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Abstract Building on the inequalities for homogeneous tetrahedral polynomials in
independent Gaussian variables due to R. Latała we provide a concentration inequality
for not necessarily Lipschitz functions f : Rn → Rwith bounded derivatives of higher
orders, which holds when the underlying measure satisfies a family of Sobolev type
inequalities

‖g − Eg‖p ≤ C(p)‖∇g‖p.
Such Sobolev type inequalities hold, e.g., if the underlying measure satisfies the log-
Sobolev inequality (in which case C(p) ≤ C

√
p) or the Poincaré inequality (then

C(p) ≤ Cp). Our concentration estimates are expressed in terms of tensor-product
norms of the derivatives of f . When the underlying measure is Gaussian and f is
a polynomial (not necessarily tetrahedral or homogeneous), our estimates can be
reversed (up to a constant depending only on the degree of the polynomial). We also
show that for polynomial functions, analogous estimates hold for arbitrary random
vectors with independent sub-Gaussian coordinates. We apply our inequalities to gen-
eral additive functionals of random vectors (in particular linear eigenvalue statistics of
random matrices) and the problem of counting cycles of fixed length in Erdős–Rényi
random graphs, obtaining new estimates, optimal in a certain range of parameters.
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1 Introduction

Concentration of measure inequalities are one of the basic tools in modern probability
theory (see the monograph [46]). The prototypic result for all concentration theorems
is arguably the Gaussian concentration inequality [14,62], which asserts that if G is
a standard Gaussian vector in R

n and f : Rn → R is a 1-Lipschitz function, then for
all t > 0,

P(| f (G)− E f (G)| ≥ t) ≤ 2 exp(−t2/2).

Over the years the above inequality has found numerous applications in the analysis
of Gaussian processes, as well as in asymptotic geometric analysis (e.g. in modern
proofs of Dvoretzky type theorems). Its applicability in geometric situations comes
from the fact that it is dimension free and all norms in R

n are Lipschitz with respect
to one another. However, there are some probabilistic or combinatorial situations,
when one is concerned with functions that are not Lipschitz. The most basic case
is the probabilistic analysis of polynomials in independent random variables, which
arise naturally, e.g., in the study of multiple stochastic integrals, in discrete harmonic
analysis as elements of the Fourier expansions on the discrete cube or in numerous
problems of random graph theory, to mention just the famous subgraph counting
problem [22,23,26,27,35,36,49].

The concentration of measure or more generally integrability properties for polyno-
mials have attracted a lot of attention in the last forty years. In particular Bonami [13]
and Nelson [55] provided hypercontractive estimates (Khintchine type inequalities)
for polynomials on the discrete cube and in the Gauss space, which have been later
extended to other random variables byKwapień and Szulga [41] (see also [42]). Khint-
chine type inequalities have been also obtained in the absence of independence for
polynomials under log-concave measures by Bourgain [19], Bobkov [10], Nazarov-
Sodin-Volberg [54] and Carbery-Wright [21].

Another line of research is to provide two-sided estimates formoments of polynomi-
als in terms of deterministic functions of the coefficients. Borell [15] andArcones-Giné
[5] provided such two-sided bounds for homogeneous polynomials in Gaussian vari-
ables. They were expressed in terms of expectations of suprema of certain empirical
processes. Talagrand [64] and Bousquet-Boucheron-Lugosi-Massart [17,18] obtained
counterparts of these results for homogeneous tetrahedral1 polynomials inRademacher
variables and Łochowski [48] and Adamczak [1] for random variables with log-
concave tails. Inequalities of this type, while implying (up to constants) hypercon-
tractive bounds, have a serious downside as the analysis of the empirical processes

1 A multivariate polynomial is called tetrahedral if all variables appear in it in power at most one.
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Concentration for non-Lipschitz functions 533

involved is in general difficult. It is therefore important to obtain two-sided bounds in
terms of purely deterministic quantities. Such bounds for random quadratic forms in
independent symmetric random variables with log-concave tails have been obtained
by Latała [43] (the case of linear forms was solved earlier by Gluskin and Kwapień
[29], whereas bounds for quadratic forms in Gaussian variables were obtained by
Hanson-Wright [32], Borell [15] and Arcones-Giné [5]). Their counterparts for mul-
tilinear forms of arbitrary degree in nonnegative random variables with log-concave
tails have been derived by Latała and Łochowski [45]. As for the symmetric case, the
general problem is still open. An important breakthrough has been obtained by Latała
[44], who proved two-sided estimates for Gaussian chaos of arbitrary order, that is
for homogeneous tetrahedral polynomials of arbitrary degree in independent Gaussian
variables (we recall his bounds below as they are the starting point for our investiga-
tions). For general symmetric random variables with log-concave tails similar bounds
are known only for chaos of order at most three [2].

Polynomials in independent randomvariables have been also investigated in relation
with combinatorial problems, e.g. with subgraph counting [22,23,26,27,35,36,49].
The best known result for general polynomials in this area has been obtained by Kim
and Vu [37,65], who presented a family of powerful inequalities for [0, 1]-valued ran-
domvariables.Over the last decade they have been applied successfully to handlemany
problems in probabilistic combinatorics. Some recent inequalities for polynomials in
subexponential random variables have been also obtained by Schudy and Sviridenko
[59,60]. They are a generalization of the special case of exponential random variables
in [45] and are expressed in terms of quantities similar to those considered by Kim-Vu.

Since it is beyond the scope of this paper to give a precise account of all the
concentration inequalities for polynomials, we refer the Reader to the aforementioned
sources and recommend also the monographs [24,42], where some parts of the theory
are presented in a uniform way. As already mentioned we will present in detail only
the results from [44], which are our main tool as well as motivation.

As for concentration results for general non-Lipschitz functions, the only refer-
ence we are aware of, which addresses this question is [30], where the Authors obtain
interesting inequalities for stationary measures of certain Markov processes and func-
tions satisfying a Lyapunov type condition. Their bounds are not comparable to the
ones which we present in this paper. On the one hand they work in a more general
Markov process setting, on the other hand, it seems that their results are restricted to
the Gaussian-exponential concentration and do not apply to functionals with heavier
tails (such as polynomials of degree higher than two). Since the language of [30] is
very different from ours, we will not describe the inequalities obtained therein and
refer the interested Reader to the original paper.

Let us now proceed to the presentation of our results. To do this we will first formu-
late a two-sided tail and moment inequality for homogeneous tetrahedral polynomials
in i.i.d. standard Gaussian variables due to Latała [44]. To present it in a concise way
we need to introduce some notation which we will use throughout the article. For a
positive integer n we will denote [n] = {1, . . . , n}. The cardinality of a set I will be
denoted by #I . For i = (i1, . . . , id) ∈ [n]d and I ⊆ [d] we write iI = (ik)k∈I . We
will also denote |i| = max j≤d i j and |iI | = max j∈I i j .
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534 R. Adamczak, P. Wolff

Consider thus a d-indexed matrix A = (ai1,...,id )
n
i1,...,id=1, such that ai1,...,id = 0

whenever i j = ik for some j 
= k, a sequence g1, . . . , gn of i.i.d. N (0, 1) random
variables and define

Z =
∑

i∈[n]d
aigi1 . . . gid . (1)

Without loss of generality we can assume that the matrix A is symmetric, i.e., for all
permutations σ : [d] → [d], ai1,...,id = aiσ(1),...,iσ(d)

.
Let now Pd be the set of partitions of [d] into nonempty, pairwise disjoint sets. For

a partition J = {J1, . . . , Jk}, and a d-indexed matrix A = (ai)i∈[n]d (not necessarily
symmetric or with zeros on the diagonal), define

‖A‖J = sup

⎧
⎨

⎩
∑

i∈[n]d
ai

k∏

l=1
x (l)

iJl
:
∥∥∥(x (l)

iJl
)

∥∥∥
2
≤ 1, 1 ≤ l ≤ k

⎫
⎬

⎭ , (2)

where
∥∥∥(xiJl

)

∥∥∥
2
=
√∑

|iJl |≤n x
2
iJl
. Thus, e.g.,

∥∥(ai j )i, j≤n
∥∥{1,2} = sup

⎧
⎨

⎩
∑

i, j≤n
ai j xi j :

∑

i, j≤n
x2i j ≤ 1

⎫
⎬

⎭

=
√∑

i, j≤n
a2i j =

∥∥(ai j )i, j≤n
∥∥
HS,

∥∥(ai j )i, j≤n
∥∥{1}{2} = sup

⎧
⎨

⎩
∑

i, j≤n
ai j xi y j :

∑

i≤n
x2i ≤ 1,

∑

j≤n
y2j ≤ 1

⎫
⎬

⎭

= ∥∥(ai j )i, j≤n
∥∥

�n2→�n2
,

∥∥(ai jk)i, j,k≤n
∥∥{1,2}{3} = sup

⎧
⎨

⎩
∑

i, j,k≤n
ai jk xi j yk :

∑

i, j≤n
x2i j ≤ 1,

∑

k≤n
y2k ≤ 1

⎫
⎬

⎭.

From the functional analytic perspective the above norms are injective tensor prod-
uct norms of A seen as a multilinear form on (Rn)d with the standard Euclidean
structure.

We are now ready to present the inequalities by Latała. Below, as in the whole
article by Cd we denote a constant, which depends only on d. The values of Cd may
differ between occurrences.

Theorem 1.1 (Latała [44]) For any d-indexed symmetric matrix A = (ai)i∈[n]d such
that ai = 0 if i j = ik for some j 
= k, the random variable Z, defined by (1) satisfies
for all p ≥ 2,
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C−1d

∑

J ∈Pd
p#J /2‖A‖J ≤ ‖Z‖p ≤ Cd

∑

J ∈Pd
p#J /2‖A‖J .

As a consequence, for all t > 0,

C−1d exp

(
−Cd min

J ∈Pd

(
t

‖A‖J
)2/#J)

≤ P(|Z | ≥ t)

≤ Cd exp

(
− 1

Cd
min
J ∈Pd

(
t

‖A‖J
)2/#J)

.

It is worthwhile noting that for #J > 1, the norms ‖A‖J are not unconditional in
the standard basis (decreasing coefficients of thematrixmaynot result in decreasing the
norm). Moreover, for specific matrices they may not be easy to compute. On the other
hand, for any d-indexed matrix A and any J ∈ Pd , we have ‖A‖J ≤ ‖A‖{1,...,d} =√∑

i a
2
i . Using this fact in the upper estimates above allows to recover (up to constants

depending on d) hypercontractive estimates for homogeneous tetrahedral polynomials
due to Nelson.

Our main result is an extension of the upper bound given in the above theorem to
more general random functions andmeasures. Belowwe present themost basic setting
we will work with and state the corresponding theorems. Some additional extensions
are deferred to the main body of the article.

We will consider a random vector X in Rn , which satisfies the following family of
Sobolev inequalities. For any p ≥ 2 and any smooth integrable function f : Rn → R,

∥∥∥ f (X)− E f (X)

∥∥∥
p
≤ L

√
p
∥∥∥∇ f (X)

∥∥∥
p
, (3)

for some constant L (independent of p and f ), where |·| is the standardEuclidean norm
on Rn . It is known (see [3] and Theorem 3.4 below) that if X satisfies the logarithmic
Sobolev inequality (15) with constant DLS , then it satisfies (3) with L = √

DLS .
We remark that there are many criteria for a random vector to satisfy the logarithmic
Sobolev inequality (see e.g. [7,8,11,39,46]), so in particular our assumption (3) can
be verified for many random vectors of interest.

Our first result is the following theorem, which provides moment estimates and
concentration for D-times differentiable functions. The estimates are expressed by
‖ · ‖J norms of derivatives of the function (which we will identify with multi-indexed
matrices). We will denote the d-th derivative of f by Dd f .

Theorem 1.2 Assume that a random vector X in R
n satisfies the inequality (3) with

constant L. Let f : Rn → R be a function of the class CD. For all p ≥ 2 if DD f (X) ∈
L p, then
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‖ f (X)− E f (X)‖p ≤ CD

(
LD

∑

J ∈PD
p

#J
2

∥∥∥‖DD f (X)‖J
∥∥∥
p

+
∑

1≤d≤D−1
Ld

∑

J ∈Pd
p

#J
2 ‖EDd f (X)‖J

)
.

In particular if DD f (x) is uniformly bounded on R
n, then setting

η f (t) = min

(
min
J ∈PD

(
t

LD supx∈Rn ‖DD f (x)‖J
) 2

#J
,

min
1≤d≤D−1 min

J ∈Pd

(
t

Ld‖EDd f (X)‖J
) 2

#J
)

we obtain for t > 0,

P(| f (X)− E f (X)| ≥ t) ≤ 2 exp
(
− 1

CD
η f (t)

)
.

The above theorem is quite technical, so we will now provide a few comments,
comparing it to known results.

1. It is easy to see that if D = 1, Theorem 1.2 reduces (up to absolute constants)
to the Gaussian-like concentration inequality, which can be obtained from (3) by
Chebyshev’s inequality (applied to general p and optimized).

2. If f is a homogeneous tetrahedral polynomial of degree D, then the tail and
moment estimates of Theorem 1.2 coincide with those from Latała’s Theorem. Thus
Theorem 1.2 provides an extension of the upper bound from Latała’s result to a larger
class of measures and functions (however we would like to stress that our proof relies
heavily on Latała’s work).

3. If f is a general polynomial of degree D, then DD f (x) is constant on R
n (and

thus equal toEDD f (X)). Therefore in this case the function η f appearing in Theorem
1.2 can be written in a simplified form

η f (t) = min
1≤d≤D

min
J ∈Pd

(
t

Ld‖EDd f (X)‖J
)2/#J

. (4)

4. For polynomials in Gaussian variables, the estimates given in Theorem 1.2 can be
reversed, like in Theorem 1.1. More precisely we have the following theorem, which
provides an extension of Theorem 1.1 to general polynomials.

