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Abstract

Background: It has been reported that the composition of human gut microbiota changes with age; however,
few studies have used molecular techniques to investigate the long-term, sequential changes in gut microbiota
composition. In this study, we investigated the sequential changes in gut microbiota composition in newborn to
centenarian Japanese subjects.

Results: Fecal samples from 367 healthy Japanese subjects between the ages of 0 and 104 years were analyzed by
high-throughput sequencing of amplicons derived from the V3-V4 region of the 16S rRNA gene. Analysis based on
bacterial co-abundance groups (CAGs) defined by Kendall correlations between genera revealed that certain transition
types of microbiota were enriched in infants, adults, elderly individuals and both infant and elderly subjects. More
positive correlations between the relative abundances of genera were observed in the elderly-associated CAGs
compared with the infant- and adult-associated CAGs. Hierarchical Ward’s linkage clustering based on the abundance
of genera indicated five clusters, with median (interquartile range) ages of 3 (0–35), 33 (24–45), 42 (32–62), 77 (36–84)
and 94 (86–98) years. Subjects were predominantly clustered with their matched age; however, some of them fell into
mismatched age clusters. Furthermore, clustering based on the proportion of transporters predicted by phylogenetic
investigation of communities by reconstruction of unobserved states (PICRUSt) showed that subjects were divided into
two age-related groups, the adult-enriched and infant/elderly-enriched clusters. Notably, all the drug transporters
based on Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology groups were found in the
infant/elderly-enriched cluster.

Conclusion: Our results indicate some patterns and transition points in the compositional changes in gut microbiota
with age. In addition, the transporter property prediction results suggest that nutrients in the gut might play an
important role in changing the gut microbiota composition with age.
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Background
The microbiota composition of the human gut changes
with age, and alterations in this composition influence
human health. In the early 1970s, culture-based methods
were used to demonstrate that the gut microbiota
composition changes during the aging process [1]. Re-
cent studies using molecular methods have also indicated

clear differences in the composition of gut microbiota
among infants, toddlers, adults and the elderly [2]. After
birth, the initial microbiota composition is affected by the
mode of birth [3–5] and the mother’s gut microbiota
[6, 7]. Subsequently, a significant shift in the composition
of the gut microbe community occurs when the infant
transitions to a more solid and varied diet. A recent report
suggested that the age-affiliated microbiota population
shifts from 3 days to 2 years after birth and that major
differences are apparent between 2 years and adulthood
[8]. Other reports have indicated that the phylogenetic
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composition of the bacterial communities evolve
towards an adult-like configuration within the 3- [9]
or 4-year [10] period after birth. It has been recently
shown that the gut microbiota is not yet established
at 5 years of age [11]. Another broad shift in gut
microbe populations occurs later in life. However,
almost all studies related to the gut microbiota of the
elderly have been performed on subjects classified
into segmented age groups based on varying defini-
tions of ‘elderly’, such as ‘over 60’ [12], ‘over 65’ [13],
‘over 70’ [14] or ‘centenarian’ [15]. It is unclear when
and how the microbiota composition shifts from the
adult stage to the elderly stage. Yatsunenko et al. [9]
conducted a large study with subjects aged 0–83 years
and revealed the sequential changes that occur with
age. Their report provided important insights, such as
the period required to form an adult-like gut
microbiota, greater between-subject variation among
children than adults, differences in the phylogenetic
composition of gut microbiota among individuals
from different countries and an increase in bacterial
diversity with age. Nevertheless, the sequential changes
that occur in the elderly remained unclear due to the
limited number of subjects older than 60 years. Fur-
thermore, although abundant data on gut microbiota
composition are available in some public databases,
sequential changes cannot be evaluated with these
public data because of biases stemming from differ-
ences in study methods, especially in DNA extraction
[16, 17], and nationality differences among the sub-
jects [9, 18–22].
We identified the sequential changes in gut micro-

biota composition in Japanese subjects over a wide age
range, 0–104 years. Our results provide new insights
into the developmental period for gut microbiota
composition and the patterns of change with age.

