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The superstatistics concept is a useful statistical method to describe inhomogeneous complex systems for which a system parameter
β fluctuates on a large spatio-temporal scale. In this paper we analyze a measured time series of wind speed fluctuations and extract
the superstatistical distribution function f (β) directly from the data. We construct suitable Langevin and Fokker-Planck models with
a position dependent β-field and show that they reduce to standard type of superstatistics in the overdamped limit.
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The superstatistics concept introduced in 2003 [1] provides
a useful tool to describe a large variety of complex sys-
tems [2–15]. The basic idea is to characterize the complex
system under consideration by a superposition of two statis-
tics, one corresponding to ordinary statistical mechanics (on
a mesoscopic level modeled e.g. by a Langevin equation) and
the other one corresponding to a slowly varying parameter
β(�x, t) of the system which can be, but need not to be, an in-
verse temperature. There are many interesting applications
of superstatistical techniques. Recent work in this direction
includes train delay statistics [16], the distribution of accel-
erations of test particles in turbulent flows [17] and cancer
survival statistics [18]. Further applications are described
in [19–41].

In this paper, as a working example, we study measured
statistics of wind speed fluctuations. For previous work in
this direction, see [25, 26]. We will extract the superstatis-
tical distribution function f (β) out of our data set and show
that in good approximation it is an inverse gamma distribu-
tion. As a theoretical model for these and other data sets,
we will study Langevin and Fokker-Planck equations with a
varying, position-dependent β. We will show that in the over-
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damped limit these models reduce to standard type of super-
statistics. Skewed stationary distributions arise naturally in
these types of models if the overdamped limit is not com-
pletely performed.

1 Linear Langevin equation with time-depen-
dent β

Let us study as a simple example the following Langevin
equation:

d
dt

v(t) = −γv(t) +

√
2γ
m

1
β(t)

g(t), (1)

where γ and m are constants and g(t) corresponds to Gaussian
white noise with unit variance. v(t) is a stochastic process that
can be associated with the velocity of a Brownian particle. If
β(t) = β is a constant, then one ends up with the standard
Langevin equation which describes the dynamical process of
a Brownian particle with mass m in an environment with con-
stant temperature 1/β. It is well known that the stationary ve-
locity distribution of a Brownian particle is a Gaussian distri-
bution with zero mean and variance 1/β. The relaxation time

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81289032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


3634 Van der Straeten E, et al. Chinese Sci Bull December (2011) Vol. 56 No. 34

is τ = 1/γ. In superstatistics, one considers a Brownian parti-
cle moving through an environment with a slowly fluctuating
temperature field whose changes take place on a typical time
scale T such that τ << T . When this inequality holds, the
local velocity distribution of the system can relax to a Gaus-
sian distribution before the next change of β(t) takes place.
As such, after a long time, the stationary velocity distribu-
tion P(v) of the particle is just a superposition of Gaussian
distributions weighted with a function f (β):

P(v) ≈
∫ βmax

βmin

dβ f (β)

√
mβ
2π

exp

(
−1

2
mβv2

)
. (2)

This f (β) is the probability density to observe some value of
β. Depending on the properties of f (β), different results for
the stationary velocity distribution P(v) will occur [4], e.g.
power-laws or stretched exponentials. In [2, 29] a method
was introduced to determine f (β), given an experimental time
series. The method extracts the main superstatistical param-
eters out of a given data set and examines the validity of the
superstatistical model assumptions. Depending on the system
under study, one can obtain different results for f (β). We will
first briefly outline this method to extract f (β) from the data.

The starting point is a discrete time series v containing n
data points. Using the definitions proposed in [2,29], one can
estimate values for the two different time scales τ and T . In
case that the inequality τ/T << 1 holds, one proceeds by di-
viding the time series v in N different time slices of length t
with N = �n/t�, where �x� means rounding the value of x to
the nearest lower integer. Then, one calculates the variance
of v in each of these sub-intervals. The inverse of the vari-
ance is an estimator for the value of β. As such, one obtains a
new series containing N points which are denoted as βi with
i = 1, 2, . . . ,N. Within this assumption, the distribution P(v)
is approximated by

P(v) ≈ 1
N

N∑
i=1

√
βi

2π
e−

1
2 βiv2
. (3)

When N is large enough, one can replace expression (3) by
(2) with f (β) being the probability density that the value of
the inverse variance in a randomly chosen time slice of length
T equals β. Notice that the superstatistical approach includes
two approximations. In the first step, one assumes the exis-
tence of two time scales τ and T such that in every time slice
‘local’ equilibrium is reached. Then, P(v) can be approxi-
mated by (3). In the second step one assumes the existence
of a distribution f (β) replacing the summation in expression
(3) by an integral. Then, P(v) can be approximated by (2).