Theorem 1.3 If G is a standard Gaussian vector in Rn and f : Rn → R is a polyno-
mial of degree D, then for all p ≥ 2,
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C−1D

∑

1≤d≤D

∑

J ∈Pd
p

#J
2 ‖EDd f (G)‖J ≤ ‖ f (G)− E f (G)‖p

≤ CD

∑

1≤d≤D

∑

J ∈Pd
p

#J
2 ‖EDd f (G)‖J .

Moreover for all t > 0,

1

CD
exp

(
− CDη f (t)

)
≤ P(| f (G)− E f (G)| ≥ t) ≤ CD exp

(
− 1

CD
η f (t)

)
,

where

η f (t) = min
1≤d≤D

min
J ∈Pd

(
t

‖EDd f (G)‖J
)2/#J

.

5. It iswell known that concentration ofmeasure for general Lipschitz functions fails
e.g. on the discrete cube and one has to impose some additional convexity assumptions
to get sub-Gaussian concentration [63]. It turns out that if we restrict to polynomials,
estimates in the spirit of Theorems 1.1 and 1.2 still hold. To formulate our result in
full generality recall the definition of the ψ2 Orlicz norm of a random variable Y ,

‖Y‖ψ2 = inf

{
t > 0 : E exp

(
Y 2

t2

)
≤ 2

}
.

By integration by parts and Chebyshev’s inequality ‖Y‖ψ2 < ∞ is equivalent to a
sub-Gaussian tail decay for Y . We have the following result for polynomials in sub-
Gaussian random vectors with independent components.

Theorem 1.4 Let X = (X1, . . . , Xn) be a random vector with independent compo-
nents, such that for all i ≤ n, ‖Xi‖ψ2 ≤ L. Then for every polynomial f : Rn → R

of degree D and every p ≥ 2,

‖ f (X)− E f (X)‖p ≤ CD

D∑

d=1
Ld

∑

J ∈Pd
p#J /2‖EDd f (X)‖J .

As a consequence, for any t > 0,

P

(
| f (X)− E f (X)| ≥ t

)
≤ 2 exp

(
− 1

CD
η f (t)

)
,

where

η f (t) = min
1≤d≤D

min
J ∈Pd

(
t

Ld‖EDd f (X)‖J
)2/#J

.
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538 R. Adamczak, P. Wolff

6. To give the Reader a flavour of possible applications let us mention the Hanson-
Wright inequality [32]. Namely, for a random vector X = (X1, . . . , Xn) in R

n

with square integrable and mean-zero components and a real symmetric matrix
A = (ai j )i, j≤n , consider the random variable

Z =
n∑

i, j=1
ai j Xi X j .

If the components of X are independent and ‖Xi‖ψ2 ≤ L for i = 1, . . . , n, then it
follows immediately from Theorem 1.4 that for all t > 0,

P
(|Z − EZ | ≥ t) ≤ 2 exp

(
− 1

C
min

( t2

L4‖A‖2HS
,

t

L2‖A‖�n2→�n2

))
. (5)

Similarly, Theorem 1.2 implies (5) under the assumption that X satisfies the log-
Sobolev inequality (15) with constant L2 (no independence of components of X is
assumed). Moreover, if X is a standard Gaussian vector in R

n , then by Theorem 1.3
the tail estimate (5) can be reversed up to numerical constants. We postpone further
applications of our theorems to subsequent sections of the article and herewe announce
only that apart from polynomials we apply Theorem 1.2 to additive functionals and
U -statistics of random vectors, in particular to linear eigenvalue statistics of random
matrices, obtaining bounds which complement known estimates by Guionnet and
Zeitouni [31]. Theorem 1.4 is applied to the problem of subgraph counting in large
random graphs. In a special case when one counts copies of a given cycle in a random
graph G(n, p), our result allows to obtain a tail inequality which is optimal whenever

p ≥ n−
k−2

2(k−1) log− 1
2 n, where k is the length of the cycle. To the best of our knowledge

this is the sharpest currently known result for this range of p.
7. Let us now briefly discuss optimality of our inequalities. The lower bound in

Theorem 1.3 clearly shows that Theorem 1.2 is optimal in the class of measures and
functions it covers up to constants depending only on D. As for Theorem 1.4, it
is similarly optimal in the class of random vectors with independent sub-Gaussian
coordinates. In concrete combinatorial applications, for 0–1 random variables this
theorem may be however suboptimal. This can be seen already for D = 1, for a
linear combination of independent Bernoulli variables X1, . . . , Xn with P(Xi = 1) =
1− P(Xi = 0) = p. When p becomes small, the tail bound for such variables given
e.g. by the Chernoff inequality is more subtle than what can be obtained from general
inequalities for sums of sub-Gaussian random variables and the fact that ‖Xi‖ψ2 is of
order (log(2/p))−1/2. Roughly speaking, this is the reason why in our estimates for
random graphs we have the restriction on how small p can be. At the same time our
inequalities still give results comparable to what can be obtained from other general
inequalities for polynomials.As already noted in the survey [36], bounds obtained from
various general inequalities for the subgraph-counting problem may not be directly
comparable, i.e. those performing well in one case may exhibit worse performance in
some other cases. Similarly, our inequalities cannot be in general compared e.g. to the
estimates byKimandVu [37,38]. For this reason and since itwould require introducing
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Concentration for non-Lipschitz functions 539

new notation, we will not discuss their estimates and just indicate, when presenting
applications of Theorem 1.4, several situations when our inequalities perform in a
better or worse way than those by Kim and Vu. Let us only mention that the Kim-Vu
inequalities similarly as ours are expressed in terms of higher order derivatives of
the polynomials. However, Kim and Vu (as well as Schudy and Sviridenko) look at
maxima of absolute values of partial derivatives, which does not lead to tensor-product
norms which we consider. While in the general sub-Gaussian case we consider, such
tensor product norms cannot be avoided (in view of Theorem 1.3), it is not necessarily
the case for 0–1 random variables.

8. A version of Theorem 1.2 for vectors of independent random variables satisfying
the modified logarithmic Sobolev inequality (see e.g. [28]) instead of the classical log-
Sobolev inequality is also discussed. In particular, in Theorem 3.4 we relate the modi-
fied log-Sobolev inequality to a certain Sobolev-type inequality with a non-Euclidean
norm of the gradient and with the constant independent of the dimension.

The organization of the paper is as follows. First, in Sect. 2, we introduce the
notation used in the paper, next in Sect. 3 we give the proof of Theorem 1.2 together
with some generalizations and examples of applications. In Sect. 4 we prove Theorem
1.3, whereas in Sect. 5 we present the proof of Theorem 1.4 and applications to the
subgraph counting problems. In Sect. 6 we provide further refinements of estimates
from Sect. 3 in the case of independent random variables satisfying modified log-
Sobolev inequalities (they are deferred to the end of the article as they are more
technical than those of Sect. 3). In the Appendix we collect some additional facts used
in the proofs.

2 Notation

Sets and indices For a positive integer n we will denote [n] = {1, . . . , n}. The cardi-
nality of a set I will be denoted by #I .

For i = (i1, . . . , id) ∈ [n]d and I ⊆ [d] we write iI = (ik)k∈I . We will also denote
|i| = max j≤d i j and |iI | = maxk∈I ik .

For a finite set A and an integer d ≥ 0 we set

Ad = {i = (i1, . . . , id) ∈ Ad : ∀ j,k∈{1,...,d} j 
= k ⇒ i j 
= ik}

(i.e. Ad is the set of d-indices with pairwise distinct coordinates). Accordingly we will
denote nd = n(n − 1) · · · (n − d + 1).

For a finite set I , by PI we will denote the family of partitions of I into nonempty,
pairwise disjoint sets. For simplicity we will write Pd instead of P[d].

For a finite set I by �2(I ) we will denote the finite dimensional Euclidean space

R
I endowed with the standard Euclidean norm |x |2 =

√∑
i∈I x2i . Whenever there is

no risk of confusion we will denote the standard Euclidean norm simply by | · |.

Multi-indexed matrices For a function f : Rn → R by Dd f (x) we will denote
the (d-indexed) matrix of its derivatives of order d, which we will identify with
the corresponding symmetric d-linear form. If M = (Mi)i∈[n]d , N = (Ni)i∈[n]d
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540 R. Adamczak, P. Wolff

are d-indexed matrices, we define 〈M, N 〉 = ∑
i∈[n]d MiNi. Thus for all vectors

y1, . . . , yd ∈ R
n we have Dd f (x)(y1, . . . , yd) = 〈Dd f (x), y1 ⊗ · · · ⊗ yd〉, where

y1 ⊗ · · · ⊗ yd = (y1i1 y
2
i2

. . . ydid )i∈[n]d .
Wewill also define theHadamard product of two suchmatricesM◦N as a d-indexed

matrix with entries mi = MiNi (pointwise multiplication of entries).
Let us also define the notion of “generalized diagonals” of a d-indexed matrix

A = (ai)i∈[n]d . For a fixed set K ⊆ [d], with #K > 1, the “generalized diagonal”
corresponding to K is the set of indices {i ∈ [n]d : ik = il for all k, l ∈ K }.

Constants We will use the letter C to denote absolute constants and Ca for constants
depending only on some parameter a. In both cases the values of such constants may
differ between occurrences.

3 A concentration inequality for non-Lipschitz functions

In this Section we prove Theorem 1.2. Let us first state our main tool, which is an
inequality by Latała in a decoupled version.

Theorem 3.1 (Latała [44]) Let A = (ai)i∈[n]d be a d-indexed matrix with real entries
and let G1,G2, . . . ,Gd be i.i.d. standard Gaussian vectors in Rn. Let Z = 〈A,G1⊗
· · · ⊗ Gd〉. Then for every p ≥ 2,

C−1d

∑

J ∈Pd
p#J /2‖A‖J ≤ ‖Z‖p ≤ Cd

∑

J ∈Pd
p#J /2‖A‖J .

Thanks to general decoupling inequalities for U -statistics [25], which we recall in
the “Appendix” (Theorem 7.1), the above theorem is formally equivalent to Theorem
1.1. In fact in [44] Latała first proves the above version. In the proof of Theorem 3.3,
which is a slight generalization of Theorem 1.2, we will need just Theorem 3.1 (in
particular in this part of the article we do not need any decoupling inequalities).

From now on we will work in a more general setting than in Theorem 1.2 and
assume that X is a random vector in Rn , such that for all p ≥ 2 there exists a constant
LX (p) such that for all bounded C1 functions f : Rn → R,

‖ f (X)− E f (X)‖p ≤ LX (p)
∥∥∥|∇ f (X)|

∥∥∥
p
. (6)

Clearly in this situation the above inequality generalizes to all C1 functions (if the
right-hand side is finite then the left-hand side is well defined and the inequality
holds).

Let now G be a standard n-dimensional Gaussian vector, independent of X . Using
the Fubini theorem together with the fact that for some absolute constantC , all x ∈ R

n

and p ≥ 2,C−1√p|x | ≤ ‖〈x,G〉‖p ≤ C
√
p|x |, we can linearise the right-hand side
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Concentration for non-Lipschitz functions 541

above and write (6) equivalently (up to absolute constants) as

‖ f (X)− E f (X)‖p ≤ CLX (p)√
p

∥∥∥〈∇ f (X),G〉
∥∥∥
p
. (7)

We remark that similar linearisation has been used by Maurey and Pisier to pro-
vide a simple proof of the Gaussian concentration inequality [57,58] (see the remark
following Theorem 3.3 below). Inequality (7) has an advantage over (6) as it allows
for iteration leading to the following simple proposition.

Proposition 3.2 Consider p ≥ 2 and let X be an n-dimensional random vector
satisfying (6). Let f : Rn → R be a CD function. Let moreover G1, . . . ,GD be
independent standard Gaussian vectors in Rn, independent of X. Then for all p ≥ 2,
if DD f (X) ∈ L p, then

∥∥∥ f (X)− E f (X)

∥∥∥
p
≤ CDLX (p)D

pD/2

∥∥∥
〈
DD f (X),G1 ⊗ · · · ⊗ GD

〉∥∥∥
p

+
∑

1≤d≤D−1

Cd LX (p)d

pd/2

∥∥∥
〈
EXDd f (X),G1 ⊗ · · · ⊗ Gd

〉∥∥∥
p
.

(8)

Proof Induction on D. For D = 1 the assertion of the proposition coincides with (7),
which (as already noted) is equivalent to (6). Let us assume that the proposition holds
for D − 1. Applying thus (8) with D − 1 instead of D, we obtain

∥∥∥ f (X)− E f (X)

∥∥∥
p
≤ CD−1LX (p)D−1

p(D−1)/2
∥∥∥
〈
DD−1 f (X),G1 ⊗ · · · ⊗ GD−1

〉∥∥∥
p

+
D−2∑

d=1

Cd LX (p)d

pd/2

∥∥∥
〈
EXDd f (X),G1 ⊗ · · · ⊗ Gd

〉∥∥∥
p
.