Results
Overview of gut microbiota composition in each age
group
A total of 1,839,703 high-quality paired sequences were
obtained from the 371 samples, with 4,959 ± 1,813
(average ± standard deviation) reads per sample, which
were clustered into 5,952 OTUs and classified into 187
bacterial groups at the genus level (186 genera and one
unidentified group). We first calculated UniFrac
distances to determine the extent of similarity between
microbial communities. UniFrac PCoA (principal co-
ordinate analysis) of 5,952 OTUs indicated that age ex-
plained the variation in our data set using both weighted
and un-weighted analyses (Fig. 1). No gender differences
were observed (Additional file 1).
The phylum and genus compositions of gut microbiota

in each age group are shown in Fig. 2, Additional file 2
and Additional file 3. In agreement with previous results,
the microbiota composition included four predominant
phyla. The relative abundance of Actinobacteria substan-
tially decreased after weaning and continued to decrease
with age. Firmicutes was the most predominant phylum
after weaning but was less abundant in children younger
than 4 years compared with subjects older than 4 years.
Increases in the relative abundance of Bacteroidetes and
Proteobacteria were observed in subjects over 70 years
old. The relative abundance of Bacteroidetes did not
change sequentially, but a stepwise increase was observed
beyond 70 years of age. The change in the relative abun-
dance of Proteobacteria was opposite that of Firmicutes.

Age-related changes in genera and their correlations
To explore the changes in gut microbiota with age in
detail, we calculated the co-abundance associations of
genera and then clustered the correlated genera into
nine CAGs (Additional file 4), which describe the

Fig. 1 UniFrac clustering for each age group. a Unweighted and b weighted UniFrac PCoA of gut microbiota from 371 samples collected from
the infant to the centenarian stage. Each number in the legend indicates a group as shown in Table 1
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significant differences in microbiota structure among
subject groups (Permutational MANOVA, p < 0.001).
The transition from infant to centenarian was accompanied
by distinctive CAG dominance, with a significant abun-
dance of Bacteroides, [Eubacterium] and Clostridiaceae
CAGs (elderly-associated CAGs); Enterobacteriaceae CAGs
(infant and elderly-associated CAGs); Bifidobacterium
CAGs (infant/child-associated CAGs); and Lachnospiraceae
CAGs (adult-associated CAGs) (Fig. 3). Megamonas and
Peptoniphilus CAGs were relatively enriched in the elderly.
Dorea CAG abundance appeared unrelated to aging.
Sequential changes occurred in the relative abundance of
Bacteroides, Lachnospiraceae and Bifidobacterium CAGs in
the gut microbiota during childhood and adolescence. Not
all CAGs were composed exclusively of related species, as
shown in Additional files 5 and 6. Wiggum plots showed
the relative abundance of each genus and significant associ-
ations between nine CAGs (Fig. 4, Additional file 5).
Among the 186 genera, 116 had associations with other
genera with an absolute coefficient value >0.3 (Additional
file 5 and 6 and Fig. 4). Almost all of the correlations were
positive; the only four negative correlations were observed
between Enterobacteriaceae and Lachnospiraceae, Entero-
bacteriaceae and Blautia, Bifidobacterium and Parabacter-
oides and Veillonella and [Mogibacteriaceae]. A greater
number of positive correlations were observed in the
elderly-associated CAGs, especially the Bacteroides and
[Eubacterium] CAGs. We then performed in vitro assays to
investigate some relevant relationships among genera. In
accordance with the Wiggum plot results, both of Parabac-
teroides distasonis JCM 5825 and Bifidobacterium longum
JCM 1217 growth were suppressed when co-cultivate with

each other (Additional file 7). A similar negative relation-
ship was observed between Escherichia coli JCM 1649, be-
long to family Enterobacteriaceae and Blautia producta
JCM 1471. In contrast, Bacteroides uniformis JCM 5828
growth increased when co-cultivated with Parabacteroides
distasonis JCM 5825.
As for gut microbiota diversity, all four alpha diversity

scores based on PD whole tree, Chao1, the number of
observed species and the Shannon index substantially in-
creased after weaning and continued to increase sequen-
tially until the twenties. These scores were stable during
adulthood and then increased again at the elderly stage
until the centenarian stage (Fig. 5).

Period of age-related change in community structure of
gut microbiota
We performed hierarchical Ward’s linkage clustering
based on the abundance of genus-like groups to predict
the period of age-related reshaping of gut microbiota.
Genus-like groups belonging to the same phylum did
not comprise the same cluster, suggesting that the age-
related pattern of change was different between the
phylum and genus levels. The subjects were divided into
three age clusters, for infant, adult and elderly cluster
(Additional file 8). The relative abundance of Actinobac-
teria and Clostridia were significantly higher in infant
and adult cluster, respectively (Additional file 9). The
elderly cluster showed the significantly higher abundance
of Bacteroidetes, Betaproteobacteria and Deltaproteobac-
teria (Additional file 9). When the subjects were divided
into five age clusters, the median (interquartile range) age
was 3 (0.5–35) in the infant cluster, 33 (24.75–45.5) in