2 Application to wind speed fluctuations

In the following, as a working example, we apply our method
to an experimentally measured time series of the horizon-
tal component v(t) of wind speeds recorded at the Lamme-
fjord site at a height of 10 m (cup 1) during the year 1987
(http://www.winddata.com). The incremental distribution of

uδ(t) := v(t + δ) − v(t) exhibits non-Gaussian behavior that
can be modelled using superstatistics [41]. As an illustration,
we calculated the superstatistical approximation of the incre-
mental distribution (δ = 8) of the windspeeds at day 191. The
measuring frequency is 8 Hz. This means that the number of
data points is n = 24 × 3600 × 8 ≈ 7 × 105. The two dif-
ferent time scales extracted from the data are τ ≈ 4.1 and
T ≈ 112, obtained using similar techniques as in [2,29]. This
illustrates that the data set shows clear time scale separation,
in agreement with the results of [26]. Knowing the value of
T , one can construct the distribution f (β) and try to approxi-
mate this histogram with some well-known distributions such
as the gamma distribution, the lognormal distribution or the
inverse gamma distribution. The latter one is given by

f (β) =
θα

Γ(α)
β−α−1e−θ/β. (4)

Here α and θ are parameters. The relevance of the above three
distributions was motivated in [2]. The results of our calcula-
tions are shown in Figure 1. There is an excellent agreement
between the histogram extracted from the data and the inverse
gamma distribution. Figure 1(b) also shows the empirical dis-
tribution P(u) together with the first and second approxima-
tion of superstatistics given by eqs. (3) and (2), respectively.
The first approximation of superstatistics well models the fat
tails of the empirical distribution P(u), see Figure 1. The
excellent agreement between P(u) and expression (2), with
f (β) being the inverse gamma distribution, gives further evi-
dence that this latter distribution is well able to represent the
fluctuations of β. Summarizing, our simple superstatististical
model discussed so far is a good first-order approximation of
the process of windspeeds increments.

Figure 2 shows the extracted time scale ratio T/τ as a func-
tion of δ. Apparently, for small δ the time scale separation be-
tween T and τ is less pronounced. Figure 2(b) also shows a
parameter ε as a function of δ. This ε was defined in [29] as a
measure of quality of the superstatistical approximation. The
smaller ε, the better the superstatistical model assumptions
are satisfied for the given time series.

3 Superstatistics and overdamped motion

We will now generalize the Langevin approach to superstatis-
tics. We start from the following set of equations:

d
dt

v(t) = −γv(t) +
1
m

F(x) +

√
2γ
m

1
β(x)

g(t),

d
dt

x(t) = v(t), (5)

with F(x) = −∂V(x)/∂x. Here V(x) is a confining potential
like, e.g. a harmonic potential, and x is a position variable.
Crucial for our approach is that β depends on x but not on
the velocity v. We are interested in the stationary velocity
distribution P(v). It is well known that in case β(x) = β is a
constant, this distribution becomes a Gaussian distribution
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Figure 1 (a) Plot of the empirical distribution f (β) (dots) extracted from the wind data and the best fit to a lognormal distribution (red), gamma distribution
(blue) and an inverse gamma distribution (green). (b) Plot of the empirical distribution P(u) together with the first superstatistical approximation (3) (black
line). Also the second approximation (2) is shown, where f (β) is given by the lognormal distribution (red), the gamma distribution (blue) and the inverse
gamma distribution (green).
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Figure 2 (a) Ratio of the time scales T and τ as extracted from the data. (b) The parameter ε, defined in [29], measures how good a superstatistical model fits
a given data set. Ideal superstatistics is corresponding to ε = 0.

P(v) =

√
mβ
2π

exp

(
−1

2
mβv2

)
. (6)

However, we are interested in the general problem where the
temperature is position dependent. Then, in order to obtain an
exact expression for P(v), one has to solve the corresponding
stationary Fokker-Planck equation for the joint distribution
P(v, x),

0 =

[
∂

∂v

(
γv − 1

m
F(x)

)
− v
∂

∂x
+
γ

m
1
β(x)

∂2

∂2v

]
P(v, x) (7)

and integrate out the dependence of the variable x

P(v) =
∫ xmax

xmin

dxP(v, x). (8)

The problem with this procedure is that usually it is not pos-
sible to obtain an analytical expression for P(v, x). However,
in order to make the connection with the superstatistical ap-
proach outlined in the previous section, it is not necessary to
have the exact form of P(v, x). It is sufficient to study eq. (5)
in the high friction limit, i.e. γ → ∞. Taking this overdamped
limit of eq. (5) results in a stochastic differential equation in

the variable x(t) only

d
dt

x(t) =
1

mγ
F(x) +

√
2

mγ
1
β(x)

g(t). (9)