(9)

Applying now the triangle inequality in L p, we get

∥∥∥
〈
DD−1 f (X),G1 ⊗ · · · ⊗ GD−1

〉∥∥∥
p

≤
∥∥∥
〈
DD−1 f (X)− EXDD−1 f (X),G1 ⊗ · · · ⊗ GD−1

〉∥∥∥
p

+
∥∥∥
〈
EXDD−1 f (X),G1 ⊗ · · · ⊗ GD−1

〉∥∥∥
p
. (10)

Let us now apply (7) conditionally on G1, . . . ,GD−1 to the function f1(x)

=
〈
DD−1 f (x),G1⊗ · · · ⊗GD−1

〉
. Since

〈
DD−1 f (X)−EXDD−1 f (X),G1⊗ · · · ⊗

GD−1
〉
= f1(X)− EX f1(X) and 〈∇ f1(X),GD〉 = 〈DD f (X),G1 ⊗ · · · ⊗ GD〉, we

obtain
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EX

∣∣∣
〈
DD−1 f (X)− EXDD−1 f (X),G1 ⊗ · · · ⊗ GD−1

〉∣∣∣
p

≤ C pLX (p)p

pp/2 EX,GD

∣∣∣
〈
DD f (X),G1 ⊗ · · · ⊗ GD

〉∣∣∣
p
.

To finish the proof it is now enough to integrate this inequality with respect to the
remaining Gaussian vectors and combine the obtained estimate with (9) and (10). ��

Let us now specialize to the case when LX (p) = Lpγ for some L > 0, γ ≥ 1/2.
Combining the above proposition with Latała’s Theorem 3.1, we obtain immediately
the following theorem, a special case of which is Theorem 1.2.

Theorem 3.3 Assume that X is a random vector in Rn, such that for some constants
L > 0, γ ≥ 1/2, all smooth bounded functions f and all p ≥ 2,

∥∥∥ f (X)− E f (X)

∥∥∥
p
≤ Lpγ

∥∥∥|∇ f (X)|
∥∥∥
p
. (11)

For any smooth function f : Rn → R of class CD and p ≥ 2 if DD f (X) ∈ L p, then

∥∥∥ f (X)− E f (X)

∥∥∥
p
≤ CD

( ∑

J ∈PD
LD p(γ−1/2)D+#J /2

∥∥∥‖DD f (X)‖J
∥∥∥
p

+
∑

1≤d≤D−1

∑

J ∈Pd
Ld p(γ−1/2)d+#J /2‖EDd f (X)‖J

)
.

Moreover, if DD f is bounded uniformly on Rn, then for all t > 0,

P

(
| f (X)− E f (X)| ≥ t

)
≤ 2 exp

(
− 1

CD
η f (t)

)
,

where

η f (t) = min(A, B),

A = min
J ∈PD

(( t

LD supx∈Rn ‖DD f (x)‖J
)2/((2γ−1)D+#J )

)
,

B = min
1≤d≤D−1 min

J ∈Pd

(( t

Ld‖EDd f (X)‖J
)2/((2γ−1)d+#J )

)
.

Proof The first part is a straightforward combination of Proposition 3.2 and Theorem

3.1. The second part follows from the first one by Chebyshev’s inequality P

(
|Y | ≥

e‖Y‖p
)
≤ exp(−p) applied with p = η f (t)/CD (note that if η f (t)/CD ≤ 2 then one

can make the tail bound asserted in the theorem trivial by adjusting the constants). ��
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Remark In [57,58] Pisier presents a stronger inequality than (11) with γ = 1/2. More
specifically, he proves that if X,G are independent standard centered Gaussian vectors
in R

n , E is a Banach space and f : Rn → E is a C1 function, then for every convex
function � : E → R,

E�( f (X)− E f (X)) ≤ E�
(
L〈∇ f (X),G〉

)
, (12)

where L = π
2 .As noted in [47],Caffarelli’s contraction principle [20] implies that, e.g.,

a random vector X with density e−V , where V : Rn → R satisfies D2V ≥ λId, λ > 0
satisfies the above inequality with L = π

2
√

λ
(where G is still a standard Gaussian

vector independent of X ). Therefore in this situation a similar approach as in the proof
of Proposition 3.2 can be used for functions f with values in a general Banach space.
Moreover, a counterpart of Latała’s results is known for chaos with values in a Hilbert
space (to the best of our knowledge this observation has not been published, in fact
it can be quite easily obtained from the version for real valued chaos). Thus in this
case we can obtain a counterpart of Theorem 3.3 (with γ = 1/2) for Hilbert space
valued-functions. In the case of a general Banach space two-sided estimates with
deterministic quantities for Gaussian chaos are not known. Still, one can use some
known inequalities (like hypercontraction or Borell-Arcones-Giné inequality) instead
of Theorem 3.1 and thus obtain new concentration bounds. We remark that if one uses
hypercontraction, one can obtain explicit dependence of the constants on the degree
of the polynomial, since explicit constants are known for hypercontractive estimates
of (Banach space-valued) Gaussian chaos and one can keep track of them during the
proof. We skip the details.

In view of Theorem 3.3 a natural question arises: for whatmeasures is the inequality
(11) satisfied? Before we provide examples, for technical reasons let us recall the
definition of the length of the gradient of a locally Lipschitz function. For a metric
space (X , d), a locally Lipschitz function f : X → R and x ∈ X , we define

|∇ f |(x) = lim sup
d(x,y)→0

| f (y)− f (x)|
d(x, y)

. (13)

IfX = R
n with a Euclideanmetric and f is differentiable at x , then clearly |∇ f |(x)

coincides with the Euclidean length of the usual gradient∇ f (x). For this reason, with
a slight abuse of notation, we will write |∇ f (x)| instead of |∇ f |(x). We will consider
only measures on R

n , however since we allow measures which are not necessarily
absolutely continuous with respect to the Lebesgue measure, at some points in the
proofs we will work with the above abstract definition.

Going back to the question of measures satisfying (11), it is well known (see e.g.
[52]) that if X satisfies the Poincaré inequality

Var ( f (X)) ≤ DPoinE|∇ f (X)|2 (14)

for all locally Lipschitz bounded functions, then X satisfies (11) with γ = 1 and
L = C

√
DPoin (recall that C always denotes a universal constant). Assume now that
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X satisfies the logarithmic Sobolev inequality

Ent f 2(X) ≤ 2DLSE|∇ f (X)|2 (15)

for locally Lipschitz bounded functions, where for a nonnegative random variable Y ,

EntY = EY log Y − EY log(EY ).

Then, by the results from [3], it follows that X satisfies (11) with γ = 1/2 and
L = √DLS .

We will now generalize this observation to measures satisfying the modified loga-
rithmic Sobolev inequality (introduced in [28]).Wewill present it in greater generality
than needed for proving (11), since we will use it later (in Sect. 6) to prove refined
concentration results for random vectors with independent Weibull coordinates.

Let β ∈ [2,∞). We will say that a random vector Y ∈ R
k satisfies a β-modified

logarithmic Sobolev inequality if for every locally Lipschitz bounded positive function
f : Rk → (0,∞),

Ent f 2(Y ) ≤ DLSβ

(
E|∇ f (Y )|2 + E

|∇ f (Y )|β
f (Y )β−2

)
. (16)

Let us also introduce two quantities, measuring the length of the gradient in product
spaces. Consider a locally Lipschitz function f : Rmk → R, where we identify Rmk

with the m-fold Cartesian product of Rk . Let x = (x1, . . . , xm), where xi ∈ R
k . For

each i = 1, . . . ,m, let |∇i f (x)| be the length of the gradient of f , treated as a function
of xi only, with the other coordinates fixed. Now for r ≥ 1, set

|∇ f (x)|r =
( m∑

i=1
|∇i f (x)|r

)1/r
.

Note that if f is differentiable at x , then |∇ f (x)|2 = |∇ f (x)| (the Euclidean length
of the “true” gradient), whereas for k = 1 (and f differentiable), |∇ f (x)|r is the �mr
norm of ∇ f (x).

Theorem 3.4 Let β ∈ [2,∞) and Y be a random vector in Rk , satisfying (16). Con-
sider a random vector X = (X1, . . . , Xm) inRmk, where X1, . . . , Xm are independent
copies of Y . Then for any locally Lipschitz f : Rmk → R such that f (X) is integrable,
and p ≥ 2,

‖ f (X)−E f (X)‖p ≤ CβD
1/2
LSβ

p1/2
∥∥∥|∇ f (X)|2

∥∥∥
p
+ D1/β

LSβ
p1/α

∥∥∥|∇ f (X)|β
∥∥∥
p
, (17)

where α = β
β−1 is the Hölder conjugate of β.

In particular using the above theorem with m = 1 and k = n, we obtain the
following
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Corollary 3.5 If X is a random vector in R
n which satisfies the β-modified log-

Sobolev inequality (16), then it satisfies (11) with γ = β−1
β

≥ 1
2 and L =

Cβ max(D1/2
LSβ

, D1/β
LSβ

).

We remark that in the class of logarithmically concave random vectors, the β-
modified log-Sobolev inequality is known to be equivalent to concentration for 1-

Lipschitz functions of the form P

(
| f (X) − E f (X)| ≥ t

)
≤ 2 exp

(
− ctβ/(β−1)

)

[53].

Proof of Theorem 3.4 By the tensorization property of entropy (see e.g. [46], Proposi-
tion 5.6)weget for all positive locallyLipschitz bounded functions f : Rmk → (0,∞),

Ent f 2(X) ≤ DLSβ

(
E

∣∣∣∇ f (X)

∣∣∣
2

2
+

m∑

i=1
E
|∇i f (X)|β
f (X)β−2

)
. (18)

Following [3], consider now any locally Lipschitz bounded f > 0 and denote
F(t) = E f (X)t . For t > 2,

F ′(t) = E
(
f (X)t log f (X)

)

and

d

dt

(
E f (X)t

)2/t = d

dt
F(t)2/t = F(t)2/t · d

dt

(
2

t
log F(t)

)

= F(t)2/t
(
2

t

F ′(t)
F(t)

− 2

t2
log F(t)

)

= 2

t2
F(t)

2
t −1 (t F ′(t)− F(t) log F(t)

)

= 2

t2
(
E f (X)t

) 2
t −1 (E

(
f (X)t log f (X)t

)

− (E f (X)t
)
log

(
E f (X)t

))
.

By (18) applied to the function g = f t/2 = ϕ ◦ f where ϕ(u) = |u|t/2,
d

dt

(
E f (X)t

)2/t ≤ 2

t2
(
E f (X)t

) 2
t −1 · DLSβ

(
E

∣∣∣∇(ϕ ◦ f )(X)

∣∣∣
2

2

+ E

∣∣∣∇(ϕ ◦ f )(X)

∣∣∣
β

β
f (X)t (2−β)/2

)
.

By the chain rule and the Hölder inequality for the pair of conjugate exponents
t/2, t/(t − 2),

E

∣∣∣∇(ϕ ◦ f )(X)

∣∣∣
2

2
= E

(∣∣∣ϕ′( f (X))

∣∣∣ ·
∣∣∣∇ f (X)

∣∣∣
2

)2
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≤
(
E|∇ f (X)|t2

)2/t (
E
(
ϕ′( f (X))

)2t/(t−2))(t−2)/t

= ∥∥|∇ f (X)|2
∥∥2
t ·
(
t2

4

) (
E f (X)t

)1− 2
t .

Similarly, for t ≥ β,

E

∣∣∣∇(ϕ ◦ f )(X)

∣∣∣
β

β
f (X)t (2−β)/2 = tβ

2β
E f (X)(t/2−1)β

∣∣∣∇ f (X)

∣∣∣
β

β
f (X)t (2−β)/2

= tβ

2β
E f (X)t−β

∣∣∣∇ f (X)

∣∣∣
β

β

≤ tβ

2β

(
E f (X)t

)1−β/t(
E

∣∣∣∇ f (X)

∣∣∣
t

β

)β/t

= tβ

2β

(
E f (X)t

)1−β/t∥∥∥|∇ f (X)|β
∥∥∥

β

t
.

Thus we get for β ≤ t ≤ p,

d

dt

(
E f (X)t

)2/t ≤ DLSβ

2

∥∥∥|∇ f (X)|2
∥∥∥
2

p
+ DLSβ

2β−1 t
β−2(

E f (X)t
)(2−β)/t∥∥|∇ f (X)|β

∥∥β

p.

Denote a = DLSβ
2

∥∥∥|∇ f (X)|2
∥∥∥
2

p
, b = DLSβ

2β−1
∥∥∥|∇ f (X)|β

∥∥∥
β

p
, g(t) = (

E f (X)t
)2/t . The

above inequality can be written as

gβ/2−1 d

dt
g ≤ gβ/2−1a + tβ−2b

for t ∈ [β, p] or, denoting G = gβ/2,

d

dt
G ≤ β

2
(G(β−2)/βa + tβ−2b).

For ε > 0 consider now the function Hε(t) = (g(β)+a(t−β)+b2/β t2−2/β + ε)β/2.
We have

Hε(β) > G(β)

and

d

dt
Hε(t) = β

2
Hε(t)

(β−2)/β(a+(2−2/β)t1−2/βb2/β
)
≥ β

2

(
Hε(t)

(β−2)/βa+tβ−2b
)
,

where we used the assumption β ≥ 2. Using the last three inequalities together with
the fact that for t ≥ 0 the function x �→ x (β−2)/2a + tβ−2b is increasing on [0,∞)
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we obtain that G(t) ≤ Hε(t) for all t ∈ [β, p], which by taking ε → 0+ implies that
for p ≥ β,

g(p) = G(p)2/β ≤ H0(p)
2/β ≤ g(β)+ DLSβ

2
(p − β)

∥∥|∇ f (X)|2
∥∥2
p

+
D2/β

LSβ

2
p2−2/β

∥∥|∇ f (X)|β
∥∥2
p,

i.e.,

‖ f (X)‖2p ≤ ‖ f (X)‖2β+
DLSβ

2
(p−β)

∥∥|∇ f (X)|2
∥∥2
p+

D2/β
LSβ

2
p2−2/β

∥∥|∇ f (X)|β
∥∥2
p.