Fig. 2 Age-related sequential changes in gut microbiota composition. Overview of phylum/genus composition. Orange, Actinobacteria; Blue,
Firmicutes; Red, Bacteroidetes; Pink, Proteobacteria; Black, sum of other phyla. Each component of the cumulative bar chart indicates a genus.
Each number indicates a group as shown in Table 1
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Fig. 4 Network plot highlighting relationships between genera in nine CAGs. The colors of each node indicate the nine CAGs as shown in Fig. 3.
Circle size indicates genus abundance. Pink and blue lines show significant positive and negative correlations between two bacterial genera with
an absolute coefficient value greater than 0.3. Taxa that are found in more than 50 % of the subjects were indicated

Fig. 3 Transition type of each co-abundance group (CAG) from infant to centenarian. Each number indicates a group as shown in Table 1.
Box-plots show the interquartile range (IQR) of the sum of z-scores converted from the relative abundance of genera belonging to the same
CAG. Open circles and asterisks indicate outliers from 1.5- to 3.0-fold IQR and over 3.0-fold IQR, respectively
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adult cluster I, 42 (32–62) in adult cluster II, 74 (34–81.5)
in elderly cluster I and 93.5 (85–98) in elderly cluster II
(Additional file 8). The age distributions were similar
between the adult I and II clusters and between the elderly
I and II clusters. The adult clusters and the elderly
clusters showed significant differences in the relative
abundance of 32 and 28, respectively, of the 61
genus-like groups, which were found in 50 % of the
subjects in any cluster (Additional files 10 and 11).
Subjects were predominantly clustered by age; how-
ever, some subjects, but not those in the elderly II
cluster, fell into a mismatched-age cluster (Additional
files 8 and 12).

Functional properties predicted by PICRUSt
We performed PICRUSt analysis to predict the
relative abundance of transporter genes because an
altered diet [2] and antibiotic treatment [31] have
been reported to be among the most powerful factors
that affect the gut microbiota. Clustering based on
the relative abundance of the predicted transporters
showed that subjects were divided into two age-
related groups, the adult-enriched and infant/elderly-
enriched clusters (Additional file 13). For example,
there was a lower abundance of a predicted xylose
transporter (KEGG module: M00215) in pre-weaned
infants, probably reflecting the different dietary habits
of subjects in each segmented age group (Additional
file 14). Interestingly, all drug transporters based on
KEGG Orthology groups were found in the infant/
elderly-enriched cluster (Additional files 13 and 15).

Discussion
The composition of gut microbiota is thought to change
during the aging process [1]; however, few reports have

utilized molecular techniques to investigate the long-
term, sequential changes in gut microbiota composition.
Our results are in agreement with those of recent studies
indicating clear differences in gut microbiota compos-
ition among infants, adults and the elderly [2, 23]. The
present study using LEfSe method indicated that Actino-
bacteria, Clostridia and Bacteroidetes, Betaproteobac-
teria and Deltaproteobacteria were representative taxa in
infant, adults and the elderly cluster. Additionally, our
results revealed the sequential changes that occur with
age from newborns to centenarians. Furthermore, our
results showed that Japanese adults (21–69 years old)
have a greater abundance of the genera Blautia and
Bifidobacterium (interquartile ranges (IQR) of 18 (12–24)
% and 7 (2–14) %, respectively) and a relatively lower
abundance of genera related to Bacteroidetes (IQR 4
(1–10) %), compared with those reported in previous
studies in other nations. For example, the estimated
abundance of Blautia, Bifidobacterium and Bacteroi-
detes were < 10 %, < 2 % and > 10 %, respectively, in
US and Colombia [19], Korea, China and US [20] and
Ireland [30]. These patterns might be characteristic of
the gut microbiota composition of the Japanese popu-
lation, although they may also reflect the DNA
extraction method [16, 17] and the amplified region
of the 16S rRNA gene [24].
Although there are differences among individuals, our

analysis of the phylum composition of gut microbiota in
each age group showed a significant shift in the relative
abundance of Actinobacteria in infants from before to
after weaning. The compositional pattern of gut micro-
biota during childhood has been thought to impact
health later in life [11, 25], but children older than
2 years have not been sufficiently investigated. Our data
show that some genera belonging to Bacteroides,

