
Semigroup Forum (2013) 87:201–229
DOI 10.1007/s00233-013-9465-z

R E S E A R C H A RT I C L E

Completely inverse AG∗∗-groupoids

Wiesław A. Dudek · Roman S. Gigoń

Received: 19 September 2012 / Accepted: 23 December 2012 / Published online: 25 January 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract A completely inverse AG∗∗-groupoid is a groupoid satisfying the identities
(xy)z = (zy)x, x(yz) = y(xz) and xx−1 = x−1x, where x−1 is a unique inverse of x,
that is, x = (xx−1)x and x−1 = (x−1x)x−1. First we study some fundamental prop-
erties of such groupoids. Then we determine certain fundamental congruences on
a completely inverse AG∗∗-groupoid; namely: the maximum idempotent-separating
congruence, the least AG-group congruence and the least E-unitary congruence.
Finally, we investigate the complete lattice of congruences of a completely in-
verse AG∗∗-groupoids. In particular, we describe congruences on completely inverse
AG∗∗-groupoids by their kernel and trace.

Keywords Completely inverse AG∗∗-groupoid · AG-group · Semilattice of
AG-groups · Trace of congruence · Kernel of congruence · AG-group congruence ·
E-unitary congruence · Idempotent-separating congruence · Idempotent pure
congruence · Fundamental congruence

1 Introduction

By an Abel-Grassmann’s groupoid (briefly an AG-groupoid) we shall mean any
groupoid which satisfies the identity (xy)z = (zy)x. Such a groupoid is also called
a left almost semigroup (briefly an LA-semigroup) or a left invertive groupoid or a
right modular groupoid (cf. [4, 5, 7]). This structure is closely related to a commuta-
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tive semigroup, because if an AG-groupoid contains a right identity, then it becomes
a commutative monoid. Also, if an AG-groupoid A with a left zero z is finite, then
(under certain conditions) A \ {z} is a commutative group [8].

The name Abel-Grassmann’s groupoids was suggested by Stojan Bogdanović at a
seminar in Niš. The first time that this name appeared was in the paper [15] and in
the book [2].

An AG-groupoid A satisfying the identity x(yz) = y(xz) is called an AG∗∗-
groupoid. Such groupoids were studied by many authors. For example, in [6] it has
been proved that an AG∗∗-groupoid containing a left cancellative AG∗∗-subgroupoid
can be embedded in a commutative monoid whose cancellative elements form a
commutative group whose identity coincides with the identity of the commutative
monoid. Also, each AG∗∗-groupoid satisfying the identity (xx)x = x(xx) can be
uniquely expressed as a semilattice of certain Archimedean AG∗∗-groupoids [10].
Some other decompositions of certain AG∗∗-groupoids are given in [12, 16]. Further,
certain fundamental congruences on AG∗∗-groupoids are described in [9, 14]. Finally,
the kernel normal system of an inversive AG∗∗-groupoid has been studied in [1].

In this paper we investigate completely inverse AG∗∗-groupoids, i.e., AG∗∗-
groupoids in which every element a has a unique inverse a−1 such that aa−1 = a−1a.
In Sect. 2 we establish some necessary definitions and facts concerning AG∗∗-
groupoids. In Sect. 3 we give a few interesting results about completely inverse
AG∗∗-groupoids. Recall from [3] that any completely inverse AG∗∗-groupoid satisfies
Lallement’s lemma for regular semigroups. Using this fact, we describe the maximum
idempotent-separating congruence μ (which is equal to the least semilattice congru-
ence) on a completely inverse AG∗∗-groupoid A. In particular, A is a semilattice EA

of AG-groups eμ (e ∈ EA). Also, we show that the interval [1A,μ] is a modular lat-
tice. The main result of this section says that any AG-groupoid A is a completely
inverse AG∗∗-groupoid if and only if A is a strong semilattice of AG-groups. On the
one hand, in the light of this fact, we are able to construct completely inverse AG∗∗-
groupoids. On the other hand, completely inverse AG∗∗-groupoids are very similar to
Clifford semigroups (i.e., (strong) semilattices of groups).

At the beginning of Sect. 4 we prove that any congruence ρ on a completely in-
verse AG∗∗-groupoid is uniquely determined by (i) its kernel and trace; (ii) the set
of ρ-classes containing idempotents. Furthermore, we determine the least AG-group
congruence σ and describe all AG-group congruences in terms of their kernels. Also,
we give some equivalent conditions for a completely inverse AG∗∗-groupoid A to be
E-unitary and we describe all E-unitary congruences on A.

In Sect. 5 we characterize abstractly congruences on an arbitrary completely in-
verse AG∗∗-groupoid A via the so-called congruences pairs for A. Furthermore, we
study the trace classes of the complete lattice C(A) of all congruences on A. The main
result of this section says that the map ρ → tr(ρ) (ρ ∈ C(A)) is a complete lattice ho-
momorphism of C(A) onto the lattice of all congruences on the semilattice EA. Also,
if θ denotes the congruence on C(A) induced by this map, then for every ρ ∈ C(A),
ρθ is a modular lattice (with commutating elements). Moreover, ρθ = [ρθ ,μ(ρ)]. If
in addition, A is E-unitary, then ρθ = ρ ∩σ , and the mapping ρ → ρ ∩σ (ρ ∈ C(A))
is a complete lattice homomorphism of C(A) onto the lattice of idempotent pure con-
gruences. Finally, we investigate the lattice F C(A) of all fundamental congruences
on A. We prove that F C(A) = {μ(ρ) : ρ ∈ C(A)} ∼= C(EA).
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In Sect. 6 we show first that each completely inverse AG∗∗-groupoid A possesses
a largest idempotent pure congruence τ . Also, we study the kernel classes of C(A).
We prove a result analogous to a result from the previous section. In particular, we
show that the interval [ρ ∩ μ,τ(ρ)] consist of all congruences on A such that their
kernels are equal to ker(ρ). Further, we go back to study E-unitary congruences.
We determine all E-unitary congruences on A; that is, we show that a congruence is
E-unitary if and only if its kernel is equal to the kernel of some AG-group congruence
on A. Finally, we give once again necessary and sufficient conditions for a completely
inverse AG∗∗-groupoid to be E-unitary.

The terminology used in this paper coincides with semigroup terminology (see the
book [11]).

2 Preliminaries

One can easily check that in an arbitrary AG-groupoid A, the medial law is valid, that
is, the equality

(ab)(cd) = (ac)(bd) (1)

holds for all a, b, c, d ∈ A.
Recall from [16] that an AG-band A is an AG-groupoid satisfying the identity

x2 = x. If in addition, ab = ba for all a, b ∈ A, then we say that A is an AG-
semilattice.

Let A be an AG-groupoid and B ⊆ A. Denote the set of all idempotents of B

by EB , that is, EB = {b ∈ B : b2 = b}. From (1) it follows that if EA �= ∅, then
EAEA ⊆ EA, therefore, EA is an AG-band.

An AG-groupoid satisfying the identity x(yz) = y(xz) is said to be an AG∗∗-
groupoid. Any AG∗∗-groupoid is paramedial, i.e., it satisfies the identity

(wx)(yz) = (zx)(yw). (2)

Notice that each AG-groupoid with a left identity is an AG∗∗-groupoid. Further, ob-
serve that if A is an AG∗∗-groupoid, then (2) implies that if EA �= ∅, then EA is an AG-
semilattice. Indeed, in this case EA is an AG-band and ef = (ee)(ff ) = (f e)(f e) =
f e for all e, f ∈ EA. Moreover for a, b ∈ A and e ∈ EA, using (1) and (2) we have

e(ab) = (ee)(ab) = (ea)(eb) = (ba)e = (ea)b.

We have just proved the following result (its second part was proved earlier in
[14]).

Proposition 2.1 Let A be an AG∗∗-groupoid. Then

e · ab = ea · b (3)

for all a, b ∈ A and e ∈ EA.
In particular, the set of all idempotents of an arbitrary AG∗∗-groupoid is either

empty or a semilattice.
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We say that an AG∗∗-groupoid A is completely regular if for every a ∈ A there
exists x ∈ A such that a = (ax)a and ax = xa. Observe that in such a case,

(ax)(ax) = (aa)(xx) = x(aa · x) = x(xa · a) = x(ax · a) = xa = ax ∈ EA,

therefore, EA forms a semilattice.
Let A be an AG-groupoid with a left identity e and a ∈ A. An element a∗ of A is

said to be a left (right) inverse of a if a∗a = e (resp. aa∗ = e), and an element of A

which is both a left and right inverse of a is called an inverse of a. Let a∗ be a left
inverse of a. Then aa∗ = (ea)a∗ = (a∗a)e = e. It follows that any left inverse a∗ of
a is also its right inverse, therefore, it is its inverse. In particular, if a∗∗ is another
left inverse of a, then a∗ = (a∗a)a∗ = (a∗∗a)a∗ = (a∗a)a∗∗ = (a∗∗a)a∗∗ = a∗∗. The
conclusion is that each left inverse of a is its unique inverse. Further, if f is a left
identity of A, then f e = e = ee, so e = f , i.e., e is a unique left identity of A. Dually,
any right inverse of a is its unique inverse. Denote as usual the inverse of a by a−1.
Finally, it is clear that a = (a−1)−1, (ab)−1 = a−1b−1.

An AG-groupoid with a left identity in which every element has a left inverse is
called an AG-group.

Proposition 2.2 Let A be an AG-groupoid with a left identity e. Then the following
conditions are equivalent:

(a) A is an AG-group;
(b) every element of A has a right inverse;
(c) every element a of A has a unique inverse a−1;
(d) the equation xa = b has a unique solution for all a, b ∈ A.

Proof By above (a) =⇒ (b) =⇒ (c).
(c) =⇒ (d). Let a, b ∈ A. Then b = eb = (aa−1)b = (ba−1)a, i.e., ba−1 is a

solution of the equation xa = b. Also, if c and d are solutions of this equation, then

c = ec = (a−1a)c = (ca)a−1 = (da)a−1 = d.

(d) =⇒ (a). This is obvious. �

Notice that if g is an arbitrary idempotent of an AG-group A with a left identity e,
then gg = g = eg. Hence e = g, therefore, EA = {e}.