(19)
The above inequality has been proved so far for strictly positive, locally Lipschitz

functions (the boundedness assumption can be easily removed by truncation and pas-
sage to the limit). For the case of a general locally Lipschitz function f , take any
ε > 0 and consider f̃ = | f | + ε. Since f̃ is strictly positive and locally Lipschitz,
the above inequality holds also for f̃ . Taking ε → 0+, we can now extend (19) to
arbitrary locally Lipschitz f .

Finally, assume f : Rmk → R is locally Lipschitz and f (X) is integrable. Apply-
ing (19) to f − E f (X) instead of f and taking the square root, we obtain

‖ f (X)− E f (X)‖p ≤ ‖ f (X)− E f (X)‖β +
√
DLSβ (p − β)

∥∥|∇ f (X)|2
∥∥
p

+D1/β
LSβ

p1/α
∥∥|∇ f (X)|β

∥∥
p

for p ≥ β. For p ∈ [2, β], since (16) implies the Poincaré inequality with constant
DLSβ /2 (see Proposition 2.3. in [28]), we get

‖ f (X)− E f (X)‖p ≤ CD1/2
LSβ

p
∥∥|∇ f (X)|2

∥∥
p

(see the remark following (14)). These two estimates yield (17) with Cβ = C
√

β. ��

3.1 Applications of Theorem 1.2

Let us now present certain applications of estimates established in the previous section.
For simplicity we will restrict to the basic setting presented in Theorem 1.2.

3.1.1 Polynomials

A typical application of Theorem 1.2 would be to obtain tail inequalities for multi-
variate polynomials in the random vector X . The constants involved in such estimates
do not depend on the dimension, but only on the degree of the polynomial. As already
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mentioned in the introduction, our results in this setting can be considered as a trans-
ference of inequalities by Latała from the tetrahedral Gaussian case to the case of not
necessarily product random vectors and general polynomials.

3.1.2 Additive functionals and related statistics

We will now consider three classes of additive statistics of a random vector, often
arising in various problems.

Additive functionals Let X be a random vector in R
n satisfying (3). For a function

f : R→ R define the random variable

Z f = f (X1)+ · · · + f (Xn). (20)

It is classical and follows from (3) by a simple application of theChebyshev inequal-
ity that if f is smooth with ‖ f ′‖∞ ≤ α, then for all t > 0,

P
(|Z f − EZ f | ≥ t

) ≤ e2 exp
(
− t2

e2nL2α2

)
. (21)

Using Theorem 1.2 we can easily obtain inequalities which hold if f is a
polynomial-like function, i.e., if ‖ f (D)‖∞ <∞ for some D. Note that the derivatives
of the function F(x1, . . . , xn) = f (x1) + · · · + f (xn) have a very simple diagonal
form. In consequence, calculating their ‖ · ‖J norms is simple. More precisely, we
have

Dd F(x) = diagd
(
f (d)(x1), . . . , f (d)(xn)

)
,

where diagd(x1, . . . , xn) stands for the d-indexed matrix (ai)i∈[n]d such that ai =
xi if i1 = · · · = id = i and 0 otherwise. It is easy to see that if J =
{[d]}, then ‖diagd(x1, . . . , xn)‖J =

√
x21 + · · · + x2n and if #J ≥ 2, then

‖diagd(x1, . . . , xn)‖J = maxi≤n |xi |. Therefore we obtain the following corollary
to Theorem 1.2. We will apply it in the next section to linear eigenvalue statistics of
random matrices.

Corollary 3.6 Let X be a random vector in R
n satisfying (3), f : R → R a CD

function, such that ‖ f (D)‖∞ <∞ and let Z f be defined by (20). Then for all t > 0,

P(|Z f − EZ f | ≥ t) ≤ 2 exp

(
− 1

CD
min

( t2

L2Dn‖ f (D)‖2∞
,

t2/D

L2‖ f (D)‖2/D∞
))

+ 2 exp

(
− 1

CD
min

1≤d≤D−1

( t2

L2d
∑n

i=1(E f (d)(Xi ))2

))

+ 2 exp

(
− 1

CD
min

2≤d≤D−1

( t2/d

L2 maxi≤n |E f (d)(Xi )|2/d
))

.
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Clearly the case D = 1 of the above corollary recovers (21) up to constants. Moreover
using the (yet unproven) Theorem 1.3 one can see that for f (x) = xD and X being a
standard Gaussian vector in Rn , the estimate of the corollary is optimal up to absolute
constants (in this case, since Z f is a sum of independent random variables, one can
also use estimates from [33]).

Additive functionals of partial sums Let us now consider a slightly more involved
additive functional of the form

S f =
n∑

i=1
f

( i∑

j=1
X j

)
. (22)

Such random variables arise e.g., in the study of additive functionals of random walks
(see e.g. [16,61]). For simplicity wewill only discuss what can be obtained directly for
Lipschitz functions f and what Theorem 1.2 gives for f with bounded second deriva-

tive. Let thus F(x) =∑n
i=1 f

(∑i
j=1 x j

)
. We have ∂

∂xi
F(x) =∑

l≥i f ′
(∑

j≤l x j
)
.

Therefore

∥∥|∇F |∥∥2∞ = ‖ f ′‖2∞
n∑

i=1
(n − i + 1)2 = 1

6
n(n + 1)(2n + 1)‖ f ′‖2∞,

which, when combined with (3) and Chebyshev’s inequality yields

P(|S f − ES f | ≥ t) ≤ 2 exp
(
− t2

CL2n3
∥∥∥ f ′

∥∥∥
2

∞

)
.

Now, let us assume that f ∈ C2 and f ′′ is bounded. We have

|E∇F(X)|2 =
n∑

i=1

( n∑

l=i
E f ′

( l∑

j=1
X j

))2

.

Moreover

∂2

∂xi∂x j
F(x1, . . . , xn) =

n∑

l=i∨ j

f ′′
( l∑

k=1
xk
)

and thus

∥∥∥D2F(x)
∥∥∥
2

{1,2} =
n∑

i, j=1

( n∑

l=i∨ j

f ′′
( l∑

k=1
xk
))2
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≤ 2
∥∥∥ f ′′

∥∥∥
2

∞

n∑

i=1

n∑

j=i
(n − j + 1)2 ≤ Cn4

∥∥∥ f ′′
∥∥∥
2

∞.

Since D2F is a symmetric bilinear form, we have

∥∥∥D2F(x)
∥∥∥{1}{2} ≤ sup

|α|≤1

n∑

i, j=1

n∑

l=i∨ j

∣∣∣∣ f
′′
( l∑

k=1
xk

)∣∣∣∣αiα j

≤ sup
|α|≤1

‖ f ′′‖∞
n∑

l=1

(∑

i≤l
αi

)2

≤ sup
|α|≤1

‖ f ′′‖∞
n∑

l=1
l
∑

i≤l
α2
i ≤ Cn2‖ f ′′‖∞.

Using the above estimates and Theorem 1.2 we obtain

P(|S f − ES f | ≥ t)

≤ 2 exp

(
− 1

CL2 min
( t2
∑n

i=1
(∑n

l=i E f ′(
∑l

j=1 X j )
)2 ,

t

n2‖ f ′′‖∞
))

.

To effectively bound the sub-Gaussian coefficient in the above inequality one should
use some additional information about the structure of the vector X . For a given
function f it is of order at most n5, but if, e.g., the function f is even and X is
symmetric, it clearly vanishes. In this case we get

P(|S f − ES f | ≥ t) ≤ 2 exp
(
− 1

CL2

t

n2‖ f ′′‖∞
)
.

One can check that if for instance X is a standardGaussian vector inRn and f (x) = x2

then this estimate is tight up to the value of the constant C .
U-statistics Our last application in this section will concern U -statistics (for sim-

plicity of order 2) of the random vector X , i.e., random variables of the form

U =
∑

i, j≤n,i 
= j

hi j (Xi , X j ),

where hi j : R2 → R are smooth functions. Without loss of generality let us assume
that hi j (x, y) = h ji (y, x).
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A simple application of Chebyshev’s inequality and (3) gives that if partial deriva-
tives of hi, j are uniformly bounded on R

2 then for all t > 0,

P(|U − EU | ≥ t) ≤ 2 exp
(
− 1

CL2

t2

supx∈Rn
∑n

i=1(
∑

j 
=i ∂
∂x hi j (xi , x j ))

2

)

≤ 2 exp
(
− 1

CL2

t2

n3 maxi 
= j ‖ ∂
∂x hi j‖2∞

)
.

For hi j of class C2 with bounded derivatives of second order, a direct application
of Theorem 1.2 gives

P(|U − EU | ≥ t) ≤ 2 exp

(
− 1

C
min

( t2

L4α2 ,
t2

L2β2 ,
t

L2γ

))
,

where

α2 = sup
x∈Rn

{ ∑

i, j≤n,i 
= j

(
∂2

∂x∂y
hi j (xi , x j )

)2

+
n∑

i=1

(∑

j 
=i

∂2

∂x2
hi j (xi , x j )

)2}

≤ n2 max
i 
= j

∥∥∥
∂2

∂x∂y
hi j
∥∥∥
2

∞ + n3 max
i 
= j

∥∥∥
∂2

∂x2
hi j
∥∥∥
2

∞,

β2 =
n∑

i=1

(∑

j 
=i
E

∂

∂x
hi j (Xi , X j )

)2 ≤ n3 max
i 
= j

|E ∂

∂x
hi j (Xi , X j )|2,

γ = sup
x∈Rn

sup
|α|,|β|≤1

{ ∑

i, j≤n,i 
= j

∂2

∂x∂y
hi j (xi , x j )αiβ j +

n∑

i=1
αiβi

∑

j 
=i

∂2

∂x2
hi j (xi , x j )

}

≤ n
(
max
i 
= j

∥∥∥
∂2

∂x∂y
hi j
∥∥∥∞ +max

i 
= j

∥∥∥
∂2

∂x2
hi j
∥∥∥∞

)
.

In particular, if hi j = h, a function with bounded derivatives of second order, we
get α2 = O(n3), β2 = O(n3), γ = O(n), which shows that the oscillations of U are
of order at mostO(n3/2). In the case ofU -statistics of independent random variables,
generated by bounded h, this is a well known fact, corresponding to the CLT and
classical Hoeffding inequalities forU -statistics. We remark that in the non-degenerate
case, i.e. when Var (EXh(X,Y )) > 0, n3/2 is indeed the right normalization in the
CLT for U -statistics (see e.g. [24]).

3.1.3 Linear statistics of eigenvalues of random matrices

We will now use Corollary 3.6 to obtain tail inequalities for linear eigenvalue statis-
tics of Wigner random matrices. We remark that one could also apply to the random
matrix case the other inequalities considered in the previous section, obtaining in par-
ticular estimates onU -statistics of eigenvalues (which have been recently investigated
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by Lytova and Pastur [50]). We will focus on linear eigenvalues statistics (additive
functionals in the language of the previous section) and obtain inequalities involving a
Sobolev norm of the function f with respect to the semicircle law (the limiting spectral
distribution for Wigner ensembles) as a sub-Gaussian term. We refer the Reader to the
monographs [4,6,51,56] for basic facts concerning random matrices.

Consider thus a real symmetricn×n randommatrix A (n ≥ 2) and letλ1 ≤ · · · ≤ λn
be its eigenvalues. We will be interested in concentration inequalities for functionals
of the form

Z =
n∑

i=1
f (λi/

√
n).

In [31] Guionnet and Zeitouni obtained concentration inequalities for Z with Lipschitz
f assuming that the entries of A are independent and satisfy the log-Sobolev inequality
with some constant L . More specifically, they prove that for all t > 0,

P(|Z − EZ | ≥ t) ≤ 2 exp
(
− t2

8L‖ f ′‖2∞
)
.

(In fact they treat a more general case of banded matrices, but for simplicity we will
focus on the basic case.)

As a corollary to Theorem 1.2 we present below an inequality which compliments
the above result. Our aim is to replace the strong parameter ‖ f ′‖∞ controlling the
sub-Gaussian tail by a weaker Sobolev norm with respect to the semicircular law

dρ(x) = 1

2π

√
4− x21(−2,2)(x) dx

(recall that this is the limiting spectral distribution for Wigner matrices). Imposing
additional smoothness assumptions on the function f it can be done in a window
|t | ≤ c f n, where c f depends on f .

Proposition 3.7 Assume the entries of the matrix A are independent (modulo symme-
try conditions) real valued, mean zero and variance one random variables, satisfying
the logarithmic Sobolev inequality (15) with constant L2. If f is C2 with bounded
second derivative, then for all t > 0,

P(|Z − EZ | ≥ t) ≤ 2 exp

(
− 1

CL

(
t2

∫ 2
−2 f ′2 dρ + n−2/3 ‖ f ′′‖2∞

∧ nt

‖ f ′′‖∞

))
.

(23)

Remark The case f (x) = x2 shows that under the assumptions of Proposition 3.7
one cannot expect a tail behaviour better than exponential for large t . Indeed, since
Z = 1

n (λ21 + · · · + λ2n) = 1
n

∑
i, j≤n A2

i j , even if A is a matrix with standard Gaussian

entries, then for all t > 0,P(|Z − EZ | ≥ t) > 1
C exp(−C(t2 ∧ nt)).
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Remark A similar inequality to (23) holds in the case of Hermitian matrices with
independent entries as well. In the proof given below one should invoke an appropriate
result concerning the speed of convergence of the spectral distribution of Wigner
matrices to the semicircular law.