Fig. 5 Age-related change in alpha-diversities of gut microbiota. Dashed line indicates a polynomial approximation for each alpha-diversity. Each
number below the figure indicates a group as shown in Table 1
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Lachnospiraceae and Bifidobacterium CAGs and the
alpha diversity of gut microbiota continued to change
sequentially with age in subjects younger than twenty,
reflecting the human gut microbiota maturation process.
However, children younger than 20 years fell into both
the infant and adult clusters, regardless of their age,
when clustered based on the abundance of genus-like
groups, thus illustrating the individual differences in the
gut microbiota maturation process.
In the present study, the Wiggum plot showed nega-

tive relationships between the relative abundance of
Enterobacteriaceae, which creates an greater endotoxin
challenge for the weakened intestinal barrier and thus
results in increased stimulation of the inflammatory
response [26], and the abundance of Blautia and
Lachnospiraceae;g (Fig. 4), which belonged to the adult-
associated CAG (Lachnospiraceae;g CAG). Other butyrate-
producing bacteria, such as Coprococcus, Roseburia and
Faecalibacterium, were also clustered in the same CAG.
Furusawa et al. reported that microbial-derived butyrate
regulates Treg cell differentiation in vitro and in vivo [27].
Given the age-related reduction in the abundance of
the genus Bifidobacterium, which down-regulates
pro-inflammatory responses in the gut epithelium
[28–30], our results suggested that the aging-related
dysbiosis in elderly subjects may be a contributing
factor to inflammatory responses that occur with
advancing age.
We performed in vitro assays to investigate bacterial

interactions, including those between Enterobacteriaceae
and Blautia. These results were in accordance with the
Wiggum plot results. However, these results might have
some biases from the different of environmental condi-
tion between in human gut and in vitro assay. In
addition, it is uncertain that all bacterial interactions are
consistent with the relationships in the Wiggum plot,
because genera with positive relationships in the
Wiggum plot might grow well under the same environ-
mental conditions without a mutualistic relationship. In
contrast, some genera combinations have been reported
to exhibit mutualistic relationships,although the absolute
values of the correlation coefficients were below 0.3 (no
visible relationship in the Wiggum plot). Pande et al.
revealed that Acinetobacter baylyi and Escherichia coli
reciprocally exchange essential amino acids [31]. It has
also been reported that Bifidobacterium populations can
be stimulated efficiently with a concomitant decrease in
Enterobacteriaceae [32, 33]. Acetate, one of the main fer-
mentation products of Bifidobacterium, was reported to
promote the growth of butyrate-producing bacteria and
the in vitro production of butyrate [34, 35]. Further-
more, Bifidobacterium longum has been reported to alter
gut luminal metabolism via interactions with Bacteroides
caccae and Eubacterium rectale [36]. Considering these

reports, the correlations between gut microbiota mem-
bers might be more complicated than shown in the Wig-
gum plot. Our computational analysis results must be
interpreted cautiously because they are based on a lim-
ited data set. An advanced culture method is needed to
clarify the relationships among gut microbiota.
A wide diversity of microorganisms is needed to utilize

the many nutrients in adult diets [37]. In addition, a low
gut microbiota diversity has been associated with an
increasing number of conditions, such as autism [38],
autoimmune disease [39] and obesity [40]. Maintaining
sufficient bacterial richness and diversity is important
for providing gut microbiota with functional redun-
dancy, adaptability and thus systematic robustness
against environmental challenges [41]. In this study, we
observed an increase in gut microbiota diversity with
aging until the centenarian stage. Claesson et al. re-
ported that the alpha diversity of the gut microbiota in
community dwellers was significantly higher than that of
people in long-stay care [42]. Therefore, in the present
study, the observed increase in microbiota diversity with
age was likely due to the inclusion of community-
dwelling elderly participants. In contrast, centenarians in
a Chinese longevous village population had a more
diverse gut microbiota than did younger elderly aged
85–99 years [43]. It is uncertain why the trend in diver-
sity differed between Chinese and Japanese centenarians.
Biagi et al. [44] showed a significantly compromised

gut microbiota in centenarians but not in elderly sub-
jects aged approximately 70 years compared with a
group of younger adults. The authors therefore sug-
gested that a healthy gut microbiota community might
be affected by aging-related physiological and behavioral
changes that occur after 70 years of age, which was con-
sidered the threshold age for defining an individual as
elderly. In agreement with this hypothesis, our clustering
data suggested that most subjects over 70 years of age
comprised two elderly-type clusters (Additional file 8).
Nevertheless, the distribution of subjects was not clear
from the classification based on subject age. This result
suggested that other factors besides age contribute to
the composition of gut microbiota communities.
Our study did not allow us to determine why gut