Denote by V (a) the set of all inverses of a, that is,

V (a) = {a∗ ∈ A : a = (aa∗)a, a∗ = (a∗a)a∗}.
An AG-groupoid A is called regular (in [1] it is called inverse) if V (a) �= ∅ for all
a ∈ A. Note that AG-groups are of course regular AG-groupoids, but the class of all
regular AG-groupoids is vastly more extensive than the class of all AG-groups. For
example, every AG-band A is evidently regular, since a = (aa)a for every a ∈ A. In
[1] it has been proved that in any regular AG∗∗-groupoid, |V (a)| = 1 (a ∈ A), there-
fore, we call it an inverse AG∗∗-groupoid. In that case, we denote a unique inverse
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of a ∈ A by a−1. Furthermore, recall from [1] that in any regular AG-groupoid A,
V (a)V (b) ⊆ V (ab) for all a, b ∈ A. Indeed, let a∗ ∈ V (a) and b∗ ∈ V (b). Then

(ab)(a∗b∗) · ab = (ab)a · (a∗b∗)b = (ab)a · (bb∗)a∗

= (ab)(bb∗) · aa∗ = (bb∗ · b)a · aa∗,

so

(ab)(a∗b∗) · ab = (ba)(aa∗) = (aa∗ · a)b = ab.

By symmetry, a∗b∗ = (a∗b∗)(ab) · (a∗b∗), as exactly required. Finally, there are
regular AG-groupoids without idempotents. On the other hand, if a∗ ∈ V (a) and
aa∗ = a∗a in the AG-groupoid A, then aa∗ ∈ EA (cf. [1]).

3 Completely inverse AG∗∗-groupoids

One can prove (cf. [1]) that in an inverse AG∗∗-groupoid A, aa−1 = a−1a if and
only if aa−1, a−1a ∈ EA. Also, in [1] the authors studied congruences on inverse
AG∗∗-groupoids satisfying the identity xx−1 = x−1x. We will call such groupoids
completely inverse AG∗∗-groupoids. Each AG-group is a completely inverse AG∗∗-
groupoid.

Example 3.1 Let A be a commutative inverse semigroup. Put a · b = a−1b for all
a, b ∈ A, where a−1 is a unique inverse of a in the inverse semigroup A. Then
it is easy to check that (A, ·) is an AG∗∗-groupoid and E(A,·) = EA. Furthermore,
(a · a) · a = a, so a is its own unique inverse in (A, ·) for every a ∈ A, so a ·a ∈ E(A,·)
for all a ∈ A and (A, ·) is a completely inverse AG∗∗-groupoid. Also, we have that
a−1 · (a · b) = a−1 · a−1b = aa−1b. Hence

a−1 · (a−1 · (a · b)) = a−1 · aa−1b = aaa−1b = aa−1ab = ab,

that is,

ab = a−1 · (a−1 · (a · b)) = a · (a−1 · (a−1 · b))

for all a, b ∈ A.
Let ρ be a congruence on (A, ·). From the above equalities follows easily that ρ

is a congruence on the commutative inverse semigroup A. Also, if (a, a · a) ∈ ρ in
(A, ·), then (a, a−1a) ∈ ρ in A, since a · a = a−1a. Thus (a2, aa−1a) ∈ ρ in A, so
(a2, a) ∈ ρ in A. Lallement’s Lemma implies that there exists e ∈ EA ∩ aρ and so
e ∈ E(A,·) ∩ aρ. On the other hand, trivially a · a ∈ Eaρ in (A, ·).

Conversely, one can easily see that if ρ is a congruence on A, then ρ is also a
congruence on (A, ·). Further, if (a, a2) ∈ ρ in A, then (a, e) ∈ ρ in A for some
e ∈ EA. Since e · e = e, then (a, a · a) ∈ ρ in (A, ·).

A groupoid A is said to be idempotent-surjective if for each congruence ρ on A,
every idempotent ρ-class contains an idempotent of A.

The following theorem was proved in [3]. Now we give another proof.
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Theorem 3.2 Completely inverse AG∗∗-groupoids are idempotent-surjective.

Proof Let ρ be a congruence on a completely inversive AG∗∗-groupoid A, a ∈ A

and aρa2. We know that there exists an element x ∈ A such that a2 = (a2x)a2, x =
(xa2)x and a2x = xa2 ∈ EA. Note that

(a2x)(aa) = a(a2x ·a) = a(xa2 ·a) = a(aa2 ·x) = (aa2)(ax) = a2(a2x) = a2(xa2),

that is, a2 = a2(xa2). Put e = a(xa). Then eρa2(xa2) = a2ρa. Also,

e2 = (a · xa)(a · xa) = a · (a · xa)(xa) = a · (ax)(xa · a) = a · (ax)(a2x).

Furthermore, using (2)

(ax)(a2x) = (ax)(xa2) = (a2x)(xa) = (xa2)(xa) = (xa2 · x)a

by (3), since xa2 ∈ EA. Hence (ax)(a2x) = xa. Consequently,

e2 = a(xa) = e ∈ EA,

as required. �

Let ρ be a congruence on a completely inverse AG∗∗-groupoid A and a, b ∈ A. It
is evident that (aρ)−1 = a−1ρ. Hence if (a, b) ∈ ρ, then (a−1, b−1) ∈ ρ. Moreover,
A/ρ is a completely inverse AG∗∗-groupoid.

Further, let A be an arbitrary groupoid and V be a fixed class of groupoids. We
say that a congruence ρ on A is a V -congruence if A/ρ ∈ V . For example, if V is the
class of all semilattices, then ρ is a semilattice congruence on A if A/ρ is a semilat-
tice. Moreover, A is called a semilattice A/ρ of AG-groups if there is a semilattice
congruence ρ on A such that every ρ-class is an AG-group. In that case, A is a semi-
lattice Y = A/ρ of AG-groups Aα , α ∈ Y , where Aα are the ρ-classes of A, or briefly
a semilattice Y = A/ρ of AG-groups Aα . Notice that in such a case, AαAβ ⊆ Aαβ ,
where αβ is the product of α and β in Y . Also, Aαβ = Aβα and A(αβ)γ = Aα(βγ ).

Finally, we say that a congruence ρ on a groupoid A is idempotent-separating if
every ρ-class contains at most one idempotent of A.

The following simple result will at times be useful.

Lemma 3.3 A completely inverse AG∗∗-groupoid containing only one idempotent is
an AG-group.

Proof Let EA = {e}, a ∈ A. Then e = aa−1 = a−1a. Hence ea = (aa−1)a = a. Thus
A is an AG-group. �

For elementary facts about (inverse) semigroups the reader is referred to the book
of Petrich [11]. It is well known that each completely regular inverse semigroup is a
semilattice of groups. We prove now an analogous result.
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Theorem 3.4 Let A be a completely inverse AG∗∗-groupoid. Define on A the relation
μ by

(a, b) ∈ μ ⇐⇒ aa−1 = bb−1

for all a, b ∈ A. Then:

(a) μ is the least semilattice congruence on A;
(b) every μ-class is an AG-group;
(c) μ is the maximum idempotent-separating congruence on A;
(d) A is a semilattice A/μ of AG-groups;
(e) EA

∼= A/μ.

Hence A is a semilattice EA of AG-groups Ge, where Ge = {a ∈ A : aa−1 = e} for
e ∈ EA.

Proof (a) Clearly, μ is an equivalence relation on A. Let (a, b) ∈ μ and c ∈ A. Then

(ca)(ca)−1 = (ca)(c−1a−1) = (cc−1)(aa−1) = (cc−1)(bb−1) = (cb)(cb)−1

and similarly (ac)(ac)−1 = (bc)(bc)−1. Hence μ is a congruence on A. Also,

(aa−1)(aa−1)−1 = (aa−1)(a−1(a−1)−1) = (aa−1)(a−1a) = (aa−1)(aa−1) = aa−1,

so (a, aa−1) ∈ μ, where aa−1 ∈ EA. Since EA is a semilattice, then S/μ is a semilat-
tice, too. Consequently, μ is a semilattice congruence on A. Moreover, since e−1 = e

for every e ∈ EA, then μ is idempotent-separating.
Finally, suppose that there is a semilattice congruence ρ on A such that μ � ρ.

Then the relation μ∩ρ is a semilattice congruence on A which is properly contained
in μ, so not every (μ ∩ ρ)-class contains an idempotent of A, since each μ-class
contains exactly one idempotent, a contradiction with Theorem 3.2. Consequently,
μ must be the least semilattice congruence on A.

(b) We have noticed above that μ is idempotent-separating. It is evident that every
μ-class is itself a completely inverse AG∗∗-groupoid, since a−1 ∈ aμ for all a ∈ A.
In view of Lemma 3.3, every μ-class is an AG-group.

(c) Let ρ be an idempotent-separating congruence on A, (a, b) ∈ ρ. Then
a−1ρb−1. It follows that (aa−1, bb−1) ∈ ρ. Thus aa−1 = bb−1, so (a, b) ∈ μ. Con-
sequently, ρ ⊆ μ.

The rest is obvious. �

Let C(A) denote the complete lattice of all congruences on a groupoid A. It is well
known that if a sublattice L of C(A) has the property that αβ = βα for all α,β ∈ L,
then L is a modular lattice.

Let A be a completely inverse AG∗∗-groupoid. Consider the complete lattice
[1A,μ] of all idempotent-separating congruences on A (see Theorem 3.4(c)). Let
ρ1, ρ2 ∈ [1A,μ] and (a, b) ∈ ρ1ρ2. Then there is c ∈ A such that aρ1cρ2b. In partic-
ular, (a, c), (c, b) ∈ μ. Hence

a = aa−1 · a = cc−1 · aρ2bc−1 · a = ac−1 · bρ1cc
−1 · b = bb−1 · b = b,
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so (a, b) ∈ ρ2ρ1. Thus ρ1ρ2 ⊆ ρ2ρ1. By symmetry, ρ2ρ1 ⊆ ρ1ρ2. We have just shown
the following theorem.

Theorem 3.5 Let A be a completely inverse AG∗∗-groupoid. Then the interval
[1A,μ], consisting of all idempotent-separating congruences on A, is a modular lat-
tice.

Corollary 3.6 The lattice of congruences on an AG-group is modular.