Proof Let us identify the random matrix A with a random vector Ã = (Ai j )1≤i≤ j≤n
having values in R

n(n+1)/2 endowed with the standard Euclidean norm | Ã| =(∑
1≤i≤ j≤n A2

i j

)1/2
. Note that ‖A‖HS ≤

√
2| Ã|. By independence of coordinates of

Ã and the tensorization property of the logarithmic Sobolev inequality (see, e.g., [46,
Corollary 5.7]), Ã also satisfies (15) with constant L2. Furthermore, by the Hoffman-
Wielandt inequality (see, e.g., [4, Lemma 2.1.19]) which asserts that if B,C are two
n×n real symmetric (or Hermitian) matrices and λi (B), λi (C) resp. their eigenvalues
arranged in nondecreasing order, then

n∑

i=1
|λi (B)− λi (C)|2 ≤ ‖B − C‖2HS,

we get that the map Ã �→ (λ1/
√
n, . . . , λn/

√
n) ∈ R

n is
√
2/n-Lipschitz. Therefore,

the random vector (λ1/
√
n, . . . , λn/

√
n) satisfies (15) with constant 2L2/n. In con-

sequence, by the results from [3] (see also Theorem 3.4), (λ1/
√
n, . . . , λn/

√
n) also

satisfies (3) with constant
√
2L/

√
n. Applying Corollary 3.6 with D = 2 we obtain

P(|Z − EZ | ≥ t)

≤2 exp

(
− 1

CL2

(
t2

n−1
∑n

i=1(E f ′(λi/
√
n))2+L2n−1 ‖ f ′′‖2∞

∧ nt

‖ f ′′‖∞

))
.

(24)

In what follows we shall estimate from above the term n−1
∑n

i=1(E f ′(λi/
√
n))2

from (24). First, by Jensen’s inequality

1

n

n∑

i=1
(E f ′(λi/

√
n))2 ≤ E

(
1

n

n∑

i=1
f ′(λi/

√
n)2

)
=
∫

R

( f ′)2dμ, (25)

whereμ is the expected spectral measure of thematrix n−1/2A. According toWigner’s
theorem, for a fixed f, μ converges to the semicircular law as n → ∞ and thus∫
R
( f ′)2 dμ → ∫ 2

−2( f
′)2 dρ. A non-asymptotic bound on the term

∫
R

f ′2 dμ can
be obtained using the result of Bobkov, Götze and Tikhomirov [12] on the speed
of convergence of the expected spectral distribution of real Wigner matrices to the
semicircular law. Since each entry of A satisfies the logarithmic Sobolev inequality
with constant L2, it also satisfies the Poincaré inequality with the same constant (see
e.g. [46, Chapter 5]). Therefore Theorem 1.1 from [12] gives

sup
x∈R

|Fμ(x)− Fρ(x)| ≤ CLn
−2/3, (26)
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where Fμ and Fρ are the distribution functions of μ and ρ, respectively.
The decay of 1 − Fμ(x) and Fμ(x) as x → ∞ and x → −∞ (resp.) can be

obtained using the sub-Gaussian concentration of λn/
√
n and λ1/

√
n, which is, e.g.,

a consequence of (3) for the vector of eigenvalues of n−1/2A. For example, for any
t ≥ 0,

P

(
λn√
n
≥ E

λn√
n
+ t

)
≤ 2 exp

(
− 1

C

nt2

L2

)
. (27)

Using the classical technique of δ-nets for estimating the operator norm of a matrix
(see e.g. [58]) and the fact that the entries of A are sub-Gaussian (as they satisfy the
logarithmic Sobolev inequality) one gets Eλn ≤ E‖A‖op ≤ CL

√
n, which together

with (27) yields

1− Fμ(CL + t) ≤ P

(
λn√
n
≥ CL + t

)
≤ 2 exp

(
− 1

C

nt2

L2

)
(28)

for all t ≥ 0. Clearly, the same inequality holds for F(−CL− t). Integrating by parts,
we get ∫

R

f ′2 dμ =
∫

R

f ′2 dρ +
∫

R

(
f ′(x)2

)′
(Fρ(x)− Fμ(x)) dx . (29)

Combining the uniform estimate (26) with (28) and using an elementary inequality
2xy ≤ x2 + y2, we estimate the last integral in (29) as follows:

∣∣∣∣
∫

R

(
f ′(x)2

)′
(Fμ(x)− Fρ(x)) dx

∣∣∣∣

≤
∫

R

∣∣2 f ′(x) f ′′(x)
∣∣
(∥∥Fμ − Fρ

∥∥∞ ∧ 2 exp

(
− n

C

dist(x, [−CL ,CL])2
L2

))
dx

≤
∫

R

f ′(x)2 dν(x)+ ν(R)
∥∥ f ′′

∥∥2∞ , (30)

where

dν(x) = CLn
−2/3 ∧ 2 exp

(
−dist(x, [−CL ,CL])2

2σ 2

)
dx, and σ 2 = CL2

2n
.

We proceed to estimate the two last terms from (30). Take r > 0 such that

2e−r2/(2σ 2) = CLn
−2/3 (31)

or put r = 0 if no such r exists. Note that if we assume CL ≥ 1, as we obviously can,
then

r ≤ CLn−1/2
√
log n. (32)
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We shall need the following estimates, which are easy consequences of the standard
estimate for a Gaussian tail:

∫ ∞

r
e−y2/(2σ 2) dy ≤ Cσe−r2/(2σ 2) ≤ CLσn−2/3 ≤ CLn

−7/6, (33)

and

∫ ∞

r
y2e−y2/(2σ 2) dy ≤

(∫ ∞

0
y4e−y2/(2σ 2) dy

)1/2 (∫ ∞

r
e−y2/(2σ 2) dy

)1/2

≤ CLσ 5/2(σn−2/3)1/2 ≤ CLn
−11/6. (34)

Now, (31), (32) and (33) yield

ν(R) ≤ (CL + r)CLn
−2/3 + 4

∫ ∞

r
e−y2/(2σ 2) dy ≤ CLn

−2/3. (35)

We shall also need the estimate for
∫
R
x2 dν(x)which follows from (31), (32) and (34):

∫

R

x2 dν(x) ≤ 2

3
(CL + r)3CLn

−2/3 + 4
∫ ∞

r
(CL + y)2e−y2/(2σ 2) dy ≤ CLn

−2/3.

(36)

In order to estimate
∫
R

f ′2 dν, take any x0 ∈ [−2, 2] such that | f ′(x0)|2 ≤∫ 2
−2 f ′2 dρ, and use | f ′(x)| ≤ | f ′(x0)| + |x − x0|

∥∥ f ′′
∥∥∞ to obtain

∫

R

f ′(x)2 dν(x) ≤ 2
( ∫ 2

−2
f ′2 dρ

)
ν(R)+ 2

∥∥ f ′′
∥∥2∞

∫

R

|x − x0|2 dν(x)

≤ 2
( ∫ 2

−2
f ′2 dρ

)
ν(R)+4

∥∥ f ′′
∥∥2∞ x20ν(R)+4

∥∥ f ′′
∥∥2∞

∫

R

x2 dν(x).

Plugging (35) and (36) into the above yields

∫

R

f ′(x)2 dν(x) ≤ CLn
−2/3

(∫ 2

−2
f ′2 dρ + ∥∥ f ′′∥∥2∞

)
. (37)

In turn, plugging (35) and (37) into (30) and then combining with (29) we finally get

∫

R

f ′2 dμ ≤ (1+ CLn
−2/3)

∫ 2

−2
f ′2 dρ + CLn

−2/3 ∥∥ f ′′
∥∥2∞ ,

which combined with (24) and (25) completes the proof. ��

123



556 R. Adamczak, P. Wolff

Remarks 1. The factor n−2/3 in (23) comes only from (26) and in some situations can
be improved, provided one can obtain better speed of convergence to the semicircle
law.

2. With some more work (using truncations or working directly on moments) one
can extend the above proposition to the case | f ′′(x)| ≤ a(1 + |x |k) for some non-
negative integer k and a ∈ R. In this case we obtain

P
(|Z−EZ | ≥ t

) ≤ 2 exp

(
−
(

t2

CL
∫ 2
−2 f ′2 dρ+CL ,kn−2/3a2

∧ n

CL ,k

(
t

a

) 2
k+2
))

.

Wealso remark that to obtain the inequality (24) one does not have to use independence
of the entries of A, it is enough to assume that the vector Ã satisfies the inequality (3).

4 Two-sided estimates of moments for Gaussian polynomials

We will now prove Theorem 1.3, showing that in the case of general polynomials in
Gaussian variables, the estimates of Theorem 1.2 are optimal (up to constants depend-
ing only on the degree of the polynomial). In the special case of tetrahedral polynomials
this follows from Latała’s Theorem 1.1 and the following result by Kwapień.

Theorem 4.1 (Kwapień, Lemma 2 in [40]) If X = (X1, . . . , Xn) where Xi are
independent symmetric random variables, Q is a multivariate tetrahedral polyno-
mial of degree D with coefficients in a Banach space E and Qd is its homogeneous
part of degree d, then for any symmetric convex function � : E → R+ and any
d ∈ {0, 1, . . . , D},

E�(Qd(X)) ≤ E�(CdQ(X)).

Indeed, when combined with Theorem 1.1 and the triangle inequality, the above
theorem gives the following

Corollary 4.2 Let

Z =
∑

0≤d≤D

∑

i∈[n]d
a(d)

i gi1 . . . gid ,

where Ad = (a(d)
i )i∈[n]d is a d-indexed symmetric matrix of real numbers such that

ai = 0 if ik = il for some k 
= l (we adopt the convention that for d = 0 we have a
single number a(0)

∅ ). Then for any p ≥ 2,

C−1D

∑

0≤d≤D

∑

J ∈Pd
p#J /2‖Ad‖J ≤ ‖Z‖p ≤ CD

∑

0≤d≤D

∑

J ∈Pd
p#J /2‖Ad‖J .

The strategy of proof of Theorem 1.3 is very simple and relies on infinite divisibility
of Gaussian random vectors, which will help us approximate the law of a general
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polynomial in Gaussian variables by the law of a tetrahedral polynomial, for which
we will use Corollary 4.2.

It will be convenient to have the polynomial f represented as a combination of
multivariate Hermite polynomials:

f (x1, . . . , xn) =
D∑

d=0

∑

d∈�n
d

adhd1(x1) · · · hdn (xn), (38)

where

�n
d = {d = (d1, . . . , dn) : ∀k∈[n] dk ≥ 0 and d1 + · · · + dn = d}

and hm(x) = (−1)mex2/2 dm
dxm e

−x2/2 is the m-th Hermite polynomial.
Let (Wt )t∈[0,1] be a standardBrownianmotion. Consider standardGaussian random

variables g = W1 and, for any positive integer N ,

g j,N =
√
N (W j

N
−W j−1

N
), j = 1, . . . , N .

For any d ≥ 0, we have the following representation of hd(g) = hd(W1) as a multiple
stochastic integral (see [34, Example 7.12 and Theorem 3.21]),

hd(g) = d!
∫ 1

0

∫ td

0
· · ·
∫ t2

0
dWt1 · · · dWtd−1dWtd .

Approximating the multiple stochastic integral leads to

hd(g) = d! lim
N→∞ N−d/2

∑

1≤ j1<···< jd≤N

g j1,N . . . g jd ,N

= lim
N→∞ N−d/2

∑

j∈[N ]d
g j1,N . . . g jd ,N , (39)

where the limit is in L2(�) (see [34, Theorem 7.3. and formula (7.9)]) and actually
the convergence holds in any L p (see [34, Theorem 3.50]). We remark that instead
of multiple stochastic integrals with respect to the Wiener process we could use the
CLT for canonicalU -statistics (see [24, Chapter 4.2]), however the stochastic integral
framework seems more convenient as it allows to put all the auxiliary variables on the
same probability space as the original Gaussian sequence.

Now, consider n independent copies (W (i)
t )t∈[0,1] of the Brownian motion (i =

1, . . . , n) together with the corresponding Gaussian random variables: g(i) = W (i)
1

and, for N ≥ 1,

g(i)
j,N =

√
N (W (i)

j
N

−W (i)
j−1
N

), j = 1, . . . , N .

123



558 R. Adamczak, P. Wolff

In the lemma below we state the representation of a multivariate Hermite polynomial
in the variables g(1), . . . , g(n) as a limit of tetrahedral polynomials in the variables
g(i)
j,N . To this end let us introduce some more notation. Let

G(n,N ) = (g(1)
1,N , . . . , g(1)

N ,N , g(2)
1,N , . . . , g(2)

N ,N , . . . , g(n)
1,N , . . . , g(n)

N ,N )

= (g(i)
j,N )(i, j)∈[n]×[N ]

be a Gaussian vector with n × N coordinates. We identify here the set [nN ] with
[n] × [N ] via the bijection (i, j) ↔ (i − 1)N + j . We will also identify the sets
([n] × [N ])d and [n]d × [N ]d in a natural way. For d ≥ 0 and d ∈ �n

d , let

Id =
{
i ∈ [n]d : ∀l∈[n] #i−1({l}) = dl

}
,

and define a d-indexed matrix B(N )
d of nd blocks each of size Nd as follows: for

i ∈ [n]d and j ∈ [N ]d ,

(
B(N )

d

)
(i,j) =

{
d1!···dn !

d! N−d/2 if i ∈ Id and (i, j) := ((i1, j1), · · · , (id , jd )
) ∈ ([n] × [N ])d ,

0 otherwise.

Lemma 4.3 With the above notation, for any p > 0,

〈
B(N )

d , (G(n,N ))⊗d
〉 −→
N→∞ hd1(g

(1)) . . . hdn (g
(n)) in L p(�).