microbiota changed with age because we lacked lifestyle
and dietary habit information on the subjects. To begin
to address this question, we performed PICRUSt analysis
to predict the relative abundance of transporter genes
because we hypothesized that bacterial transporters that
incorporate nutrients from the gut environment would
differ if dietary habit was a predominant contributor to
gut microbiota composition. Clustering based on the
relative abundance of the predicted transporters showed
that subjects were divided into two age-related groups,
the adult-enriched and infant/elderly-enriched clusters,
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implying that nutrients in the gut evoke the different gut
microbiota compositions between adult and infant/
elderly subjects. Not all transporters can explain the
relationship with the dietary habits of subjects in each
segmented age group, but, for example, the increase
in the relative abundance of predicted xylose trans-
porters in subjects after weaning seems to reflect the
change from mother’s milk to an omnivorous diet.
Interestingly, all the drug transporters based on
KEGG Orthology groups were found in the infant/
elderly-enriched cluster, perhaps due to the frequent
antibiotic treatment of infants and the elderly com-
pared with adults.
In addition, elderly people are known to have decreased

intestinal function relative to younger people, which
affects digestion, nutrient absorption and immune activity
[45, 46] and may also impact the microbiota composition
[47, 48]. We found that certain oral bacteria, such as
Porphyromonas, Treponema, Fusobacterium and Pseudor-
amibacter, which have difficulty reaching the intestinal
tract due to barriers such as gastric juice and bile acid,
were enriched in the elderly-associated CAGs (Additional
file 6). Therefore, the decline in gastrointestinal tract func-
tionality in the elderly may also lead to significant changes
in gut microbiota.

Conclusion
In conclusion, we provide a description of the changes
in gut microbiota with age, thus illustrating the long tra-
jectory throughout human life. Our results indicate
some patterns and transition points in gut microbiota
composition with age. The gut microbiota in subjects
younger than 20 years changed with age as it matured,
and that of subjects older than 70 years changed again
into the elderly type. In addition, the transporter
property prediction results suggested that nutrients in
the gut might play an important role in changing the gut
microbiota composition with age.
Our findings help clarify the gut microbiota compos-

ition in a healthy population at each age period. Further
analyses investigating lifestyle traits or prospective co-
horts focused on subjects who appear to have a gut
microbiota typical of an age group older than their
matched age would be valuable for revealing the
relationships between gut microbiota and host health,
including the aging process.

Methods
Subjects
Fecal samples were collected from a total of 367
community-dwelling Japanese volunteers (one sample
per subject, except for two samples from one boy and
one girl collected at preweaning and weaning and
three samples from one girl at preweaning, weaning

and 5 years of age) between 0 and 104 years of age
(157 men and 210 women). Subjects over 80 years of
age were directly recruited by the authors to confirm
that they were community dwellers. The distribution
of subjects according to age and individual data are
shown in Table 1 and Additional file 12. No signifi-
cant differences in gender distribution were observed
among the age groups (Fisher’s test, p = 0.997). Fecal
samples were collected from subjects that participated
in three different studies. Two study protocols were
for the collection of feces from subjects aged 21–65
years old or from community-dwelling elderly individuals
and were approved by the Local Ethics Committee of
the nonprofit organization Japan Health Promotion
Supporting Network (Wakayama, Japan). The third
study protocol was for the collection of feces from
subjects aged 0–100 years old and was approved by
the ethics committee of Kensyou-kai Incorporated
Medical Institution (Osaka, Japan). Written informed
consent was obtained from all subjects or from their
legal guardians or relatives.
To identify the sequential changes in gut microbiota

composition that occur with age, subjects were di-
vided into 10-year age groups, except for subjects
aged less than 10 years, who were divided into four
groups: preweaning, weaning, weaned to 3 years old
and 4–9 years old.

Table 1 Sample distribution

Group Age Number
of samples

(Male/Female)

Segmentation (Mean ± SD)

1 Preweaning (0.3 ± 0.1) 14 (7/7)

2 Weaning (0.8 ± 0.4) 12 (6/6)

3 Weaned-3 years old (2.4 ± 0.6) 18 (10/8)

4 4–9 years old (6.1 ± 1.9) 14 (6/8)

10 10–19 years old (14.1 ± 3.6) 10 (7/3)

20 20–29 years old (25.9 ± 2.7) 40 (16/24)

30 30–39 years old (33.9 ± 2.3) 88 (45/43)

40 40–49 years old (43.8 ± 3.1) 34 (13/21)

50 50–59 years old (53.3 ± 2.6) 25 (12/13)

60 60–69 years old (63 ± 2.7) 28 (11/17)