A completely inverse AG∗∗-groupoid A is a semilattice EA of AG-groups Ge

(e ∈ EA), where Ge = {a ∈ A : aa−1 = e} (Theorem 3.4). The relation ≤ defined on
the semilattice EA by e ≤ f ⇔ e = ef is the so-called natural partial order on EA.

Let e ≥ f and ae ∈ Ge . Then f ae ∈ Gf Ge ⊆ Gf e = Gf . Hence we may define a
map φe,f : Ge → Gf by

aeφe,f = f ae (ae ∈ Ge).

Also, for all ae, be ∈ Ge , (f ae)(f be) = (ff )(aebe) = f (aebe), so

(aeφe,f )(beφe,f ) = (aebe)φe,f , (4)

i.e., φe,f is a homomorphism between the AG-groups Ge and Gf . In particular,
eφe,f = f (this follows also from e ≥ f ). Observe that φe,e is the identical auto-
morphism of the AG-group Ge .

Suppose now that e ≥ f ≥ g. Then for every ae ∈ Ge,

(aeφe,f )φf,g = g(f ae) = (gg)(f ae) = (gf )(gae) = g(gae) = gae = aeφe,g,

since gae ∈ GgGe ⊆ Gge = Gg , that is,

φe,f φf,g = φe,g (5)

for every e, f, g ∈ EA such that e ≥ f ≥ g.
Finally, let ae ∈ Ge and af ∈ Gf (and so aeaf ∈ Gef ; also e, f ≥ ef ). Then we

get aeaf = (ef )(aeaf ) = (ef · ef )(aeaf ) = ((ef )ae)((ef )af ), i.e.,

aeaf = (aeφe,ef )(af φf,ef ). (6)

Remark that we have used only the medial law in the proof of the equalities (4),
(5) and (6), therefore, if an AG-groupoid A is a semilattice EA of the AG-groups Ge

(e ∈ EA), then these equalities hold true.
Let now Y be a semilattice, F = {Aα : α ∈ Y } be a family of disjoint AG-groupoids

of type T , indexed by the set Y (F may be a family of disjoint AG-groups). Suppose
also that for each pair (α,β) ∈ Y × Y such that α ≥ β there is an associated homo-
morphism φα,β : Aα → Aβ such that

(a) φα,α is the identical automorphism of Aα for every α ∈ Y , and
(b) φα,βφβ,γ = φα,γ for all α,β, γ ∈ Y such that α ≥ β ≥ γ .
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Put A = ⋃{Aα : α ∈ Y }, and define a binary operation · on A by the rule that if
aα ∈ Aα and aβ ∈ Aβ , then

aα · aβ = (aαφα,αβ)(aβφβ,αβ),

where the multiplication on the right side takes place in the AG-groupoid Aαβ .
It is a matter of routine to check that (A, ·) is an AG-groupoid. If in addition,

each AG-groupoid Aα is an AG∗∗-groupoid (in particular, an AG-group), then (A, ·)
is itself an AG∗∗-groupoid. Finally, in the light of the condition (a), the new multi-
plication coincides with the given of each Aα , so A is certainly a semilattice Y of
AG-groupoids Aα . We usually denote the product in A also by juxtaposition, and
write A = [Y ;Aα;φα,β ].

We call the AG-groupoid [Y ;Aα;φα,β ] a strong semilattice of AG-groupoids Aα .
In fact, we have proved the following theorem (see (4), (5) and (6)).

Theorem 3.7 Let an AG-groupoid A be a semilattice A/ρ of AG-groups. Then A is
a strong semilattice of AG-groups. In fact,

A = [EA;Ge;φe,f ],
where for all e, f ∈ EA, Ge = eρ; φe,f : Ge → Gf is given by

aeφe,f = f ae (ae ∈ Ge),

and

aeaf = (aeφe,ef )(af φf,ef ) (ae ∈ Ge,af ∈ Gf ).

In particular, A is an AG∗∗-groupoid.

Proof Let A be a semilattice A/ρ of AG-groups, then ρ is idempotent-separating.
Hence EA

∼= A/ρ, so EA is necessarily a semilattice. Thus A is a semilattice EA of
AG-groups Ge = eρ (e ∈ EA). This implies the thesis of the theorem. �

It is well known that if a semigroup S is a semilattice of groups, then its idempo-
tents are central, that is, se = es for all s ∈ S and e ∈ ES . The following proposition
says particularly that there is no non-associative AG-groupoids which are a semilat-
tice of AG-groups and their idempotents are central.

Proposition 3.8 Let A be an AG-groupoid which is a semilattice of AG-groups. If
the idempotents of A are central, then A is a strong semilattice of Abelian groups. In
particular, A is a commutative semigroup.

Proof Let A = [EA;Ge;φe,f ]. If the idempotents of A are central, then particularly
for all e ∈ EA, ae = ea for every a ∈ Ge . This implies that every Ge is a commutative
group, so A is a strong semilattice of Abelian groups. From the definition of the mul-
tiplication in [EA;Ge;φe,f ] and from the fact that Abelian groups are commutative
semigroups follows that A is a commutative semigroup. �
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Remark 1 Let A be a completely inverse AG∗∗-groupoid. Then ae = ea for all a ∈ A,
e ∈ EA if and only if a = a(a−1a) for every a ∈ A. Indeed,

ea = e(aa−1 · a) = (e · aa−1)a = (a · aa−1)e = (a(a−1a))e.

This implies that if a = a(a−1a), then the idempotents of A are central. The converse
implication is obvious.

In the proof of Theorem 3.2 we have shown that a2 = a2(xa2) for every a ∈
A, where x ∈ V (a2). Furthermore, A(2) = {a2 : a ∈ A} is an AG∗∗-groupoid, since
a2b2 = (ab)2 for all a, b ∈ A. Also, (a−1)2 ∈ V (a2) for every a ∈ A. Evidently,
EA ⊆ A(2). Consequently, A(2) is a completely inverse AG∗∗-groupoid in which the
idempotents are central. From Proposition 3.8 we obtain the following theorem.

Theorem 3.9 If A is a completely inverse AG∗∗-groupoid, then A(2) is a strong semi-
lattice of Abelian groups with semilattice EA of idempotents.

The next theorem gives necessary and sufficient conditions for an AG-groupoid to
be a completely inverse AG∗∗-groupoid.

Theorem 3.10 The following conditions concerning an AG-groupoid A are equiva-
lent:

(a) A is a completely inverse AG∗∗-groupoid;
(b) A is a semilattice of AG-groups;
(c) A is a strong semilattice of AG-groups.

Proof (a) =⇒ (b) by Theorem 3.4 and (b) =⇒ (c) by Theorem 3.7.
(c) =⇒ (a). In that case, A is an AG∗∗-groupoid (see again Theorem 3.7). Also,

let a ∈ A. Then a belongs to some AG-group Ge , where e is a left identity of Ge.
Consider now a unique inverse a−1 of a in Ge. Then evidently a = (aa−1)a, a−1 =
(a−1a)a−1 and aa−1 = a−1a = e. Consequently, A is a completely inverse AG∗∗-
groupoid. �

Remark 2 In view of the above theorem, we are able to construct completely inverse
AG∗∗-groupoids.

Let A be a completely inverse AG∗∗-groupoid. The relation ≤A defined on A by
a ≤A b if a ∈ EAb is the natural partial order on A. Notice the restriction of ≤A to
EA is equal to the natural partial order ≤ on EA, therefore, we will be write briefly
≤ instead of ≤A.

The following result can be deduced from [12].

Lemma 3.11 In any completely inverse AG∗∗-groupoid A, the relation ≤ is a com-
patible partial order on A. Also, a ≤ b implies a−1 ≤ b−1 for all a, b ∈ A.
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Proof We include a simple proof. It is evident that ≤ is reflexive and preserves in-
verses. Let a ≤ b and b ≤ a, i.e., a = eb and b = f a for some e, f ∈ EA. Then by
Proposition 2.1, ea = a. Using again Proposition 2.1, a = eb = e(f a) = (ef )a =
(f e)a = f (ea) = f a = b. Hence ≤ is antisymmetric. From Proposition 2.1 it fol-
lows also that ≤ is transitive. Finally, if a ≤ b and c ≤ d , that is, a = eb and c = f d

for some e, f ∈ EA, then we obtain that ac = (eb)(f d) = (ef )(bd). Thus ac ≤ bd . �

For some equivalent definitions of the relation ≤, consult [12]. Moreover, we have
the following proposition.

Proposition 3.12 In any completely inverse AG∗∗-groupoid A, ≤ ∩ μ = 1A, that is,
if A = [EA;Ge;φe,f ], then ≤|Ge= 1Ge for every e ∈ EA.

Proof Let a(≤ ∩μ)b. Then aa−1 = bb−1 and a = eb for some e ∈ EA, therefore we
get aa−1 = (eb)(eb−1) = (ee)(bb−1) = e(bb−1) = (eb)b−1 = ab−1. Consequently,

a = (aa−1)a = (bb−1)a = (ab−1)b = (aa−1)b = (bb−1)b = b,

as required. �

Finally, for any nonempty subset B of a completely inverse AG∗∗-groupoid A, we
call

Bω = {a ∈ A : ∃(b ∈ B) b ≤ a}
the closure of B in A; if B = Bω, then B is closed in A. Note that Bω is closed in A.

It is clear that a subgroupoid B of a completely inverse AG∗∗-groupoid A is itself
a completely inverse AG∗∗-groupoid if and only if b ∈ B implies b−1 ∈ B for every
b ∈ B . In such a case, B is a completely inverse AG∗∗-subgroupoid of A. Using
Lemma 3.11, one can prove the following proposition.

Proposition 3.13 If B is a completely inverse AG∗∗-subgroupoid of a completely
inverse AG∗∗-groupoid A, then Bω is a closed completely inverse AG∗∗-subgroupoid
of A.

In particular, EAω is a closed completely inverse AG∗∗-subgroupoid of A. It is
easy to see that

EAω = {a ∈ A : (∃e ∈ EA) ea ∈ EA}.

4 Certain E-unitary congruences

Let ρ be a congruence on a completely inverse AG∗∗-groupoid A. By the kernel
ker(ρ) (respectively the trace tr(ρ)) of ρ we shall mean the set {a ∈ A : (a, a2) ∈ ρ}
(respectively the restriction of ρ to the set EA). Note that tr(ρ) is a congruence on the
semilattice EA. Also, in the light of Theorem 3.2,

ker(ρ) = {a ∈ A : ∃(e ∈ EA) (a, e) ∈ ρ} =
⋃

{eρ : e ∈ EA}.
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The following proposition may be sometimes useful.

