we have
K K
min 7C = 1 Xy — ( _A1> P (85)
Vxp 1 —m L—m a(V)

From Egs. (19) and (84) we have

n = (Gt = (V- sten) i) O

From Egs. (23) and (83) we also obtain that
p_14+2m+m mV

— s 87
a(V) 1+ m N ( )
Combining (85), (86) and (87) we can simplify the problem as follows
min TC — (14 m)mK ( p + (l_ 2p ) 1 x3)
Voxsp m+m \e(V)A—m) \s a()A+m)/ 1+mn (s8)
(o)
— — A,
1 —m a(V)
s.t.
N 2p
. 89
BE A )
_p 14 2m A mV (90)
oV) 14+mn s
m<0 (91)
Appendix B. Simplify the problem corresponding to profile 2
From Eqgs. (31) and (34) we have
sp
= —ms 92
Y1 ma(V) (92)
Since y; has to be nonnegative, we have
p
m < 93
~ma(V) ®2)
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From Egs. (32) and (92) we have

= s Xy — p — ms
2T\ e

Substituting (94) into (30) we have

K K
min 7C = 12y — —a )L
V.x2. 2 1— ™ 1 - m OI(V)

We find that the objective function follows exactly the same form of (85).

From Egs. (33) and (94) we have
1

X2
From Eqgs. (92) and (37) we also obtain that
e I+2n+n V

m =
me(V) 1L +mn S

Combining (95)—(97), we can simplify the problem as follows

: _ (4m)mK p N _ 2p _ 1
Jmin 7€ ==, (a(V)(l—m) + ( a(V>(1+772)) EEE +’”)
(54t
s.t.
N — 2sp
X3 < a(V)(1+n,) +m
S
me_ P 1F2mtm ¥V
me(V) L +m s
P
0<m<
Tlla(V)

Appendix C. Calculation of travel time reduction

To solve y, we only need to solve the following group of equations:

Yo _s

x| 1= 5

Y —

s M= o
_ 2sp

N a()(1+my)

X3 -
Yooyi s
xn—d 1—m

Y
N o(V)(141;) »2 o
X3—X2 4

_ sp _ 2sp S s
y—‘,,,—r‘,,z(a(V)(l—m)Jr(N ) T )00

(97)

(98)

(99)

(100)

(101)

(102)
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There are five unknown independent variables and five independent equations.
By the first two equations we have

_ P
ma(V)

Substituting the third equation and (103) into the last two equations we have

N (103)

__mN sp(my — 1)
m+n e(V)(L+n)(m+mn)

We have already known the toll level expressed by Eq. (62), thus we have

»2 (104)

__mN (m —DmV
m+m (m+m)(l+2n +mn)

Y2 (105)
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