70 70–79 years old (76.8 ± 2.1) 15 (5/10)

80 80–89 years old (83.3 ± 2.4) 48 (16/32)

90 90–99 years old (94.2 ± 2.7) 19 (4/15)

100 Over 100 years old (101.3 ± 1.8) 6 (0/6)

Sum 371 (158/213)

The mean (± SD) age of the entire cohort was 44.3 ± 28.6 years
Gut microbiota were analyzed for one sample per subject, except for two
samples from one boy and one girl at preweaning and weaning and three
samples from one girl at preweaning, weaning and 5 years of age
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Sampling
Fresh fecal samples were transferred by the subjects into
tubes and immediately enclosed in plastic bags containing
AnaeroPouch (Mitsubishi Gas Chemical, Tokyo, Japan) to
create an anaerobic environment.

Storage
The fecal samples collected from subjects younger than
80 years were stored at −20 °C for three days at most
and were transported to the laboratory by logistics com-
panies. The samples collected from subjects older than
80 years were stored at −20 °C and then delivered to the
laboratory by the study authors within one day. Immedi-
ately upon receipt, the fecal samples were stored at
−80 °C until the day of analysis.

DNA extraction
A total of 20 mg of each fecal sample was collected from
three regions (upper, middle and lower) and mixed well,
and DNA was extracted using the bead-beating method
as previously described [49]. After centrifugation at
14,000 × g for 5 min, 400 μl of the supernatant was
extracted with phenol-chloroform, and 250 μl of the
supernatant was precipitated with isopropanol. Purified
DNA was suspended in 2,000 μl of Tris-EDTA buffer
(pH 8•0).

Sequencing and data processing
The V3-V4 region of the bacterial 16S rRNA gene was
then amplified by PCR with the TaKaRa Ex Taq HS Kit
(TaKaRa Bio, Shiga, Japan) and the primer sets Tru357F
(5′-CGCTCTTCCGATCTCTGTACGGRAGGCAGCA
G-3′) and Tru806R (5′-CGCTCTTCCGATCTGACG-
GACTACHVGGGTWTCTAAT-3′). Each 1-μl sample
of DNA, at a concentration of approximately 10–
200 ng/μl as measured using a Nanodrop 2000
(Thermo Fisher Scientific, Waltham, MA, USA), was
amplified in triplicate using the following protocol:
preheating at 94 °C for 3 min; 20 cycles of denatur-
ation at 94 °C for 30 s, annealing at 50 °C for 30 s
and extension at 72 °C for 30 s; and a final terminal
extension at 72 °C for 10 min. After verifying the
amplified DNA based on PCR product size using the
QIAxcel system (Qiagen, Valencia, CA, USA), the
triplicate samples were combined. A 1-μl sample of
the combined PCR products was amplified using the
following barcoded primers adapted for Illumina
MiSeq: Fwd 5′-AATGATACGGCGACCACCGAGAT
CTACACXXXXXXXXACACTCTTTCCCTACACGAC
GCTCTTCCGATCTCTG-3′ and Rev 5′-CAAGCAGAA
GACGGCATACGAGATXXXXXXXXGTGACTGGAGT
TCAGACGTGTGCTCTTCCGATCTGAC-3′, where X
represents a barcode base. The DNA was amplified
according to the protocol described above except that

only 8 cycles were performed. After validating the 2nd

amplified DNA product using the QIAxcel system,
the PCR products were purified using a QIAquick 96
PCR Purification Kit (Qiagen, Valencia, CA, USA) ac-
cording to the manufacturer’s protocol. The purified
products were quantified using a Quant-iT PicoGreen
dsDNA Assay Kit (Life Technologies, Carlsbad, CA,
USA). Subsequently, equal amounts of the amplicons
from multiple samples were pooled, and primer dimers
were removed using a GeneRead Size Selection Kit
(Qiagen, Valencia, CA, USA). The pooled libraries were
sequenced using an Illumina MiSeq instrument with a
MiSeq v3 Reagent Kit (Illumina, Inc., San Diego, CA,
USA).
After removing sequences consistent with data from

the Genome Reference Consortium human build 37
(GRCh37) or PhiX 174 from the raw Illumina paired-
end reads, the 3′ region of each read with a PHRED
quality score of less than 17 was trimmed. Trimmed
reads less than 150 bp in length with an average quality
score of less than 25 or those lacking paired reads were
also removed. The reads that passed the quality filters
were combined using the fastq-join script in EA-Utils
(version 1.1.2–537) [50].