Proposition 4.1 Let A = [EA;Ge;φe,f ] be a completely inverse AG∗∗-groupoid and
let a, b ∈ A be such that ab ∈ EA. Then ab = ba.

Proof Let ab = e ∈ EA. Then

ba = b(aa−1 · a) = (aa−1)(ba) = (ab)(a−1a) ∈ EA.

Since ab, ba ∈ Ge, then ab = ba. �

The following theorem says particularly that each congruence on a completely
inverse AG∗∗-groupoid is uniquely determined by its kernel and trace.

Theorem 4.2 If ρ is a congruence on a completely inverse AG∗∗-groupoid A, then

(a, b) ∈ ρ ⇐⇒ (aa−1, bb−1) ∈ tr(ρ) & ab−1 ∈ ker(ρ).

Thus for all ρ1, ρ2 ∈ C(A),

ρ1 ⊆ ρ2 ⇐⇒ tr(ρ1) ⊆ tr(ρ2) & ker(ρ1) ⊆ ker(ρ2).

In particular, each congruence on a completely inverse AG∗∗-groupoid is uniquely
determined by its kernel and trace.

Proof Let (a, b) ∈ ρ. Then evidently (a−1, b−1), (ab−1, bb−1) ∈ ρ, so (aa−1, bb−1)

∈ tr(ρ) and ab−1 ∈ ker(ρ).
Conversely, let now (aa−1, bb−1) ∈ tr(ρ), ab−1 ∈ ker(ρ). In view of Theo-

rem 3.4, (aρ, bρ) ∈ μS/ρ , so ((ab−1)ρ, (bb−1)ρ) ∈ μS/ρ . Since ab−1 ∈ ker(ρ), then
(ab−1)ρ ∈ EA/ρ . Evidently, (bb−1)ρ ∈ EA/ρ . Hence (ab−1)ρ = (bb−1)ρ (by Theo-
rem 3.4(c)). Thus

aρ = (aa−1 · a)ρ = (bb−1 · a)ρ = (ab−1 · b)ρ = (bb−1 · b)ρ = bρ,

as required. The rest of the theorem follows from the first equivalence. �

Remark 3 Note that the first part of the above theorem is true for an arbitrary Clifford
semigroup, the proof is very similar. In fact, if ab−1 ∈ ker(ρ), then

(ab−1)ρ = (b−1a)ρ = (b−1b)ρ,

so aρ = (aa−1 · a)ρ = (bb−1 · a)ρ = (b · b−1a)ρ = (b · b−1b)ρ = bρ.
Clearly, the condition ab−1 ∈ ker(ρ) from Theorem 4.2 is equivalent to the

condition a−1b ∈ ker(ρ). In the light of Proposition 4.1, it is also equivalent to
b−1a ∈ ker(ρ).

Theorem 4.3 Let ρ1, ρ2 be congruences on a completely inverse AG∗∗-groupoid A.
Then the following statements are equivalent:
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(a) eρ1 ⊆ eρ2 for every e ∈ EA;
(b) ρ1 ⊆ ρ2.

In particular, every congruence ρ on a completely inverse AG∗∗-groupoid is uniquely
determined by the set of ρ-classes containing idempotents.

Proof (a) =⇒ (b). Let a ∈ bρ1. Then

aa−1 ∈ (bb−1)ρ1 ⊆ (bb−1)ρ2 & ab−1 ∈ (bb−1)ρ1 ⊆ (bb−1)ρ2.

In the light of Theorem 4.2, a ∈ bρ2, that is, ρ1 ⊆ ρ2.
(b) =⇒ (a). This is trivial. �

In Sect. 5 we shall characterize abstractly the congruences on a completely inverse
AG∗∗-groupoid A via the congruence pairs for A.

A nonempty subset B of a groupoid A is called left (right) unitary if ba ∈ B (resp.
ab ∈ B) implies a ∈ B for every b ∈ B,a ∈ A. Also, we say that B is unitary if it
is both left and right unitary. Finally, a groupoid A is said to be E-unitary if EA is
unitary.

Proposition 4.4 Let EA be a left unitary subset of an AG-groupoid. Then EA is also
right unitary. If in addition, A is an AG∗∗-groupoid, then the following conditions are
equivalent:

(a) A is E-unitary;
(b) EA is left unitary;
(c) EA is right unitary.

Proof (a) =⇒ (b), (c). Obvious.
(b) =⇒ (a). Let a ∈ A,e ∈ EA and let ae = f ∈ EA. Then (ae)f ∈ EA, therefore,

(f e)a ∈ EA. Thus a ∈ EA, since f e ∈ EA and EA is left unitary.
(c) =⇒ (a). Let a ∈ A,e ∈ EA and ea = f ∈ EA. Then, using (3),

f = f (ea) = (f e)a = (ae)f.

Hence ae ∈ EA. Thus a ∈ EA. �

AG-groups are examples of E-unitary completely inverse AG∗∗-groupoids.
A congruence ρ on a completely inverse AG∗∗-groupoid is a AG-group congruence

if A/ρ is an AG-group. By Lemma 3.3, ρ is an AG-group congruence if and only if
tr(ρ) = EA ×EA. Since A×A is an AG-group congruence on A, then the intersection
of all the AG-group congruences on A is the least AG-group congruence on A.

A more useful characterization of the least AG-group congruence on A is given in
the following theorem.

Theorem 4.5 In any completely inverse AG∗∗-groupoid A,

σ = {(a, b) ∈ A × A : (∃e ∈ EA) ea = eb}
is the least AG-group congruence with the kernel EAω.
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Proof It is evident that σ is reflexive and symmetric. Let (a, b), (b, c) ∈ σ , so that
ea = eb and f b = f c for some e, f ∈ EA. Using Proposition 2.1, we have that

(f e)a = f (ea) = f (eb) = (f e)b = (ef )b = e(f b) = e(f c) = (ef )c = (f e)c,

where f e ∈ EA. Thus (a, c) ∈ σ . Consequently, σ is an equivalence relation on A.
Further, let (a, b) ∈ σ , that is, ea = eb, where e ∈ EA, and let c ∈ A. Then again in
the light of Proposition 2.1, e(ac) = (ea)c = (eb)c = e(bc). Also,

(cc−1)e · ca = (cc−1)c · ea = (cc−1)c · eb = (cc−1)e · cb,

where (cc−1)e ∈ EA. Hence σ is a congruence on A. Since (ef )e = (ef )f and ef ∈
EA for all e, f ∈ EA, then σ is an AG-group congruence on A. Also, let ρ be an AG-
group congruence on A and (a, b) ∈ σ . Then ea = eb, where e ∈ EA, so (eρ)(aρ) =
(eρ)(bρ). Hence aρ = bρ, since eρ is a left identity of the AG-group A/ρ. Thus
σ ⊆ ρ. Consequently, σ is the least AG-group congruence on A. Finally,

a ∈ ker(σ ) ⇐⇒ (∃f ∈ EA) (a,f ) ∈ σ ⇐⇒ (∃e, f ∈ EA) ea = ef

⇐⇒ a ∈ EAω,

as required. �

From Theorem 4.2 follows that (a, b) ∈ σ ⇔ ab−1 ∈ EAω. Also, in the light of
the end of Sect. 5, EAω is a closed completely inverse AG∗∗-subgroupoid of A. Evi-
dently, EA ⊆ EAω and if ab ∈ EAω, then ba ∈ EAω.

A nonempty subset B of a completely inverse AG∗∗-groupoid A is called:

(F) full if EA ⊆ B;
(S) symmetric if xy ∈ B implies yx ∈ B for all x, y ∈ A.

A completely inverse AG∗∗-subgroupoid N of A is said to be normal if it full, closed
and symmetric. In that case, we shall write N � A.

Denote the set of all AG-group congruences on a completely inverse AG∗∗-group-
oid A by G C(A). It is clear that G C(A) = [σ,A×A] is a complete sublattice of C(A).
Note that G C(A) ∼= C(A/σ) and so the lattice G C(A) is modular (by Corollary 3.6).
Further, let N (A) be the set of all normal completely inverse AG∗∗-subgroupoids
of A. It is obvious that EAω ⊆ N for every N � A, and if ∅ �= F ⊆ N (A), then⋂{B : B ∈ F } ∈ N (A). Consequently, N (A) is a complete lattice.

The following theorem (proved in [13]) describes the AG-group congruences on
a completely inverse AG∗∗-groupoid in the terms of its normal completely inverse
AG∗∗-subgroupoids.

Theorem 4.6 Let A be a completely inverse AG∗∗-groupoid, N � A. Then the rela-
tion

ρN = {(a, b) ∈ A × A : ab−1 ∈ N}
is the unique AG-group congruence ρ on A for which ker(ρ) = N .

Conversely, if ρ ∈ G C(A), then ker(ρ) ∈ N (A) and ρ = ρN for N = ker(ρ).
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Consequently, the map φ : N (A) → G C(A) given by Nφ = ρN (N ∈ N (A)) is a
complete lattice isomorphism of N (A) onto G C(A). In particular, the lattice N (A)

is modular.

We say that a congruence ρ on a groupoid A is idempotent pure if eρ ⊆ EA for
all e ∈ EA. Notice that any idempotent pure congruence ρ on an arbitrary completely
inverse AG∗∗-groupoid A is contained in σ . Indeed, if (a, b) ∈ ρ, then (ab−1, bb−1) ∈
ρ, so ab−1 ∈ EA ⊆ EAω. Thus (a, b) ∈ σ , as required.

The following theorem gives necessary and sufficient conditions for a completely
inverse AG∗∗-groupoid to be E-unitary.

Theorem 4.7 Let A = [EA;Ge;φe,f ] be a completely inverse AG∗∗-groupoid. Then
the following conditions are equivalent:

(a) A is E-unitary;
(b) ker(σ ) = EA;
(c) σ is the maximum idempotent pure congruence on A;
(d) σ ∩ μ = 1A;
(e) φe,f is a monomorphism for all e, f ∈ EA such that e ≥ f .