Proof Using (39) for each hdi (g
(i)),

hd1(g
(1)) . . . hdn (g

(n))

= lim
N→∞ N−d/2

∑

( j (1)1 ,..., j (1)d1
)∈[N ]d1

...
( j (n)

1 ,..., j (n)
dn

)∈[N ]dn

(
g(1)

j (1)1 ,N
· · · g(1)

j (1)d1
,N

)
· · ·
(
g(n)

j (n)
1 ,N

· · · g(n)

j (n)
dn

,N

)
.

For each N , the right-hand side equals

1

#Id
N−d/2

∑

i∈Id

∑

j∈[N ]d s.t.
(i,j)∈([n]×[N ])d

g(i1)
j1,N

· · · g(id )
jd ,N =

〈
B(N )

d , (G(n,N ))⊗d
〉
,

since #Id = d!
d1!···dn ! . ��

Note that B(N )
d is symmetric, i.e., for any i ∈ [n]d , j ∈ [N ]d if π : [d] → [d] is a

permutation and i′ ∈ [n]d , j′ ∈ [N ]d are such that ∀k∈[d] i ′k = iπ(k) and j ′k = jπ(k),
then
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(
B(N )

d

)
(i′,j′) =

(
B(N )

d

)
(i,j).

Moreover, B(N )
d has zeros on “generalized diagonals”, i.e.,

(
B(N )

d

)
(i,j) = 0 if (ik, jk) =

(il , jl) for some k 
= l.

Proof of Theorem 1.3 Let us first note that it is enough to prove themoment estimates,
the tail bound follows from them by the Paley-Zygmund inequality (see e.g. the proof
of Corollary 1 in [44]). Moreover, the upper bound on moments follows directly from
Theorem 1.2. For the lower bound we use Lemma 4.3 to approximate the L p norm of
f (G)−E f (G) with that of a tetrahedral polynomial, for which we can use the lower
bound from Corollary 4.2.

Assuming f is of the form (38), Lemma 4.3 together with the triangle inequality
implies

lim
N→∞

∥∥∥
D∑

d=1

〈 ∑

d∈�n
d

adB
(N )
d ,

(
G(n,N )

)⊗d 〉∥∥∥
p
= ∥∥ f (G)− E f (G)

∥∥
p

for any p > 0, where G = (g(1), . . . , g(n)). It therefore remains to relate∥∥∑
d∈�n

d
adB

(N )
d

∥∥J to
∥∥EDd f (G)

∥∥J for any d ≥ 1 and J ∈ Pd . In fact we shall
prove that

lim
N→∞

∥∥∥
∑

d∈�n
d

adB
(N )
d

∥∥∥J =
1

d!
∥∥∥EDd f (G)

∥∥∥J , (40)

which will end the proof.
Fix d ≥ 1 and J ∈ Pd . For any d ∈ �n

d define a symmetric d-indexed matrix
(bd)i∈[n]d as

(bd)i =
{

d1!···dn !
d! if i ∈ Id,

0 otherwise.

and a symmetric d-indexed matrix (B̃(N )
d )(i,j)∈([n]×[N ])d as

(B̃(N )
d )(i,j) = N−d/2(bd)i for all i ∈ [n]d and j ∈ [N ]d .

It is a simple observation that

∥∥∥
∑

d∈�n
d

ad B̃
(N )
d

∥∥∥J =
∥∥∥
∑

d∈�n
d

ad(bd)i∈[n]d
∥∥∥J . (41)

On the other hand, for any d ∈ �n
d , the matrices B̃(N )

d and B(N )
d differ at no more than

#Id · #([N ]d\[N ]d) entries. More precisely, if J0 = {[d]} (the trivial partition of [d]
into one set), then
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∥∥B̃(N )
d −B(N )

d

∥∥2J ≤
∥∥B̃(N )

d −B(N )
d

∥∥2J0
≤ d1! · · · dn !

d! N−d(Nd−Nd) −→ 0 as N→∞.

Thus the triangle inequality for the ‖ · ‖J norm together with (41) yields

lim
N→∞

∥∥∥
∑

d∈�n
d

adB
(N )
d

∥∥∥J =
∥∥∥
∑

d∈�n
d

ad(bd)i∈[n]d
∥∥∥J . (42)

Finally, note that
EDd f (G) = d!

∑

d∈�n
d

ad(bd)i∈[n]d . (43)

Indeed, using the identity on Hermite polynomials, d
dx hk(x) = khk−1(x) (k ≥ 1), we

obtain E
dl

dxl
hk(g) = k!1{k=l} for k, l ≥ 0, and thus, for any d, l ≤ D and d ∈ �n

l ,

(
EDdhd1(g

(1)) · · · hdn (g(n))
)

i = d!(bd)i1{d=l} for each i ∈ [n]d .

Now, (43) follows by linearity. Combining it with (42) proves (40). ��
Remark Note that the above infinite-divisibility argument can be also used to prove
the upper bound on moments in Theorem 1.3 (giving a proof independent of the one
relying on Theorem 1.2).

5 Polynomials in independent sub-Gaussian random variables

In this section we prove Theorem 1.4. Before we proceed with the core of the proof
we will need to introduce some auxiliary inequalities for the norms ‖ · ‖J as well as
some additional notation.

5.1 Properties of ‖ · ‖J norms

The first inequality we will need is pretty standard and given in the following lemma
(it is a direct consequence of the definition of the norms ‖ · ‖J ). Below ◦ denotes the
Hadamard product of d-indexed matrices, as defined in Sect. 2.

Lemma 5.1 For any d-indexed matrix A = (ai)i∈[n]d and any vectors v1, . . . , vd ∈
R
n we have for all J ∈ Pd,

‖A ◦ ⊗d
i=1vi‖J ≤ ‖A‖J

d∏

i=1
‖vi‖∞.

To formulate subsequent inequalities we need some auxiliary notation concerning
d-indexed matrices. We will treat matrices as functions from [n]d into the real line,
which in particular allows us to use the notation of indicator functions and for a set
C ⊆ [n]d write 1C for the matrix (ai) such that ai = 1 if i ∈ C and ai = 0 otherwise.
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Note that for #J > 1, ‖·‖J is not unconditional in the standard basis, i.e., in general
it is not true that ‖A ◦ 1C‖J ≤ ‖A‖J . One situation in which this inequality holds is
whenC is of the formC = {i : ik1 = j1, . . . , ikl = jl} for some1 ≤ k1 < . . . < kl ≤ d
and j1, . . . , jl ∈ [n] (which follows from Lemma 5.1). This corresponds to setting to
zero all coefficients which are outside a “generalized row” of a matrix and leaving the
coefficients in this row intact.

Later we will need another inequality of this type, which will allow us to select
a “generalized diagonal” of a matrix. The corresponding estimate is given in the
following

Lemma 5.2 Let A = (ai)i∈[n]d be a d-indexed matrix, K ⊆ [d] and let C ⊆ [n]d be
of the form C = {i : ik = il for all k, l ∈ K }. Then for every J ∈ Pd , ‖A ◦ 1C‖J ≤
‖A‖J .

Proof Since 1C1∩C2 = 1C1 ◦ 1C2 , it is enough to consider the case #K = 2, i.e.
C = {i : ik = il} for some 1 ≤ k < l ≤ d. Let J = {J1, . . . , Jm}. We will consider
two cases.

1. The numbers k and l are separated by the partition J . Without loss of generality
we can assume that k ∈ J1, l ∈ J2. Then

‖A ◦ 1C‖J
= sup
‖x( j)

iJ j
‖2≤1 : j≥3

(
sup

‖x(1)
iJ1
‖2,‖x(2)

iJ2
‖2≤1

∑

|iJ1 |≤n

∑

|iJ2 |≤n
1{ik=il }

( ∑

|i(J1∪J2)c |≤n
aix

(3)
iJ3
· · · x (m)

iJm

)
x (1)

iJ1
x (2)

iJ2

)
.

(44)

For any x (3)
iJ3

, . . . , x (m)
iJm

, consider the matrix

B = (BiJ1 ,iJ2
)iJ1 ,iJ2

=
( ∑

|i(J1∪J2)c |≤n
aix

(3)
iJ3

. . . x (m)
iJm

)

iJ1 ,iJ2

acting from �2([n]J1) to �2([n]J2).
For fixed x (3)

iJ3
, . . . , x (m)

iJm
the inner supremum on the right hand side of (44) is the

operator norm of the block-diagonal matrix obtained from B by setting to zero entries
in off-diagonal blocks. Therefore it is not greater than the operator norm of B, which
allows us to write

‖A ◦ 1C‖J ≤ sup
‖x ( j)

iJ j
‖2≤1 : j≥3

(
sup

‖x (1)
iJ1
‖2,‖x (2)

iJ2
‖2≤1

∑

|iJ1 |≤n

∑

|iJ2 |≤n

( ∑

|i(J1∪J2)c |≤n
aix

(3)
iJ3

. . . x (m)
iJm

)
x (1)

iJ1
x (2)

iJ2

)

= ‖A‖J .
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2. There exists j such that k, l ∈ J j . Without loss of generality we can assume that
j = 1. We have

‖A ◦ 1C‖J = sup
‖x ( j)

iJ j
‖2≤1 : j≥2

(
sup

‖x (1)
iJ1
‖2≤1

∑

|iJ1 |≤n
1{ik=il }

( ∑

|iJc1 |≤n
aix

(2)
iJ2

. . . x (m)
iJm

)
x (1)

iJ1

)

= sup
‖x ( j)

iJ j
‖2≤1 : j≥2

( ∑

|iJ1 |≤n
1{ik=il }

( ∑

|iJc1 |≤n
aix

(2)
iJ2
· · · x (m)

iJm

)2)1/2

≤ sup
‖x ( j)

iJ j
‖2≤1 : j≥2

( ∑

|iJ1 |≤n

( ∑

|iJc1 |≤n
aix

(2)
iJ2
· · · x (m)

iJm

)2)1/2

= ‖A‖J .

��
For a partition K = {K1, . . . , Km} ∈ Pd define

L(K) = {i ∈ [n]d : ik = il iff ∃ j≤m k, l ∈ K j }. (45)

Thus L(K) is the set of all indices for which the partition into level sets is equal to K.

Corollary 5.3 For any J ,K ∈ Pd and any d-indexed matrix A,

‖A ◦ 1L(K)‖J ≤ 2#K(#K−1)/2‖A‖J .

Proof By Lemma 5.2 and the triangle inequality for any k < l,

‖A ◦ 1{ik 
=il }‖J = ‖A − A ◦ 1{ik=il }‖J ≤ 2‖A‖J . (46)

Now it is enough to note that L(K) can be expressed as an intersection of #K “gen-
eralized diagonals” and #K(#K − 1)/2 sets of the form {i : ik 
= il} where k < l and
use again Lemma 5.2 together with (46). ��

5.2 Proof of Theorem 1.4

Let us first note that the tail bound of Theorem 1.4 follows from the moment estimate
and Chebyshev’s inequality in the same way as in Theorems 1.2 or 3.3. We will
therefore focus on the moment bound.

The method of proof will rely on the reduction to the Gaussian case via decoupling
inequalities, symmetrization and the contraction principle. To carry out this strategy
we will need the following representation of f :

f (x) =
D∑

d=0

d∑

m=0

∑

k1,...,km>0
k1+···+km=d

∑

i∈[n]m
c(d)
(i1,k1),...,(im ,km )x

k1
i1
xk2i2 . . . xkmim , (47)
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where the coefficients c(d)
(i1,k1),...,(im ,km ) satisfy

c(d)
(i1,k1),...,(im ,km ) = c(d)

(iπ1 ,kπ1 ),...,(iπm ,kπm ) (48)

for all permutations π : [m] → [m]. At this point we would like to explain the conven-
tion regarding indices which we will use throughout this section. It is rather standard,
but we prefer to draw the Reader’s attention to it, as we will use it extensively in what
follows. Namely, we will treat the sequence k = (k1, . . . , km) as a function acting on
[m] and taking values in positive integers. In particular if m = 0, then [m] = ∅ and
there exists exactly one function k : [m] → N\{0} (the empty function). Moreover by
convention this function satisfies

∑m
i=1 ki = 0 (as the summation runs over an empty

set). Therefore, for d = 0 and m = 0 the subsum over k1, . . . , km and i above is
equal to the free coefficient of the polynomial (which can be denoted by c(0)

∅ ), since
the summation over k1, . . . , km runs over a one-element set containing the empty
index/function and for this index there is exactly one index i : [m] → {1, . . . , n},
which belongs to [n]m (again the empty-index). Here we also use the convention that
a product over an empty set is equal to one. On the other hand, for d > 0, the contribu-
tion from m = 0 is equal to zero (as the empty index k does not satisfy the constraint
k1 + · · · + km = d and so the summation over k1, . . . , km runs over the empty set).

Using (47) together with independence of X1, . . . , Xn , one may write

f (X)− E f (X) =
D∑

d=1

d∑

m=1

∑

k1,...,km>0
k1+···+km=d

∑

i∈[n]m
c(d)
(i1,k1),··· ,(im ,km )

×
∑

∅
=J⊆[m]

∏

j∈J
(X

k j
i j
− EX

k j
i j

)
∏

j /∈J
EX

k j
i j

.

Rearranging the terms and using (48) together with the triangle inequality, we obtain

| f (X)− E f (X)| ≤
D∑

d=1

d∑

a=1

∑

k1,...,ka>0
k1+···+ka=d

∣∣∣
∑

i∈[n]a
d(k1,...,ka )
i1,...,ia

(Xk1
i1
− EXk1

i1
) · · · (Xka

ia
− EXka

ia
)

∣∣∣,

where

d(k1,...,ka)
i1,...,ia

=
D∑

m=a

∑

ka+1,...,km>0 :
k1+···+km≤D

∑

ia+1,...,im :
(i1,...,im )∈[n]m

(
m

a

)
c(k1+···+km )
(i1,k1),...,(im ,km )EX

ka+1
ia+1 · · ·EX

kim
im

.