Taxonomic analysis
The sequences were analyzed using the QIIME software
package version 1.8.0 [51, 52] (http://qiime.org/).
Potential chimeric sequences were removed using

UCHIME, assigned to operational taxonomic units
(OTUs) using Open-reference OTU picking [53] with a
97 % threshold of pairwise identity, and then classified
taxonomically using the Greengenes reference database
(http://greengenes.secondgenome.com/downloads/database/
13_5) [54]. An advantage of using the open reference
method is that it minimizes spurious hits of sequen-
cing reads to taxa that are not present in the gut; as
a result, the number of obtained OTUs was lower
than that in previous reports.

Diversity analysis
The microbial diversity within each age-segmented
group [alpha diversity including Chao1, number of
observed species (the number of OTUs), phylogenetic
distance (PD) whole tree, and Shannon diversity index]
and the distances between subjects (UniFrac distance as
beta diversity) were estimated using QIIME version 1.8.0
software.

Clustering analysis
Hierarchical analysis was performed using the hclust
function in R package 3.2.1. Distances based on the
squared Euclidean distance were calculated for input into
an agglomerative algorithm through Ward’s method. The
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population densities (z-scores) of genera scaled by color
are displayed together with a dendrogram of bacterial
genera in a heat map.

Bacterial co-abundance groups (CAGs)
All genus-like-level groups, except for an unidentified
group, were entered into this analysis. CAGs were defined
by a heat plot showing Kendall correlations between genera
clustered by Pearson’s correlation coefficient and Ward’s
linkage hierarchical clustering in R using the Made4 pack-
age [55] as previously described [42]. The transition type of
each CAG with aging indicates the sum of z-scores con-
verted from the relative abundance of genera belonging to
the same CAG. Network plots highlighting correlative rela-
tionships were visualized using Cytoscape version 3.2.1
[56]. These associations were controlled for multiple testing
using the q-value method, and only those with a false dis-
covery rate <0.05 were retained. The cut-off for line in the
Wiggum plots was set at an absolute coefficient value of
greater than 0.3.

Bacterial strains and culture conditions
Cultivable strains were selected based on the Wiggum plot
results and were obtained from public culture collections
(Additional file 16). All the strains were pre-cultured at
37 °C for 16 h under anaerobic conditions in Gifu
Anaerobic Medium (GAM) broth (Nissui Seiyaku Co. Ltd.,
Tokyo, Japan). Then, approximately 1 × 108 cell in the pre-
cultures, which were calculated by a density of McFarland,
were added to GAM broth and incubated at 37 °C for 5 h
under anaerobic conditions. After this culture period, the
microorganisms were collected by centrifugation at
10,000 × g and DNA was extracted by the same method as
described in the DNA extraction section. Experiments
were performed in triplicate.

Real-time PCR for quantitative determination of cell number
Real-time PCR was performed using an ABI PRISM
7500 Fast Real-time PCR System (Life Technologies,
Carlsbad, CA, USA) with SYBR Premix Ex Taq (TaKaRa
Bio Inc, Shiga, Japan). The primer sets are shown in
Additional file 17 [57–60]. The amplification program
consisted of one cycle of 94 °C for 10 s, followed by 40 cy-
cles of 94 °C for 5 s, the appropriate annealing temperature
for 30 s and 72 °C for 30 s. Fluorescent products were
detected during the last step of each cycle. Melting curves
were obtained by heating from 60 to 95 °C in 0.2 °C/s
increments with continuous fluorescence collection.

Phylogenetic investigation of communities by
reconstruction of unobserved states (PICRUSt) analysis
PICRUSt analysis was performed to predict the relative
abundance of transporter genes [61]. Independent of the
taxonomic analysis, 97 % of the OTUs were picked using a

closed-reference OTU picking protocol (QIIME 1.8.0 [51,
52]) and the Greengenes database (database/13_8) [54] pre-
clustered at 97 % identity. The obtained OTU table was
normalized by 16S rRNA copy number, and functional
genes were predicted from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) catalogue [62].

Statistical analysis
The gender distribution of subjects and intergroup differ-
ences at the genus level in each subcluster were analyzed
by Fisher’s test and the Mann-Whitney U test, respect-
ively, using SPSS version 23.0 statistical software (IBM,
Armonk, NY, USA). Intergroup differences at the phylum,
class, order, family and genus level in each cluster were
analyzed by the linear discriminant analysis (LDA) effect
size (LEfSe) method [63] with default settings on website
(https://huttenhower.sph.harvard.edu/galaxy/root). Permu-
tational MANOVA [64] was performed to test for signifi-
cant differences in CAGs using the vegan package in R.
Values of p < 0.05 were considered statistically significant.