Proof In view of Proposition 4.4, (a) and (b) are equivalent, since ker(σ ) = EAω.
(b) =⇒ (c). This follows from the preceding remark.
(c) =⇒ (d). Indeed, tr(σ ∩ μ) ⊆ tr(μ) = 1EA

(by Theorem 3.4(c)). Furthermore,
ker(σ ∩ μ) ⊆ ker(σ ) = EA. In the light of Theorem 4.2, σ ∩ μ = 1A.

(d) =⇒ (e). Let ae, be ∈ Ge be such that aeφe,f = beφe,f . Then f ae = f be,
therefore, (ae, be) ∈ σ . Since clearly (ae, be) ∈ μ, then ae = be .

(e) =⇒ (a). Let af ∈ Gf be such that eaf = g (e, f, g ∈ EA). Then ef = g.
Hence eg = g, that is, e ≥ g, so af φe,g = gφe,g , therefore, af = g ∈ EA. Thus A is
E-unitary (by Proposition 4.4). �

Let ρ,υ be congruences on A such that ρ ⊆ υ . Then the map Φ : A/ρ → A/υ ,
where (aρ)Φ = aυ for every a ∈ A, is a well-defined epimorphism between these
groupoids. Denote its kernel by

υ/ρ = {(aρ, bρ) ∈ A/ρ × A/ρ : (a, b) ∈ υ}.
Then (A/ρ)/(υ/ρ) ∼= A/υ . Moreover, every congruence α on A/ρ is of the form
υ/ρ, where υ ⊇ ρ is a congruence on A. Indeed, the relation υ , defined on A by:
(a, b) ∈ υ if and only if (aρ, bρ) ∈ α, is a congruence on A such that ρ ⊆ υ and
α = υ/ρ.

We are able now to determine all E-unitary congruences on any completely in-
verse AG∗∗-groupoid.

Theorem 4.8 The intersection of an AG-group congruence and a semilattice con-
gruence on a completely inverse AG∗∗-groupoid A is an E-unitary congruence on A.
Moreover, any E-unitary congruence on a completely inverse AG∗∗-groupoid A can
be expressed uniquely in this way.
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Proof Let ρN be an AG-group congruence (N �A) and υ be a semilattice congruence
on A. Put for simplicity ρ = ρN ∩ υ , and observe that ρN/ρ is an AG-group congru-
ence on A/ρ and υ/ρ is a semilattice congruence on A/ρ. Since ρN/ρ∩υ/ρ = 1A/ρ ,
then σA/ρ ∩ μA/ρ = 1A/ρ (see Theorem 3.4(a)). In the light of Theorem 4.7, ρ is an
E-unitary congruence on A.

Conversely, let ρ be an E-unitary congruence on A, ρN/ρ = σA/ρ and let υ/ρ =
μA/ρ , where ρ ⊆ ρN,υ . Then ρN is an AG-group congruence and υ is a semilattice
congruence on A. Also, (ρN ∩ υ)/ρ = σA/ρ ∩ μA/ρ = 1A/ρ (again by Theorem 4.7).
Thus ρ = ρN ∩ υ , as required.

Finally, let ρ = ρN1 ∩υ1 = ρN2 ∩υ2, where Ni �A and υi is a semilattice congru-
ence on A (i = 1,2). Let (a, b) ∈ υ1. Since υ1 ∩ υ2 is a semilattice congruence on A,
then there exists e, f ∈ EA such that (a, e) ∈ υ1 ∩ υ2, (e, f ) ∈ ρN1, (f, b) ∈ υ1 ∩ υ2
(Theorem 3.2), so (e, f ) ∈ υ1 ∩ρN1 = υ2 ∩ρN2 ⊆ υ2. Hence (a, b) ∈ υ2, i.e., υ1 ⊆ υ2.
By symmetry, we deduce that υ1 = υ2. Put υ1 = υ2 = υ , so that ρ = ρN1 ∩ υ =
ρN2 ∩ υ . If (a, b) ∈ ρN1 , then (aab, abb) ∈ υ ∩ ρN1 ⊆ ρN2 , therefore, (a, b) ∈ ρN2

(by cancellation). Hence ρN1 ⊆ ρN2 . By symmetry, ρN2 ⊆ ρN1 . Thus ρN1 = ρN2 , as
required. �

Corollary 4.9 In any completely inverse AG∗∗-groupoid A, the relation

π = σ ∩ μ

is the least E-unitary congruence on A.

Observe that if ρ is an E-unitary congruence on A, then ker(ρ) = ker(ρN) for
some N � A. In the last section we will show that the converse implication is also
true, that is, for any AG-group congruence ρN on A (N � A), the family

UN = {ρN ∩ υ : μ ⊆ υ}
coincides with the set of all (E-unitary) congruence ρ on A such that

ker(ρ) = ker(ρN).

Finally, denote by U (A) the set of all E-unitary congruences on a completely
inverse AG∗∗-groupoid A. Since the intersection of an arbitrary nonempty family of
E-unitary congruences on A is again an E-unitary congruence on A, and U (A) has a
least element, then the following corollary is valid.

Corollary 4.10 Let A be a completely inverse AG∗∗-groupoid. Then the set U (A) is
a complete ∩-sublattice of C(A) with the least element π and the greatest element
A × A.

Moreover, UN = {ρN ∩ υ : μ ⊆ υ} (N � A) is a complete sublattice of U (A) with
the least element ρN ∩ μ and the greatest element ρN .

In view of the corollary, for each ρ ∈ C(A), there is the least E-unitary congruence
πρ containing ρ. We will show in Sect. 6 that πρ = σρσ ∩ μρμ.
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5 The trace classes of C(A)

Let ρ be a congruence on A, where A denotes (unless otherwise stated) an arbitrary
completely inverse AG∗∗-groupoid. Put K = ker(ρ). It is immediate that K is a full
completely inverse AG∗∗-subgroupoid of A. In the light of Proposition 4.1, K is also
symmetric. Finally, put ρ(K,τ) = ρ, where τ = tr(ρ). Theorem 4.2 states that

(a, b) ∈ ρ(K,τ) ⇐⇒ (aa−1, bb−1) ∈ τ & ab−1 ∈ K. (7)

Notice that if a ∈ ker(ρ(K,τ)), that is, (a, e) ∈ ρ(K,τ), where e ∈ EA, then

ea ∈ K & (e, aa−1) ∈ tr(ρ(K,τ)).

Observe further that if ea ∈ K and (e, aa−1) ∈ tr(ρ), then a = (aa−1)aρea, there-
fore, a ∈ K .

Also, the following special case is of particular interest.

Proposition 5.1 Let A be a completely inverse AG∗∗-groupoid. Then ρ ∈ U (A) if
and only if ker(ρ) is closed in A.

Proof Let ρ ∈ U (A) and a ∈ (ker(ρ))ω. Then b = ea for some b ∈ ker(ρ) and
e ∈ EA. Hence bρ = (eρ)(aρ), where eρ, bρ ∈ EA/ρ and so aρ ∈ EA/ρ , since A/ρ is
E-unitary. Thus a ∈ ker(ρ). Consequently, (ker(ρ))ω = ker(ρ).

Conversely, let (eρ)(aρ) = fρ, where a ∈ A and e, f ∈ EA, then ea ∈ ker(ρ).
Hence a ∈ (ker(ρ))ω = ker(ρ), that is, aρ ∈ EA/ρ . Thus ρ is E-unitary. �

In Sect. 3 we have called a completely inverse AG∗∗-subgroupoid of A normal if
it is full, symmetric and closed in A. Also, we say that a completely inverse AG∗∗-
subgroupoid K is seminormal if K is full and symmetric.

Finally, for any ordered pair (K, τ), where K is a seminormal completely inverse
AG∗∗-subgroupoid of A and τ is a congruence on EA such that

(CP) if ea ∈ K and (e, aa−1) ∈ τ , then a ∈ K (a ∈ A,e ∈ EA),

define a relation ρ(K,τ) like the above. In that case, (K, τ) is a congruence pair for A

and we can define a relation ρ(K,τ) as in (7) above.
The following theorem together with the above consideration and Theorem 4.2

says that any congruence on A is of the form ρ(K,τ), where (K, τ) is a congruence
pair for A, and this expression is unique.

Theorem 5.2 If (K, τ) is a congruence pair for a completely inverse AG∗∗-
groupoid A, then ρ(K,τ) is the unique congruence on A with ker(ρ(K,τ)) = K and
tr(ρ(K,τ)) = τ .

Conversely, if ρ is a congruence on A, then (ker(ρ), tr(ρ)) is a congruence pair
for A and ρ(ker(ρ),tr(ρ)) = ρ.

Proof It is sufficient to show the direct part of the theorem. Put ρ = ρ(K,τ). It is clear
that ρ is reflexive and symmetric. Let now (a, b), (b, c) ∈ ρ. Then (aa−1, cc−1) ∈ τ



218 W.A. Dudek, R.S. Gigoń

and (b−1a)(bc−1) = (b−1b)(ac−1) = (bb−1)(ac−1) ∈ K . Also,

bb−1τ(aa−1)(c−1c) = (ac−1)(a−1c) = (ac−1)(ac−1)−1.

In the light of the condition (CP), ac−1 ∈ K . Thus ρ is transitive. Let (a, b) ∈ ρ and
c ∈ A. Then

(ca)(ca)−1 = (ca)(c−1a−1) = (cc−1)(aa−1)τ (cc−1)(bb−1) = (cb)(cb)−1,

(ac)(ac)−1 = (ac)(a−1c−1) = (aa−1)(cc−1)τ (bb−1)(cc−1) = (bc)(bc)−1.

Also,

(ca)(cb)−1 = (ca)(c−1b−1) = (cc−1)(ab−1) ∈ EAK ⊆ KK ⊆ K,

(ac)(bc)−1 = (ac)(b−1c−1) = (ab−1)(cc−1) ∈ KEA ⊆ KK ⊆ K.

Consequently, ρ is a congruence on A.
Finally, let a ∈ ker(ρ), that is, (a, e) ∈ ρ for some e ∈ EA. Then clearly ea ∈ K

and (e, aa−1) ∈ τ . Hence a ∈ K (by (CP)). Thus ker(ρ) ⊆ K . Conversely, let a ∈ K .
Then a−1 ∈ K . Hence (a−1a, a) ∈ ρ and so a ∈ ker(ρ). Thus ker(ρ) = K . Evidently,
tr(ρ) = τ . In view of Theorem 4.2, ρ(K,τ) is uniquely determined by the congruence
pair (K, τ). �

It is easy to see that if K is closed in A, then the condition (CP) is not necessary in
the proof of the direct part of Theorem 5.2. Combining this fact with Proposition 5.1
and Theorem 4.2 we obtain the following corollary.