The associated Fokker-Planck equation for the stationary dis-
tribution Po(x) becomes

0 = − ∂
∂x

F(x)Po(x) +
∂2

∂2x
1
β(x)

Po(x) (10)

(we used Ito’s interpretation). The lower index “o” is used to
denote the overdamped limit. Eq. (10) can be solved analyti-
cally

Po(x) = Z−1β(x) exp

(∫
dxF(x)β(x)

)
, (11)

where Z is a normalization constant. Taking the overdamped
limit physically means that the velocity will thermalise very
quickly. As a consequence, for large values of γ, the solution
P(v, x) of the complete Fokker-Planck equation (7) is approx-
imated by [42]

P(v, x) ≈ Po(v, x) = Po(x)Po(v|x). (12)
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Here Po(v|x) denotes the conditional distribution of v given
the local value of the slow variable x. This is just a Gaussian
distribution (6) with β replaced by β(x). As a consequence,
one obtains the following approximation for the distribution
of interest:

P(v) ≈
∫ xmax

xmin

dxP0(v, x)

=

∫ xmax

xmin

dxPo(x)

√
mβ(x)

2π
exp

(
−1

2
mβ(x)v2

)
. (13)

After a change of variables, one ends up with (2) in which the
superstatistical distribution f (β) is associated with(

dβ(x)
dx

)−1

Po(β(x)). (14)

This shows that the superstatistical approximation is formally
equivalent to taking the high friction limit of a stochastic dif-
ferential equations of type (5). The latter model describes the
dynamics of a Brownian particle in an inhomogeneous heat
bath in the presence of a confining potential.

4 Example

To illustrate the theoretical considerations of the previous
section, we study an explicit example here. Assume for sim-
plicity that the temperature is linear in the position x. In order
to ensure that the temperature remains positive we introduce
an arbitrary small positive constant a and define

β(x) =
1
|x| + a

, V(x) =
θ

2

[
|x| + a − α

θ

]2
. (15)

With this choice one obtains for the velocity distribution in
the overdamped limit (13)

P(v) ≈ Z−1
∫ +∞

−∞
dxβ(x) exp

(
−

∫
dx′
∂V(x′)
∂x′

β(x′)
)

×
√

mβ(x)
2π

exp

(
−1

2
mβ(x)v2

)

= Z−1
∫ +∞

−∞
dx exp

(
(−α + 1) ln β(x) − θ

β(x)

)

×
√

mβ(x)
2π

exp

(
−1

2
mβ(x)v2

)

= Z−1
∫ 1/a

0
dβ β−α−1 exp

(
− θ
β

)

×
√

mβ
2π

exp

(
−1

2
mβv2

)
, (16)

where we absorbed constants in the normalization Z. In the
limit a→ 0, this integral simplifies to

P(v) ≈ 1
Γ(α)

√
2θ
π

⎛⎜⎜⎜⎜⎜⎝
√
θ

2
|v|

⎞⎟⎟⎟⎟⎟⎠
α−1/2

Kα−1/2

(√
2θ|v|

)
, (17)

where Kν(x) is the modified Bessel function of the second
kind. Notice that f (β) becomes an inverse gamma distribu-
tion in this limit. This particular example connects the re-
sults of sections 2 and 3 because it shows that the theoretical
model of section 3 together with the choice (15) for the tem-
perature and the potential reproduces the observed empirical
distributions discussed in section 2. However, this is only one
possibility. In principle, for every choice of β(x), a possible
candidate for the force that results in an inverse gamma distri-
bution for f (β) can be calculated by evaluating the following
expression:

F(x)β(x) = −(α + 2)
β′(x)
β(x)

− θ β
′(x)
β2(x)

+
β′′(x)
β′(x)

, (18)

where the accent means differentiating with respect to x. The
reason to chose the particular form of T (x) and V(x) as in eq.
(15) is that this is probably the easiest choice that both fulfills
eq. (18) and is physically meaningful. The latter is also the
reason that we introduced the constant a in the expression for
the temperature (15). This is to ensure that the particle can
pass the origin in the overdamped limit. This problem disap-
pears if one takes finite friction into account. Therefore, it is
appropriate to restrict our analysis to the special case a→ 0.