Data deposition
DNA sequences corresponding to the 16S rRNA gene
data have been deposited in DDBJ under accession
number DRA004160.

Additional files

Additional file 1: UniFrac clustering for gender distribution. (A)
Unweighted and (B) weighted UniFrac PCoA of gut microbiota from 371
samples collected from the infant to the centenarian stage. Male and
female subjects are displayed as blue and red, respectively. (PDF 155 kb)

Additional file 2: Relative abundance of four predominant phyla. The
box-plot indicates the interquartile range (IQR) of the relative abundance
of each phylum at each age stage. (PDF 211 kb)

Additional file 3: Relative abundance of each microbiota at genus level.
(XLSX 873 kb)

Additional file 4: Definition of bacterial co-abundance groups (CAGs).
CAGs were defined by a heat plot showing Kendall correlations between
genera clustered by Pearson’s correlation coefficient and Ward’s linkage
hierarchical clustering. The colors within the clustering indicate the nine
CAGs as shown in Fig. 3. (PDF 148 kb)

Additional file 5: Network plot highlighting relationships between
genera in nine CAGs. The colors of each node indicate the nine CAGs as
shown in Fig. 3. Circle size indicates genus abundance. Pink and blue
lines show significant positive and negative correlations between two
bacterial genera with an absolute coefficient value greater than 0.3.
(PDF 401 kb)

Additional file 6: Bacterial groups at genus-like level in each CAG.
(XLSX 863 kb)

Additional file 7: Cell number of bacteria in vitro assay. (XLSX 855 kb)

Additional file 8: Hierarchical Ward’s linkage clustering based on
bacterial proportion at the genus level. Age-related groups (Infant,
Elderly1, Elderly2, Adult1 and Adult2) were revealed through Ward’s
linkage clustering using the squared Euclidean distance. The population
densities (z-score) of genera scaled by color are displayed together with
a dendrogram of bacterial genera in a heat map. The colors within the
horizontal and vertical clustering represent age-segmented groups as
shown in Fig. 1 and phylum as shown in Fig. 2. (PDF 245 kb)
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Additional file 9: LEfSe results on human microbiota in infant, adult
and elderly cluster. (A) Histogram of the LDA scores computed for
features differentially abundant between three age-related clusters. (B)
Taxonomic representation of statistically differences between three
age-related clusters. Differences are represented in the color of the
most abundant class (yellow non-significant). Each circle’s diameter is
proportional to the taxon’s abundance. (PDF 400 kb)

Additional file 10: Taxa that are found in more than 50 % of the
subjects in any cluster (shown in Additional file 8) with significantly
difference between adult 1 and adult 2 clusters. (XLSX 857 kb)

Additional file 11: Taxa that are found in more than 50 % of the
subjects in any cluster (shown in Additional file 8) with significantly
difference between elderly 1 and elderly 2 clusters. (XLSX 859 kb)

Additional file 12: Individual data. (XLSX 875 kb)

Additional file 13: Hierarchical Ward’s linkage clustering based on the
proportion of transporter genes predicted by PICRUSt. Age-related groups
(adult-enriched and infant/elderly-enriched clusters) were revealed by
Ward’s linkage clustering using the squared Euclidean distance. The
population densities (z-score) of the transporters scaled by color are
displayed together with a dendrogram of the transporters in a heat map.
The colors within the horizontal clustering represent the age-segmented
groups as shown in Fig. 1 The color code for the vertical clustering
indicates KEGG Orthology (KO) as follows: white, ABC Transporters,
Eukaryotic Type; yellow, ABC Transporters, Prokaryotic Type; blue, Solute
Carrier Family (SLC); orange, Major Facilitator Superfamily (MFS); red,
Phosphotransferase System (PTS); and green, Other Transporters. (PDF 209 kb)

Additional file 14: Relative abundance of predicted D-Xylose transporter
(KEGG module: M00215). The KEGG module M00215 consists of three KO
entries, K10543, K10544 and K10545. Each number indicates a group as
shown in Table 1. Box-plots show the interquartile range (IQR) of the relative
abundance of the predicted D-Xylose transporter. Open circles indicate
outliers from 1.5- to 3.0-fold IQR. (PDF 96 kb)

Additional file 15: List of predicted transporters in Additional file 13.
(XLSX 879 kb)

Additional file 16: Bacterial strains used in this study. (XLSX 855 kb)

Additional file 17: PCR primers for detection of each species. (XLSX 857 kb)
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