Corollary 5.3 Each E-unitary congruence ρ on a completely inverse AG∗∗-groupoid
A is of the form ρ(K,τ), where K � A and τ ∈ C(EA), and this expression is unique.

Remark 4 One can modify Proposition III.2.3 [11] for completely inverse AG∗∗-
groupoids.

Further, let ρ be a congruence on A. Put

μ(ρ) = {(a, b) ∈ A × A : (aρ, bρ) ∈ μA/ρ}.
Clearly, μ(ρ) ∈ C(A) and ρ ⊆ μ(ρ). From Theorem 3.4 follows that

(a, b) ∈ μ(ρ) ⇐⇒ (aa−1, bb−1) ∈ ρ.

Put μ(ρ) = ρθ . It is clear that tr(ρ) = tr(ρθ ). Also, if tr(ρ1) = tr(ρ2) (ρ1, ρ2 ∈ C(A)),
then from the above equality follows that ρθ

1 = ρθ
2 . Consequently, ρθ is the maximum

congruence with respect to tr(ρ).
Also, put (see Theorem 4.5)

ρθ = {(a, b) ∈ A × A : (aa−1, bb−1) ∈ ρ & (∃e ∈ E(aa−1)ρ) ea = eb}.
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Since a = (aa−1)a, then ρθ is reflexive. Obviously, ρθ is symmetric. The proof that
ρθ is transitive and left compatible is closely similar to the corresponding proof for
the relation σ (see Theorem 4.5). Let (a, b) ∈ ρθ and c ∈ A. Then

(ac)(ac)−1 = (ac)(a−1c−1) = (aa−1)(cc−1)ρ(bb−1)(cc−1) = (bc)(bc)−1.

Also, e(cc−1)ρ(aa−1)(cc−1) = (ac)(ac)−1 and

e(cc−1) · ac = ea · (cc−1)c = eb · (cc−1)c = e(cc−1) · bc.

Consequently, ρθ is a congruence on A. Finally, from the definition of ρθ follows that
tr(ρ) = tr(ρθ ), and since the definition of ρθ depends only on idempotents, then ρθ is
the minimum congruence with respect to tr(ρ).

We have just proved part of the following theorem.

Theorem 5.4 Let A be an arbitrary completely inverse AG∗∗-groupoid. Define a map
Θ : C(A) → C(EA) by

ρΘ = tr(ρ) (ρ ∈ C(A)).

Then Θ is a complete lattice homomorphism of C(A) onto C(EA). Also, if θ denotes
the congruence on C(A) induced by Θ , that is,

θ = {(ρ1, ρ2) ∈ C(A) × C(A) : tr(ρ1) = tr(ρ2)},
then for every ρ ∈ C(A),

ρθ = [ρθ ,ρ
θ ]

is a complete modular sublattice (with commuting elements) of C(A).

Proof The proof that Θ is a complete homomorphism is closely similar to the corre-
sponding proof of Theorem III.2.5 [11], since the join of any nonempty family F of
congruences in an arbitrary universal algebra is given by

⋃
n∈N

(
⋃

F )n. Further, let
τ be a congruence on EA. Define an equivalence relation ρ on A by

ρ = {(a, b) ∈ A × A : (aa−1, bb−1) ∈ τ }.
It is easy to check that ρ is compatible with the operation on A. Consequently,
ρ ∈ C(A). Obviously, tr(ρ) = τ . Thus Θ maps C(A) onto C(EA).

Finally, ρθ is an interval of a complete lattice, so it is itself a complete lattice. Let
ρ1, ρ2 ∈ ρθ and a(ρ1ρ2)b. Then aρ1cρ2b, where c ∈ A, so (aa−1)ρ1(cc

−1)ρ2(bb−1).
Hence (aa−1)ρ2(cc

−1)ρ1(bb−1), since tr(ρ1) = tr(ρ2). Moreover, (cc−1)ρ2(bc−1).
It follows that (aa−1)ρ2(bc−1). Consequently,

a = (aa−1 · a)ρ2(bc−1 · a) = (ac−1)b.

Further, (ac−1)ρ1(cc
−1) and so (ac−1)ρ1(bb−1). Hence (ac−1 · b)ρ1(bb−1 · b) = b.

We have just shown that aρ2(ac−1 · b)ρ1b, that is, ρ1ρ2 ⊆ ρ2ρ1. By symmetry, we
deduce that ρ1ρ2 = ρ2ρ1, therefore, the lattice ρθ is modular. �

We call the classes of θ in the above theorem, the trace classes of A.
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Lemma 5.5 Let A be a completely inverse AG∗∗-groupoid. Then

ρθ ⊆ γθ ⇐⇒ tr(ρ) ⊆ tr(γ ) ⇐⇒ ρθ ⊆ γ θ

for all ρ,γ ∈ C(A). Also, if ρ ⊆ γ , then ρθ ⊆ γθ and ρθ ⊆ γ θ .

Proof This follows directly from the definitions of ρθ and ρθ . �

Lemma 5.6 Let F be an arbitrary nonempty family of congruences on a completely
inverse AG∗∗-groupoid. Put

Fθ = {ρθ : ρ ∈ F }, F θ = {ρθ : ρ ∈ F }.
Then

∨
Fθ =

(∨
F

)

θ
&

⋂
F θ =

(⋂
F

)θ

.

Proof The proof is similar to the proof of Lemma III.2.9 [11]. �

Lemma 5.7 Let A a completely inverse AG∗∗-groupoid. Then σ = (A × A)θ .

Proof This is obvious. �

The following corollary gives another equivalent conditions for a completely in-
verse AG∗∗-groupoid to be E-unitary.

Corollary 5.8 Let A be a completely inverse AG∗∗-groupoid. The following condi-
tions are equivalent:

(a) A is E-unitary;
(b) ρθ = ρ ∩ σ for every ρ ∈ C(A);
(c) ρθ is an idempotent pure congruence on A for every ρ ∈ C(A).

Proof Recall that A is E-unitary if and only if σ is the maximum idempotent pure
congruence on A (Theorem 4.7).

(a) =⇒ (b). If ρ ∈ C(A), then ρθ ⊆ ρ ∩ (A×A)θ = ρ ∩σ (Lemmas 5.5, 5.7). On
the other hand,

tr(ρ ∩ σ) = tr(ρ) ∩ tr(σ ) = tr(ρ) ∩ (EA × EA) = tr(ρ) = tr(ρθ )

and

ker(ρ ∩ σ) = ker(ρ) ∩ ker(σ ) = ker(ρ) ∩ EA = EA ⊆ ker(ρθ ).

Thus ρ ∩ σ ⊆ ρθ (Theorem 4.2). Consequently, ρθ = ρ ∩ σ .
(b) =⇒ (a). Clearly, μθ = 1A. Moreover, μθ = μ∩ σ = π (Corollary 4.9), there-

fore, π = 1A, so A is E-unitary.
It is now clear that (a) implies (c). We show the opposite implication. Indeed, if

(c) holds, then (A × A)θ = σ is idempotent pure. Since ρθ ⊆ σ for every ρ ∈ C(A),
then each ρθ is idempotent pure, too, as required. �
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We have mentioned in the above proof that if A is E-unitary, then σ is the max-
imum idempotent pure congruence on A, therefore, the set of all idempotent pure
congruences [1A,σ ] on an E-unitary completely inverse AG∗∗-groupoid A forms a
complete sublattice of the lattice C(A).

From the above corollary we obtain the following proposition.

Proposition 5.9 Let A be an E-unitary completely inverse AG∗∗-groupoid. Then the
mapping χ : C(A) → C(A) defined by

ρχ = ρ ∩ σ (ρ ∈ C(A))

is a complete lattice homomorphism of C(A) onto the lattice of all idempotent pure
congruences on A.

Proof In view of Corollary 5.8, ρθ = ρ ∩ σ for every ρ ∈ C(A). Hence χ is a
complete ∨-homomorphism (by Lemma 5.6). It is evident that χ is a complete
∩-homomorphism. Finally, if ρ is idempotent pure, then ρ ⊆ σ and so ρχ = ρ. Thus
χ maps C(A) onto the lattice of all idempotent pure congruences on A, as exactly
required. �

We now investigate the θ -classes of A.

Lemma 5.10 In any completely inverse AG∗∗-groupoid A, μA/ρ = μ(ρ)/ρ for ev-
ery ρ ∈ C(A). In particular, [ρ/ρ,ρθ/ρ] is the modular lattice of all idempotent-
separating congruences on A/ρ (ρ ∈ C(A)).

Proof It is easy to see that μ(ρ)/ρ is idempotent-separating, so μ(ρ)/ρ ⊆ μA/ρ .
On the other hand, if γ /ρ, where ρ ⊆ γ , is an idempotent-separating congruence
on A/ρ, then tr(γ ) ⊆ tr(ρ) and so tr(γ ) = tr(ρ). Hence ρ ⊆ γ ⊆ μ(ρ), therefore,
γ /ρ ⊆ μ(ρ)/ρ. Thus μA/ρ = μ(ρ)/ρ. The second part of the lemma follows from
Theorem 3.5. �

The following theorem follows easily from the above lemma.

Theorem 5.11 Let A be a completely inverse AG∗∗-groupoid, ρ ∈ C(A). Define a
map φ : [ρθ ,ρ

θ ] → A/ρθ by ρφ = ρ/ρθ for all ρ ∈ [ρθ ,ρ
θ ]. Then φ is a complete

isomorphism of the trace class [ρθ ,ρ
θ ] onto the modular lattice of all idempotent-

separating congruences on A/ρθ .

Remark 5 Note that φ|[γ,μ(ρ)], where γ ∈ ρθ , is a complete isomorphism of the in-
terval [γ,μ(ρ)] onto the lattice of all idempotent-separating congruences on A/γ .

Recall that A is fundamental if and only if μ = 1A. By the above remark we have
the following corollary.