5 Skewness

We showed in section 2 that the superstatistical approach is
well suited to describe the fat tails that are exhibited in the
wind speed distribution under study. However, it is well
known, and clearly visible in Figure 1, that the distribu-
tion P(u) is slightly skewed (with vanishing first moment).
Clearly, the superstatistical distribution (2) is symmetric and
cannot represent the skewness that occurs in the experimen-
tal data. Figure 3(b) shows the skewness and kurtosis as a
function of δ for the data set of measured velocity increments
uδ(t). It is possible to model the kurtosis with the superstatis-
tical approach described up till now, however it is impossible
to model the skewness.

As mentioned before, the complete Fokker-Planck equa-
tion (7) is usually not analytically solvable. However, re-
lations between the moments of the distribution P(v, x) can
be obtained, using the Fokker-Planck operator L. One has
〈Lvi x j〉 = 0 for i, j = 0, 1, 2, . . .with

L :=

(
γv − 1

m
F(x)

)
∂

∂v
− v
∂

∂x
− γ

m
1
β(x)

∂2

∂2v
. (19)

Applying this with i = 0, j = 1 results in 〈v〉 = 0, while de-
pending on the particular choices of F(x) and β(x) one can
obtain 〈v3〉 � 0. This means that the stationary velocity dis-
tribution P(v) can have non-vanishing skewness, while at the
same time it has a vanishing first moment. However notice
that the overdamped approximation (12) of P(v, x) is sym-
metric in v, regardless of the choice of β(x). This means that
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Figure 3 (a) The difference between the empirical distribution P(u) and the second approximation of superstatistics. (b) Kurtosis and skewness of the
empirical distribution P(u) as a function of δ.

in order to introduce skewness, one has to go beyond the over-
damped limit. Perturbation expansions of P(v, x) around the
overdamped limit can be performed [42]. The first order cor-
rection is

P(v, x) =

√
mβ(x)

2π
exp

(
−1

2
mβ(x)v2

)

× Po(x)

(
1 +

1
6

1
γ

v[mβ(x)v2 − 3]
1
β(x)

dβ(x)
dx

)
. (20)

Notice that the contribution of the first order correction van-
ishes for 〈vi〉 with i = 0, 1, 2. The third order moment be-
comes

〈v3〉 =
∫ +∞

−∞
dv

∫ +∞

−∞
dxv3P(v, x)

=
1
γ

1
m2

∫ +∞

−∞
dxPo(x)

1
β3(x)

dβ(x)
dx
. (21)

This shows that the theoretical model introduced in section 3
can be used to systematically describe the experimental data.
The superstatistical approximation (the overdamped limit) is
used to model the fat tails (the kurtosis) of the empirical dis-
tribution. By going beyond the overdamped limit, skewness
is naturally introduced in the theoretical distribution.

6 Discussion

In previous papers dealing with superstatistics, the supersta-
tistical concept was completely probabilistic in nature. One
was facing the question what the relevant temperature distri-
butions f (β) are. In this paper, we have shown that the super-
statistical model is equivalent to a dynamical process with a
position dependent temperature field in the overdamped limit.
This opens up the possibility to relate the choice of f (β) to a
concrete question with a clear physical interpretation, namely
what are appropriate choices for the potential and the temper-
ature fields.

One such example was studied in this paper. If one as-
sumes a temperature field that is linear in the position, in

combination with basically a harmonic potential, one ends up
with an inverse gamma distribution for f (β). This distribution
is indeed observed in empirical data of wind speed fluctua-
tions. We emphasize that other choices for temperature field
and potential are of course possible. It is an interesting topic
for further research to examine other physically meaningfull
combinations of β(x) and V(x). One can also try to extract
the position dependence of β(x) and V(x) immediately out of
empirical data, see e.g. [43] where such analysis is performed
for financial time series.

Finally, we showed that the theoretical approach to super-
statistics presented in this paper naturally leads to skewed
probability distributions if one goes beyond the overdamped
limit. Slightly skewed distributions are observed in several
scientific fields for various variables, e.g. wind speed fluc-
tuations (see section 5), log returns of prices in the stock
market [44], and velocity increments of turbulent flows [45].
Apart from the observed skewness in the data, these three
examples have in common that the symmetric part of the
empirical distribution can be well approximated by (2) with
different expressions for f (β), see, e.g. the present paper and
[29]. In the theoretical model developed in this paper, expres-
sion (2) is the zeroth-order approximation of the true super-
statistical distribution which is obtained by fully taking into
account the position dependence of β(x) and V(x). Therefore,
the current approach is very promising, since one can now
go beyond (2) and try to calculate successive higher-order
corrections in order to describe all the essential features of
an empirical distribution at hand. Apart from the aforemen-
tioned examples, also dense granular flows are interesting
experimental systems from a superstatistical point of view,
because position dependent temperature profiles can be esti-
mated for these kinds of systems. Also, it has been shown
that the particle velocity distribution shows skewness [46].
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