Note that (48) implies that for every permutation π : [a] → [a],

d(k1,...,ka)
i1,...,ia

= d
(kπ1 ,...,kπa )

iπ1 ,...,iπa
. (49)
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Let now X (1), . . . , X (D) be independent copies of the random vector X and
(ε

( j)
i )i≤n, j≤D an array of i.i.d. Rademacher variables independent of (X ( j)) j . For

each k1, . . . , ka , by decoupling inequalities (Theorem 7.1 in the “Appendix”) applied
to the functions

h(k1,...,ka)
i1,...,ia

(x1, . . . , xa) = d(k1,...,ka)
i1,...,ia

(xk11 − EXk1
i1

) · · · (xkaa − EXka
ia

)

and standard symmetrization inequalities (applied conditionally a times) we obtain,

‖ f (X)− E f (X)‖p

≤ CD

D∑

d=1

d∑

a=1

∑

k1,...,ka>0
k1+···+ka=d

∥∥∥∥
∑

i∈[n]a
d(k1,...,ka )
i1,...,ia

(
(X (1)

i1
)k1 − E(X (1)

i1
)k1
)
· · ·
(
(X (a)

ia
)ka − E(X (a)

ia
)ka
)∥∥∥∥

p

≤ CD

D∑

d=1

d∑

a=1

∑

k1,...,ka>0
k1+···+ka=d

∥∥∥∥
∑

i∈[n]a
d(k1,...,ka )
i1,...,ia

(
ε
(1)
i1

(X (1)
i1

)k1 · · · ε(a)
ia

(X (a)
ia

)ka
)∥∥∥∥

p
(50)

(note that in the first part of Theorem 7.1 one does not impose any symmetry assump-
tions on the functions hi).

We will now use the following standard comparison lemma (for Reader’s conve-
nience its proof is presented in the “Appendix”).

Lemma 5.4 For any positive integer k, if Y1, . . . ,Yn are independent symmetric vari-
ables with ‖Yi‖ψ2/k ≤ M, then

∥∥∥∥∥

n∑

i=1
aiYi

∥∥∥∥∥
p

≤ CkM

∥∥∥∥∥

n∑

i=1
ai gi1 . . . gik

∥∥∥∥∥
p

,

where gi j are i.i.d. N (0, 1) variables.

Note that for any positive integer k we have ‖Xk
i ‖ψ2/k = ‖Xi‖kψ2

≤ Lk , so (50)
together with the above lemma (used repeatedly and conditionally) yield

‖ f (X)− E f (X)‖p

≤ CD

D∑

d=1
Ld

d∑

a=1

∑

k1,...,ka>0
k1+···+ka=d

∥∥∥∥∥∥

∑

i∈[n]a
d(k1,...,ka)
i1,...,ia

(g(1)
i1,1
· · · g(1)

i1,k1
) · · · (g(a)

ia ,1
· · · g(a)

ia ,ka
)

∥∥∥∥∥∥
p

, (51)

where (g( j)
i,k ) is an array of i.i.d. standard Gaussian variables. Consider now multi-

indexed matrices B1, . . . , BD defined as follows. For 1 ≤ d ≤ D, and a multi-index
r = (r1, . . . , rd) ∈ [n]d , let I = {I1, . . . , Ia} be the partition of {1, . . . , d} into the
level sets of r and i1, . . . , ia be the values corresponding to the level sets I1, . . . , Ia .
Define moreover

b(d)
r1,...,rd = d(#I1,...,#Ia)

i1,...,ia
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(note that thanks to (49) this definition does not depend on the order of I1, . . . , Ia).
Finally, define the d-indexed matrix Bd = (b(d)

r )r∈[n]d .
Let us also define for k1, . . . , ka > 0,

∑a
i=1 ki = d the partition K(k1, . . . , ka) ∈

Pd by splitting the set {1, . . . , d} into consecutive intervals of length k1, . . . , ka ,
i.e., K = {K1, . . . , Ka}, where for l = 1, . . . , a, Kl = {1 + ∑l−1

i=1 ki , 2 +∑l−1
i=1 ki , . . . ,

∑l
i=1 ki }.

Applying Theorem 3.1 to the right hand side of (51), we obtain

‖ f (X)− E f (X)‖p

≤ CD

D∑

d=1
Ld

d∑

a=1

∑

k1,...,ka>0
k1+···+ka=d

∥∥∥
〈
Bd ◦ 1L(K(k1,...,ka)),

a⊗

j=1

k j⊗

k=1
(g( j)

i,k )i≤n
〉∥∥∥

p

≤ CD

D∑

d=1
Ld

d∑

a=1

∑

k1,...,ka>0
k1+···+ka=d

∑

J ∈Pd
p#J /2‖Bd ◦ 1L(K(k1,...,ka))‖J .

Note that for all k1, . . . , ka by Corollary 5.3 we have ‖Bd ◦ 1L(K(k1,··· ,ka))‖J ≤
Cd‖Bd‖J . Thus we obtain

‖ f (X)− E f (X)‖p ≤ CD

D∑

d=1
Ld

∑

J ∈Pd
p#J /2‖Bd‖J .

Our next goal is to replace Bd in the above inequality by EDd f (X). To this end
we will analyse the structure of the coefficients of Bd and compare them with the
integrated partial derivatives of f .

Let us first calculate EDd f (X). Consider r ∈ [n]d , such that i1, . . . , ia are its
distinct values, taken l1, . . . , la times respectively. We have

E
∂d f

∂xr1 · · · ∂xrd
(X) =

∑

k1≥l1,...,ka≥la

∑

a≤m≤D

∑

ka+1,...,km>0
k1+···+km≤D

∑

ia+1,...,im
(i1,...,im )∈[n]m

[(
m

a

)
a!c(k1+···+km )

(i1,k1),...,(im ,km )

a∏

j=1
EX

k j−l j
i j

m∏

j=a+1
EX

k j
i j

a∏

j=1

k j !
(k j − l j )!

]
,

where we have used (48).
By comparing this with the definition of b(d)

r1,··· ,rd and d
(k1,...,ka)
i1,...,ia

one can see that the
sub-sum of the right hand side above corresponding to the choice k1 = l1, . . . , ka = la
is equal to a!l1! · · · la !b(d)

r1,...,rd .
In particular for d = D, since l1 + · · · + la = D, we have

E
∂D f

∂xr1 · · · ∂xrD
(X) = a!l1! · · · la !b(D)

r1,...,rD
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and so

‖BD‖J ≤
∑

K∈PD
‖BD ◦ 1L(K)‖J ≤

∑

K∈PD
‖DD f (X) ◦ 1L(K)‖J ≤ CD‖DD f (X)‖J ,

where in the last inequality we used Corollary 5.3. Therefore if we prove that for all
d < D and all partitions I = {I1, . . . , Ia},J = {J1, . . . , Jb} ∈ Pd ,

‖a!#I1! · · · #Ia !(Bd ◦ 1L(I))−EDd f (X) ◦ 1L(I)‖J ≤CD

∑

d<k≤D

Lk−d ∑

K∈Pk
#K=#J

‖Bk‖K,

(52)

then by simple reverse induction (using again Corollary 5.3) we will obtain

D∑

d=1
Ld

∑

J ∈Pd
p#J /2‖Bd‖J ≤ CD

∑

1≤d≤D

Ld
∑

J ∈Pd
p#J /2‖EDd f (X)‖J ,

which will end the proof of the theorem.
Fix any d < D and partitions I = {I1, . . . , Ia},J = {J1, . . . , Jb} ∈ Pd . Denote

li = #Ii . For every sequence k1, . . . , ka such that ki ≥ li for i ≤ a and there exists i ≤
a such that ki > li , let us define a d-indexed matrix E (d,k1,...,ka)

I = (e(d,k1,...,ka)
r )r∈[n]d ,

such that e(d,k1,...,ka)
r = 0 if r /∈ L(I) and for r ∈ L(I),

e(d,k1,...,ka )
r =

D∑

m=a

∑

ka+1,...,km>0
k1+···+km≤D

∑

ia+1,...,im
(i1,...,im )∈[n]m

(
m

a

)
c(k1+···+km )
(i1,k1),...,(im ,km )

a∏

j=1
EX

k j−l j
i j

m∏

j=a+1
EX

k j
i j

,

where i1, . . . , ia are the values of r corresponding to the level sets I1, . . . , Ia . We then
have

∑

k1≥l1,...,ka≥la
∃i ki>li

a! k1!
(k1 − l1)! · · ·

ka !
(ka − la)! E

(d,k1,...,ka)
I

= EDd f (X) ◦ 1L(I) − a!l1! · · · la !Bd ◦ 1L(I).

Since we do not pay attention to constants depending on D only, by the above formula
and the triangle inequality, to prove (52) it is enough to show that for all sequences
k1, . . . , ka such that k1 + · · · + ka ≤ D, ki ≥ li for i ≤ a and there exists i ≤ a such
that ki > li , one has

‖E (d,k1,...,ka)
I ‖J ≤ CDL

∑
j≤a(k j−l j )‖Bk1+···+ka‖K (53)
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for some partition K ∈ Pk1+···+ka with #K = #J (note that
∑

j≤a l j = d). Therefore
in what follows we will fix k1, . . . , ka as above and to simplify the notation we will
write E (d) instead of E (d,k1,...,ka)

I and e(d)
r instead of e(d,k1,...,ka)

r .

Fix therefore any partition Ĩ = { Ĩ1, . . . , Ĩa} ∈ Pk1+···+ka such that # Ĩi = ki
and Ii ⊆ Ĩi for all i ≤ a (the specific choice of Ĩ is irrelevant). Finally define a
(k1 + · · · + ka)-indexed matrix Ẽ (k1+···+ka) = (ẽ(k1+···+ka)

r )r∈[n]d by setting

ẽ(k1+···+ka)
r = e(d)

r[d]1{r∈L(Ĩ)}. (54)

In other words, the new matrix is created by embedding the d-indexed matrix into a
“generalized diagonal” of a (k1+ · · · + ka)-indexed matrix by adding

∑
j≤a(k j − l j )

new indices and assigning to them the values of old indices (for each j ≤ a we add
k j − l j times the common value attained by r[d] on I j ).

Recall now the definition of the coefficients b(d)
r and note that for any r ∈ L(Ĩ) ⊆

[n]k1+...+ka we have ẽ(k1+···+ka)
r = b(k1+···+ka)

r
∏a

j=1 EX
k j−l j
i j

, where for j ≤ a, i j

is the value of r on its level set Ĩ j . This means that Ẽ (k1+···+ka) = (Bk1+···+ka ◦
1L(Ĩ)

) ◦ (⊗k1+···+ka
s=1 vs), where vs = (EX

k j−l j
i )i≤n if s ∈ {min I1, . . . ,min Ia} and

vs = (1, . . . , 1) otherwise. Since ‖vs‖∞ ≤ (CDL)k j−l j if s ∈ {min I j } j≤a and
‖vs‖∞ = 1 otherwise, by Lemma 5.1 this implies that for any K ∈ Pk1+···+ka ,

‖Ẽ (k1+···+ka)‖K ≤ (CDL)
∑

j≤a(k j−l j )‖Bk1+···+ka ◦ 1L(Ĩ)
‖K

≤ CDL
∑

j≤a(k j−l j )‖Bk1+···+ka‖K, (55)

where in the last inequality we used Corollary 5.3.
We will now use the above inequality to prove (53). Consider the unique partition

K = {K1, . . . , Kb} satisfying the following two conditions:

• for each j ≤ b, J j ⊆ K j ,
• for each s ∈ {d + 1, . . . , k1 + · · · + ka} if s ∈ Ĩ j and π(s) := min Ĩ j ∈ Jk , then
s ∈ Kk .

In other words, all indices s, which in the construction of Ĩ were added to I j (i.e.,
elements of Ĩ j\I j ) are now added to the unique element of J containing π(s) =
min Ĩ j = min I j .

Now, it is easy to see that ‖E (d)‖J ≤ ‖Ẽ (k1+···+ka)‖K. Indeed, consider an arbi-

trary x ( j) = (x ( j)
rJ j

)|rJ j |≤n, j = 1, . . . , b, satisfying ‖x ( j)‖2 ≤ 1. Define y( j) =
(y( j)

rK j
)|rK j |≤n, j = 1, . . . , b with the formula

y( j)
rK j

= x ( j)
rK j∩[d]

∏

s∈K j\[d]
1{rs=rπ(s)}.
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We have ‖y( j)‖2 = ‖x ( j)‖2 ≤ 1. Moreover, by the construction of the matrix
Ẽ (k1+···+ka) (recall (54)), we have

∑

|r[d]|≤n
e(d)

r[d]

b∏

j=1
x ( j)

rJ j
=

∑

|r[k1+...+ka ]|≤n
ẽ(k1+...+ka)

r[k1+...+ka ]

b∏

j=1
x ( j)

rJ j

=
∑

|r[k1+...+ka ]|≤n
ẽ(k1+...+ka)

r[k1+...+ka ]

b∏

j=1
y( j)

rK j

(in the last equality we used the fact that if r ∈ L(Ĩ), then for s > d, rπ(s) = rs
and so y( j)

rK j
= x ( j)

rK j∩[d] = x ( j)
rJ j

). By taking the supremum over x ( j) one thus obtains

‖E (d)‖J ≤ ‖Ẽ (k1+···+ka)‖K. Combining this inequality with (55) proves (53) and
thus (52). This ends the proof of Theorem 1.4.