Corollary 5.12 Let ρ be a congruence on a completely inverse AG∗∗-groupoid A.
Then A/ρ is fundamental if and only if ρ = μ(ρ).
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Denote by F C(A) the set of all fundamental congruences on A, that is,

F C(A) = {μ(ρ) : ρ ∈ C(A)}.
Since 1A ⊆ ρ, then μ = μ(1A) ⊆ μ(ρ) for all ρ ∈ C(A), what means that μ is the

least fundamental congruence on A. Also, from Lemma 5.6 follows that F C(A) is a
complete ∩-sublattice of C(A).

We have just proved a part of the following theorem.

Theorem 5.13 Let A be a completely inverse AG∗∗-groupoid. Then F C(A) is a com-
plete ∩-sublattice of C(A) with the least element μ and the greatest element A × A.
For any nonempty family {ρi : i ∈ I } of fundamental congruences on A, the join of
{ρi : i ∈ I } in F C(A) is given by μ(

∨{ρi : i ∈ I }). Also, F C(A) ∼= C(EA).

Proof Let ∅ �= {ρi : i ∈ I } ⊆ F C(A). Then
(∨

{ρi : i ∈ I },μ
(∨

{ρi : i ∈ I }
))

∈ θ.

On the other hand, if ρ ∈ [∨{ρi : i ∈ I },μ(
∨{ρi : i ∈ I })], then μ(ρ) = ρ if and only

if ρ = μ(
∨{ρi : i ∈ I }). Consequently, μ(

∨{ρi : i ∈ I }) is the join of {ρi : i ∈ I } in
F (S).

Finally, if μ(ρ1) �= μ(ρ2), where ρ1, ρ2 ∈ C(A), then tr(ρ1) �= tr(ρ2), therefore,
the restriction of the map Θ from Theorem 5.4 to the set F C(A) is the required
complete lattice isomorphism. �

6 The kernel classes of C(A)

Let A be an AG∗∗-groupoid. For every nonempty subset Q of A there exists an as-
sociated equivalence relation Q on A which is induced by the partition: {Q,A \ Q}.
Define on A an equivalence relation τQ by

τQ = {(a, b) ∈ A × A : (∀x, y ∈ A1)x(ay) ∈ Q ⇐⇒ x(by) ∈ Q},
where A1 = A ∪ {1}, 1 �∈ A and 1a = a1 = a for all a ∈ A.

Observe that if (a, b) ∈ τQ, then putting x = y = 1 in the definition of τQ, we
obtain that either a, b ∈ Q or a, b /∈ Q. Thus τQ ⊆ Q.

Proposition 6.1 Let Q be a nonempty subset of an AG∗∗-groupoid A. Then τQ is the
largest congruence ρ on A for which Q is the union of some ρ-classes.

Proof Let (a, b) ∈ τQ,x, y ∈ A1 and c ∈ A. Observe that

x(ac · y) = (ac)(xy) = (xy · c)a.

Hence if x(ac ·y) ∈ Q, then (xy · c)b ∈ Q, since (a, b) ∈ τQ. Thus we get x(bc ·y) ∈
Q. By symmetry, we conclude that τQ is right compatible. Further, the equality

x(ca · y) = (ca)(xy) = (cx)(ay)
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implies that τQ is also left compatible. Consequently, τQ is a congruence on A and
Q is the union of some τQ-classes, since τQ ⊆ Q. Finally, if ρ is any congruence
on A for which Q is the union of some ρ-classes, then ρ ⊆ Q. Hence if (a, b) ∈ ρ,
then either a, b ∈ Q or a, b /∈ Q. Thus for all x, y ∈ A1, x(ay) ∈ Q ⇔ x(by) ∈ Q, so
aτQb. Consequently, ρ ⊆ τQ. �

Corollary 6.2 In any completely inverse AG∗∗-groupoid A, the relation τEA is the
largest idempotent pure congruence on A.

We shall write τ instead of τEA , or τA if necessary.
Let ρ be a congruence on A, where A denotes (unless otherwise stated) an arbi-

trary completely inverse AG∗∗-groupoid. Put

τ(ρ) = {(a, b) ∈ A × A : (aρ, bρ) ∈ τA/ρ}.
Clearly, τ(ρ) ∈ C(A) and ρ ⊆ τ(ρ). Using Theorem 3.2, one can prove without dif-
ficulty that τ(ρ) = τ ker(ρ). Thus τ(ρ) is the maximum congruence with respect to
ker(ρ). Denote it by ρκ .

Further, put ρκ = ρ ∩ μ. Then ker(ρκ) = ker(ρ), since μ is a semilattice congru-
ence. On the other hand, μ is idempotent-separating, so ρκ is the minimum congru-
ence with respect to ker(ρ).

Finally if K is a seminormal completely inverse AG∗∗-subgroupoid of A. Then
the pair (K,1EA

) is a congruence pair for A, since then the condition (CP) is trivially
met for this pair, and ker(ρ(K,1EA

)) = K . Consequently, K is seminormal if and only
if K is a kernel of some congruence on A. Denote by S N (A) the set of seminormal
completely inverse AG∗∗-subgroupoids of A. It is easy to see that S N (A) is a lattice
under inclusion.

It is clear that if ∅ �= {ρi : i ∈ I } ⊆ C(A), then

ker
(⋂

{ρi : i ∈ I }
)

=
⋂

{ker(ρi) : i ∈ I },

therefore, we have just proved the following theorem.

Theorem 6.3 Let A be an arbitrary completely inverse AG∗∗-groupoid. Define a map
K : C(A) → P (A) by

ρK = ker(ρ) (ρ ∈ C(A)).

Then K is a complete lattice ∩-homomorphism of C(A) onto S N (A). Also, if κ

denotes the ∩-congruence on C(A) induced by K , that is,

κ = {(ρ1, ρ2) ∈ C(A) × C(A) : ker(ρ1) = ker(ρ2)},
then for ever ρ ∈ C(A),

ρκ = [ρκ,ρκ ]
is a complete sublattice of C(A).
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We call the classes of κ in the above theorem, the kernel classes of A.

Example 6.4 The following example shows that ker(ρ) ⊆ ker(γ ) (or even ρ ⊆ γ )
does not imply (in general) that ρκ ⊆ γ κ . Indeed, let A = {a, b, e, f } be a commuta-
tive inverse semigroup with the multiplication table given below:

· a b e f

a e e a a

b e f a b

e a a e e

f a b e f

Then clearly 1A ⊆ ρ =1A∪{(a, e),(e, a)}. On the other hand, ρκ = ρ∪{(b, f ),(f, b)}
and 1κ

A = 1A ∪ {(e, f ), (f, e), (a, b), (b, a)} and so 1κ
A = τ � ρκ = τ(ρ). Notice also

that τ ∩ τ(ρ) = 1A.

Using Theorem 4.2 one can easily prove the following proposition.

Proposition 6.5 If ρ is a congruence on a completely inverse AG∗∗-groupoid, then

ρ = ρθ ∨ ρκ = ρθ ∩ ρκ .

We now investigate the κ-classes of A.

Lemma 6.6 In any completely inverse AG∗∗-groupoid A, τA/ρ = τ(ρ)/ρ for every
ρ ∈ C(A). In particular, [ρ/ρ,ρκ/ρ] is the lattice of all idempotent pure congruences
on A/ρ (ρ ∈ C(A)).

Proof One can easily see that τ(ρ)/ρ is idempotent pure and so τ(ρ)/ρ ⊆ τA/ρ .
On the other hand, if γ /ρ, where ρ ⊆ γ , is idempotent pure, then ker(γ ) ⊆ ker(ρ),
therefore, ker(γ ) = ker(ρ). Hence ρ ⊆ γ ⊆ τ(ρ), so γ /ρ ⊆ τ(ρ)/ρ. Consequently,
τA/ρ = τ(ρ)/ρ. �

From the above lemma follows the following theorem.

Theorem 6.7 Let A be a completely inverse AG∗∗-groupoid, ρ ∈ C(A). Define a
map φ : [ρκ,ρκ ] → A/ρκ by ρφ = ρ/ρκ for all ρ ∈ [ρκ,ρκ ]. Then φ is a complete
isomorphism of the kernel class [ρκ,ρκ ] onto the lattice of all idempotent pure con-
gruences on A/ρκ .

Note that φ|[γ,τ(ρ)], where γ ∈ ρκ , is a complete isomorphism of the interval
[γ, τ (ρ)] onto the lattice of all idempotent pure congruences on A/γ .

Recall that A is E-disjunctive if and only if τ = 1A. By the above remark we have
the following corollary.

Corollary 6.8 Let ρ be a congruence on a completely inverse AG∗∗-groupoid A.
Then A/ρ is E-disjunctive if and only if ρ = τ(ρ).
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Remark 6 Note that in view of the end of Example 6.4, the set of all E-disjunctive
congruences on a commutative inverse semigroup (in particular, on a completely in-
verse AG∗∗-groupoid) A does not form (in general) a sublattice of C(A).

Also, a completely inverse AG∗∗-groupoid A is an AG-group if and only if A is
both E-unitary and E-disjunctive.

Finally, notice that a congruence ρ on A is idempotent pure if and only if ρ ∩ μ =
1A. In particular, τ ∩ μ = 1A, therefore, A is a subdirect product of A/τ and EA,
where A/τ is an E-disjunctive completely inverse AG∗∗-groupoid.

Finally, we go back to study the lattice U (A) of all E-unitary congruences on a
completely inverse AG∗∗-groupoid A. First, we prove the following useful result.

Lemma 6.9 The following conditions are valid for a congruence ρ on a completely
inverse AG∗∗-groupoid A:

(a) ρ ∨ σ = σρσ ;
(b) a(ρ ∨ σ)b ⇔ (ea)ρ(eb) for some e ∈ EA;
(c) ker(ρ ∨ σ) = (ker(ρ))ω.

Proof Using Proposition 2.1, we may show, in a very similar way like in the proof
of Lemma III.5.4(i) [11], the condition (a). Furthermore, the condition (b) follows
directly from Proposition 2.1 and (a). Finally, the proof of (c) is closely similar to the
corresponding proof of Corollary III.5.5 [11]. �

Using Proposition 2.1 and Lemma 6.9(b), we are able to show the following theo-
rem.

Theorem 6.10 Let A be an arbitrary completely inverse AG∗∗-groupoid. Then the
map φ : C(A) → C(A) defined by

ρφ = ρ ∨ σ

is a homomorphism of C(A) onto the lattice [σ,A × A] of all AG-group congruences
on A.

Define the relation σ̄ on C(A) by putting

(ρ1, ρ2) ∈ σ̄ ⇐⇒ ρ1 ∨ σ = ρ2 ∨ σ.

In the light of the above theorem, σ̄ is a congruence on C(A), since φφ−1 = σ̄ .

Proposition 6.11 Let A be a completely inverse AG∗∗-groupoid and ρ ∈ C(A). Then
the elements ρ,πρ and ρ ∨ σ are σ̄ -equivalent and ρ ⊆ πρ ⊆ ρ ∨ σ . Moreover, the
element ρ ∨ σ is the largest in the σ̄ -class ρσ̄ .

Proof Since πρ is the least E-unitary congruence containing ρ and ρ ∨ σ is
E-unitary, then ρ ⊆ πρ ⊆ ρ ∨ σ . Hence we get ρ ∨ σ ⊆ πρ ∨ σ ⊆ ρ ∨ σ , so
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ρ ∨ σ = πρ ∨ σ , therefore, (ρ,πρ) ∈ σ̄ . Evidently, (ρ,ρ ∨ σ) ∈ σ̄ . This implies the
first part of the proposition. The second part is clear. �

Further, let a, b ∈ A and ρ ∈ C(A). If (a, b) ∈ σ , then evidently (aρ)σ (bρ) in
S/ρ. If in addition, ρ ⊆ σ , then (aρ)σ (bρ) in S/ρ implies that (a, b) ∈ σ in S. It
follows that A/σ ∼= (A/ρ)/σ , i.e., A and A/ρ have isomorphic maximal AG-group
homomorphic images. In that case, we may say that ρ preserves the maximal AG-
group homomorphic images. Since for every ρ ∈ C(A) we have ρθ ⊆ ρ, then we
obtain the following factorization:

A → A/ρθ → A/ρ ∼= (A/ρθ )/(ρ/ρθ ).

Using the obvious terminology, we have the following proposition.

Proposition 6.12 Every homomorphism of completely inverse AG∗∗-groupoids can
be factored into a homomorphism preserving the maximal AG-group homomorphic
images and an idempotent-separating homomorphism.

Proof The proof is similar to the proof of Proposition III.5.10 [11]. �

The following theorem gives another equivalent conditions for a congruence to be
E-unitary (cf. the end of Sect. 4).

Theorem 6.13 Let ρ be a congruence on a completely inverse AG∗∗-groupoid A.
Then the following conditions are equivalent:

(a) ρ is E-unitary;
(b) ker(ρ) is closed;
(c) ker(ρ) = ker(ρ ∨ σ);
(d) ρ ∨ σ = τ(ρ);
(e) τ(ρ) ∈ G C(A).

Proof In the light of Proposition 5.1, (a) and (b) are equivalent.
(b) =⇒ (c). This follows from Lemma 6.9(c).
(c) =⇒ (d). Indeed, ker(τ (ρ)) = ker(ρ) = ker(ρ ∨ σ) and so ρ ∨ σ ⊆ τ(ρ),

therefore, τ(ρ) ∈ G C(A).
(d) =⇒ (a). Let τ(ρ) ∈ G C(A). Then τ(ρ) is E-unitary. Since the conditions (a)

and (b) are equivalent, we get ker(ρ) = ker(τ (ρ)) is closed. Thus ρ is E-unitary.
(c) =⇒ (d). By the above ρ∨σ ⊆ τ(ρ) and so ρ∨σ, τ(ρ) ∈ G C(S). Furthermore,

ker(τ (ρ)) = ker(ρ) = ker(ρ ∨ σ). Hence ρ ∨ σ = τ(ρ) (by Theorem 4.6).
(d) =⇒ (e). This is trivial. �

In view of the above theorem, Theorem 6.3 and Corollary 4.10,

ρNκ = {ρN ∩ ν : μ ⊆ ν} = [ρN ∩ μ,ρN ]



Completely inverse AG∗∗-groupoids 227

for every N � A. Consequently,

U (A) =
⋃

N�A

{ρN ∩ ν : μ ⊆ ν}.

Thus we have the following statement (see the end of Sect. 4).

Proposition 6.14 Let ρ be a congruence on a completely inverse AG∗∗-groupoid A.
Then:

(a) ρ ∨ μ = μρμ;
(b) a(ρ ∨ μ)b ⇔ (aa−1)ρ(bb−1);
(c) πρ = σρσ ∩ μρμ.

Proof (a) It is clear that μρμ ⊆ ρ ∨ μ is a reflexive, symmetric and compatible re-
lation on A. We show that it is also transitive. Let a(μρμ)b(μρμ)c. Then there exist
elements r, s, t,w ∈ A such that

aa−1 = rr−1, (r, s) ∈ ρ, ss−1 = bb−1,

bb−1 = t t−1, (t,w) ∈ ρ, ww−1 = cc−1.

Also, (rr−1)ρ(ss−1) = (t t−1)ρ(ww−1). Consequently,

aμ(aa−1) = (rr−1)ρ(ww−1) = (cc−1)μc.

Hence (a, c) ∈ μρμ, as required, and so μρμ is a congruence on A contained in
ρ ∨ μ. Since evidently ρ,μ ⊆ μρμ, then (a) holds.

(b) (=⇒) Let a(ρ ∨ μ)b. Then by (a), aa−1 = cc−1, (c, d) ∈ ρ and dd−1 = bb−1

for some c, d ∈ A. Hence (cc−1)ρ(dd−1). Thus (aa−1)ρ(bb−1).
(⇐=) If (aa−1)ρ(bb−1), then aμ(aa−1)ρ(bb−1)μb. Thus a(ρ ∨ μ)b.
(c) In the light of Lemma 6.9 (a) and the condition (b), α = σρσ ∩ μρμ is a

congruence on A. It is evident that ρ ⊆ α and ker(α) = ker(σρσ), therefore, α is an
E-unitary congruence on A which contains ρ. Finally, let ρ ⊆ β = ρN ∩ ν ∈ U (A),
where N � A and μ ⊆ ν. Then ρ ∨ σ ⊆ ρN ∨ σ = ρN and ρ ∨ μ ⊆ ν ∨ μ = ν. It
follows that α ⊆ ρN ∩ ν = β , as required. �

Using the condition (b) one can prove the following theorem.

Theorem 6.15 Let A be an arbitrary completely inverse AG∗∗-groupoid. Then the
map φ : C(A) → C(A) defined by

ρφ = ρ ∨ μ

is a homomorphism of C(A) onto the lattice [μ,A × A] of semilattice congruences
on A.

Let ρ ∈ C(A). Since ρ ⊆ A × A, then there is the least semilattice congruence μρ

containing ρ (note that μρ = πρ , see the proof of Proposition 6.14(c)).
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Define the relation μ on C(A) by putting

(ρ1, ρ2) ∈ μ ⇐⇒ ρ1 ∨ μ = ρ2 ∨ μ.

In view of the above theorem, μ is a congruence on C(A).

Proposition 6.16 Let A be a completely inverse AG∗∗-groupoid, ρ ∈ C(A). Then the
elements ρ,μρ and ρ ∨ μ are μ-equivalent and ρ ⊆ μρ ⊆ ρ ∨ μ. Moreover, the
element ρ ∨ μ is the largest in the μ-class ρμ.

Also, let a, b ∈ A and ρ ∈ C(A). If (a, b) ∈ μ, then clearly (aρ)μ(bρ) in S/ρ.
If in addition, ρ ⊆ μ, then (aρ)μ(bρ) in S/ρ implies that (a, b) ∈ μ, since μ is
idempotent-separating. It follows that A/μ ∼= (A/ρ)/μ, that is, A and A/ρ have
isomorphic minimal idempotent-separating homomorphic images. We may say that
ρ preserves the minimal idempotent-separating homomorphic images. Since for all
ρ ∈ C(A), ρκ ⊆ ρ, then we have the following factorization:

A → A/ρκ → A/ρ ∼= (A/ρκ)/(ρ/ρκ).

We get the following proposition.

Proposition 6.17 Every homomorphism of completely inverse AG∗∗-groupoids can
be factored into a homomorphism preserving the minimal idempotent-separating ho-
momorphic images and an idempotent pure homomorphism.

Proof Let ρ be a congruence on a completely inverse AG∗∗-groupoid A. Then ob-
viously ρκ ⊆ μ, and hence the canonical homomorphism of A onto A/ρκ pre-
serves the minimal idempotent-separating homomorphic images. Also, the mapping
aρκ → aρ (a ∈ A) is an idempotent pure homomorphism of A/ρκ onto A/ρ, since
ker(ρ) = ker(ρκ). The thesis of the proposition follows now from the above factor-
ization. �

Since μ is also the least semilattice congruence on A (Theorem 3.4), then we may
replace in the above proposition the words “minimal idempotent-separating” by the
words “maximal semilattice”.

Once again we prove some equivalent conditions for A to be E-unitary.

Theorem 6.18 Let A be a completely inverse AG∗∗-groupoid. The following condi-
tions are equivalent:

(a) A is E-unitary;
(b) σ = τ ;
(c) every idempotent pure congruence on A is E-unitary;
(d) there exists an idempotent pure E-unitary congruence on A;
(e) τ is E-unitary.

Proof (a) =⇒ (b). Let π = 1A. Then σ = τ(π) = τ(1A) = τ .
(b) =⇒ (a). Let σ = τ . Then π = σκ = τκ = 1A.
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(a) =⇒ (c). Firstly, A/τ is E-unitary. Indeed, if (eτ )(aτ) = f τ ∈ EA/τ , where
a ∈ A and e, f ∈ EA, then (ea,f ) ∈ τ . Hence ea ∈ EA. Thus a ∈ EA. Secondly, if
ρ ∈ C(A) is idempotent pure, then ρ ⊆ τ . Consequently, ρ is E-unitary.

(c) =⇒ (d). Obvious.
(d) =⇒ (e). If ρ is an idempotent pure E-unitary congruence on A, then we get

π ⊆ ρ ⊆ τ ⊆ σ , so τ is E-unitary (Theorem 6.13).
(e) =⇒ (a). Let ea = f , where a ∈ A and e, f ∈ EA. Then (eτ )(aτ) = f τ and

so a ∈ ker(τ ) = EA. Thus S is E-unitary. �

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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