5.3 Application: subgraph counting in random graphs

We will now apply results from Sect. 5 to some special cases of the problem of
subgraph counting in Erdős-Rényi random graphs G(n, p), which is often used as a
test model for deviation inequalities for polynomials in independent random variables.
More specifically we will investigate the problem of counting cycles of a fixed length.

It turns out that Theorem 1.4 gives optimal inequalities in some range of parame-
ters (leading to improvements of known results), whereas in some other regimes the
estimates it gives are suboptimal.

Let us first describe the setting (we will do it in a slightly more general form that
needed for our example). We will consider undirected graphs G = (V, E), where V
is a finite set of vertices and E is the set of edges (i.e. two-element subsets of V ). By
VG = V (G) and EG = E(G) we mean the set of vertices and edges (respectively) of
a graph G. Also, vG = v(G) and eG = e(G) denote the number of vertices and edges
in G. We say that a graph H is a subgraph of a graph G (which we denote by H ⊆ G)
if VH ⊆ VG and EH ⊆ EG (thus a subgraph is not necessarily induced). Graphs H
and G are isomorphic if there is a bijection π : VH → VG such that for all distinct
v,w ∈ VH , {π(v), π(w)} ∈ EG iff {v,w} ∈ EH .

For p ∈ [0, 1] consider now the Erdős-Rényi random graph G = G(n, p), i.e.,
a graph with n vertices (we will assume that VG = [n]) whose edges are selected
independently at random with probability p. In what follows we will be concerned
with the number of copies of a given graph H = ([k], EH ) in the graph G, i.e., the
number of subgraphs of G which are isomorphic to H . We will denote this random
variable by YH (n, p). To relate YH (n, p) to polynomials, let us consider the family
C(n, 2) of two-element subsets of [n] and the family of independent random variables
X = (Xe)e∈C(n,2), such that P(Xe = 1) = 1 − P(Xe = 0) = p (i.e., Xe indicates
whether the edge e has been selected or not). Denote moreover by Aut(H) the group
of isomorphisms of H into itself and note that
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YH (n, p) = 1

#Aut(H)

∑

i∈[n]k

∏

v,w∈[k]
v<w,{v,w}∈E(H)

X{iv,iw}.

The right-hand side above is a homogeneous tetrahedral polynomial of degree eH .
Moreover the variables X{v,w} satisfy

E exp
(
X2{v,w} log(1/p)

)
= 1− p + p · 1

p
≤ 2

and

E exp
(
X2{v,w} log 2

)
≤ 2,

which implies that ‖X{v,w}‖ψ2 ≤ (log(1/p))−1/2∧(log(2))−1/2≤√2(log(2/p))−1/2.
We can thus apply Theorem 1.4 to YH (n, p) and obtain

P
(|YH (n, p)− EYH (n, p)| ≥ t

)

≤ 2 exp

(
− 1

Ck
min

1≤d≤k min
J ∈Pd

( t

Ld
p‖EDd f (X)‖J

)2/#J)
, (56)

where L p =
√
2
(
log(2/p)

)−1/2 and f : RC(n,2) → R is given by

f ((xe)e∈C(n,2)) = 1

#Aut(H)

∑

i∈[n]k

∏

v,w∈[k]
v<w,{v,w}∈E(H)

x{iv,iw}.

Deviation inequalities for subgraph counts have been studied by many authors,
to mention [22,26,27,35–38,65]. As it turns out the lower tail P(YH (n, p) ≤
EYH (n, p) − t) is easier than the upper tail P(YH (n, p) ≥ EYH (n, p) + t). The
lower tail turns out to be also lighter than the upper one. Since our inequalities con-
cern |YH (n, p)−EYH (n, p)|, we cannot hope to recover optimal lower tail estimates,
however we can still hope to get bounds which in some range of parameters n, p will
agree with optimal upper tail estimates.

Of particular importance in literature is the law of large numbers regime, i.e., the
case when t = εEYH (n, p). In [35] the Authors prove that for every ε > 0 such that
P
(
YH (n, p) ≥ (1+ ε)EYH (n, p)

)
> 0,

exp

(
−C(H, ε)M∗

H (n, p) log
1

p

)
≤ P

(
YH (n, p) ≥ (1+ ε)EYH (n, p)

)

≤ exp
(− c(H, ε)M∗

H (n, p)
)

(57)

for certain constants c(H, ε),C(H, ε) and a certain function M∗
H (n, p). Since the

general definition of M∗
H is rather involved we will skip the details (in the examples
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considered in the sequel we will provide specific formulas). Note that if one disregards
the constants depending on H and ε only, the lower and upper estimate above differ
by the factor log(1/p) in the exponent. To our best knowledge providing a lower and
upper bound for general H , which would agree up to multiplicative constants in the
exponent (depending on H and ε only) is an open problem (see the remark below).

We will now specialize to the case when H is a cycle. For simplicity we will first
present the case of the triangle K3 (the clique with three vertices). For this graph the
upper bound from [35] has been recently strengthened to match the lower one (up
to a constant depending only on ε) by Chatterjee [22] and DeMarco and Kahn [27]
(who also obtained a similar result for general cliques [26]). In the next section we
show that if p is not too small, the inequality (56) also allows to recover the optimal
upper bound. In Section 5.3.2 we provide an upper bound for cycles of arbitrary (fixed)

length k, which is optimal for p ≥ n−
k−2

2(k−1) log− 1
2 n.

Remark (Added in revision) Very recently, after the first version of this article was
submitted, a major breakthrough was obtained by Chatterjee-Dembo and Lubetzky-
Zhao [23,49], who strengthened the upper bound to exp(−C(H, ε)M∗

H (n, p) log 1
p )

for general graphs and p ≥ n−c(H). In the case of cycles which we consider in the
sequel, our bounds are valid in a larger range of p → 0, than those which can be
obtained from the present versions of the aforementioned papers. We would also like
to point out, that the methods of [23,49] rely on large deviation principles and not
on inequalities for general polynomials in independent random variables. Obtaining
general inequalities for polynomials, which would yield optimal bound for general
graphs is an interesting and apparently still open research problem.

5.3.1 Counting triangles

Assume that H = K3 and let us analyse the behaviour of ‖EDd f (X)‖J for d =
1, 2, 3. Of course in this case #Aut(H) = 6.

We have for any e = {v,w}, v, w ∈ [n],
∂

∂xe
f (x) =

∑

i∈[n]\{v,w}
x{i,v}x{i,w}

and so ‖ED f (X)‖{1} = (n − 2)p2
√
n(n − 1)/2 ≤ n2 p2.

For e1 = e2 orwhen e1 and e2 do not have a commonvertex,we have ∂2

∂xe1∂xe2
f = 0,

whereas for e1, e2 sharing exactly one vertex, we have

∂2

∂xe1∂xe2
f (x) = x{v,w},

where v,w are the vertices of e1, e2 distinct from the common one. Therefore

ED2 f (X) = p(1{e1,e2 have exactly one common vertex})e1,e2∈C(n,2).
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Using the fact that ED2 f (X) is symmetric and for each e1 the sum of entries
of ED2 f (X) in the row corresponding to e1 equals 2p(n − 2), we obtain
‖ED2 f (X)‖{1}{2} = 2p(n−2) ≤ 2pn.One can also easily see that‖ED2 f (X)‖{1,2} =
p
√
n(n − 1)(n − 2) ≤ pn3/2.
Finally

∂3

∂xe1∂xe2∂xe3
f = 1{e1,e2,e3 form a triangle}

and thus ‖ED3 f (X)‖{1,2,3} = √n(n − 1)(n − 2) ≤ n3/2.Moreover, due to symmetry
we have

‖ED3 f (X)‖{1,2}{3} = ‖ED3 f (X)‖{1,3}{2} = ‖ED3 f (X)‖{2,3}{1}.

Consider arbitrary (xe1)e1∈C(n,2) and (ye2,e3)e2,e3∈C(n,2) of norm one. We have

∑

e1,e2,e3

1{e1,e2,e3 form a triangle}xe1 ye2,e3 ≤
√∑

e1

(∑

e2,e3

1{e1,e2,e3 form a triangle}ye2,e3
)2

≤
√∑

e1

(∑

e2,e3

1{e1,e2,e3 form a triangle}
)(∑

e2,e3

1{e1,e2,e3 form a triangle}y2e2,e3
)

= √
2(n − 2)

√∑

e2,e3

y2e2,e3
∑

e1

1{e1,e2,e3 form a triangle} ≤
√
2(n − 2),

where the first two inequalities follow by the Cauchy-Schwarz inequality and the
last one from the fact that for each e2, e3 there is at most one e1 such that e1, e2, e3
form a triangle. We have thus obtained ‖ED3 f (X)‖{1,2}{3} = ‖ED3 f (X)‖{1,3}{2}
= ‖ED3 f (X)‖{2,3}{1} ≤

√
2n.

It remains to estimate ‖ED3 f (X)‖{1}{2}{3}. For all (xe)e∈C(n,2), (ye)e∈C(n,2),

(ze)e∈C(n,2) of norm one we have by the Cauchy-Schwarz inequality

∑

e1,e2,e3

1{e1,e2,e3 form a triangle}xe1 ye2 ze3 =
∑

(i1,i2,i3)∈[n]3
x{i1,i2}y{i2,i3}z{i1,i3}

≤
∑

i1∈[n]

⎛

⎝
∑

(i2,i3)∈([n]\{i1})2
x2{i1,i2}z

2{i1,i3}

⎞

⎠
1/2⎛

⎝
∑

(i2,i3)∈([n]\{i1})2
y2{i2,i3}

⎞

⎠
1/2

≤ √2
∑

i1∈[n]

⎛

⎝
∑

i2∈[n]\{i1}
x2{i1,i2}

⎞

⎠
1/2⎛

⎝
∑

i3∈[n]\{i1}
z2{i1,i3}

⎞

⎠
1/2

≤ √2

⎛

⎝
∑

(i1,i2)∈[n]2
x2{i1,i2}

⎞

⎠
1/2⎛

⎝
∑

(i1,i3)∈[n]2
z2{i1,i3}

⎞

⎠
1/2

≤ 23/2,

which gives ‖ED3 f (X)‖{1}{2}{3} ≤ 23/2.
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Using (56) together with the above estimates, we obtain

Proposition 5.5 For any t > 0,

P
(|YK3(n, p)− EYK3(n, p)| ≥ t

)

≤ 2 exp
(
− 1

C
min

( t2

L6
pn

3 + L4
p p

2n3 + L2
p p

4n4
,

t

L3
pn

1/2 + L2
p pn

,
t2/3

L2
p

))
,

where L p =
(
log(2/p)

)−1/2
.

In particular for t = εEYK3(n, p) = ε
(n
3

)
p3,

P
(|YK3(n, p)− EYK3(n, p)| ≥ εEYK3(n, p)

)

≤ 2 exp
(
− 1

C
min

(
ε2n3 p6 log3(2/p), (ε2 ∧ ε2/3)n2 p2 log(2/p)

))
.

Thus for p ≥ n− 1
4 log− 1

2 n we obtain

P
(|YK3(n, p)−EYK3(n, p)|≥εEYK3(n, p)

) ≤ 2 exp
(−(ε2 ∧ ε2/3)n2 p2 log(2/p)

)
.

ByCorollary 1.7 in [35], if p ≥ 1/n, then 1
C n

2 p2 ≤ M∗
K3

(n, p) ≤ Cn2 p2 (recall (57))

and so for p ≥ n−1/4 log−1/2 n the estimate obtained from the above proposition is
optimal. As already mentioned the optimal estimate has been recently obtained in the
full range of p byChatterjee,DeMarco andKahn.Unfortunately it seems that using our
general approachwe are not able to recover the full strength of their result. FromPropo-
sition 5.5 one can also see that Theorem 1.4, when specialized to polynomials in 0-1
randomvariables is not directly comparablewith the family ofKim-Vu inequalities. As
shown in [36] (see table 2 therein), various inequalities by Kim and Vu give for the tri-
angle counting problem exponents−min(n1/3 p1/6, n1/2 p1/2),−n3/2 p3/2,−np (dis-
regarding logarithmic factors). Thus for “large” p our inequality performs better than
those by Kim-Vu, whereas for “small” p this is not the case (note that the Kim-Vu
inequalities give meaningful bounds for p ≥ Cn−1 while ours only for p ≥ Cn−1/2).
As already mentioned in the introduction the fact that our inequalities degenerate for
small p is not surprising as even for sums of independent 0-1 random variables, when
p becomes small, general inequalities for the sums of independent random variables
with sub-Gaussian tails do not recover the correct tail behaviour (the ‖ · ‖ψ2 norm of
the summands becomes much larger than the variance).

5.3.2 Counting cycles

We will now generalize Proposition 5.5 to cycles of arbitrary length. If H is a cycle of
length k, then by Corollary 1.7 in [35], 1

C n
2 p2 ≤ M∗

H (n, p) ≤ Cn2 p2 for p ≥ 1/n.
Thus the bounds for the upper tail from (57) imply that for p ≥ 1/n,

exp
(− C(k, ε)n2 p2 log(1/p)

) ≤ P
(
YH (n, p) ≥ (1+ ε)EYH (n, p)

)

≤ exp
(− c(k, ε)n2 p2

)
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for every ε > 0 for which the above probability is not zero.
We will show that similarly as for triangles, Theorem 1.4 allows to strengthen the

upper bound if p is not too small with respect to n. More precisely, we have the
following

Proposition 5.6 Let H be a cycle of length k. Then for every t > 0,

P
(|YH (n, p)− EYH (n, p)| ≥ t

)

≤ 2 exp
(
− 1

Ck

( t2

L2k
p nk

∧ min
1≤l≤d≤k :
d<k or l>1

( t2/ l

L2d/ l
p p2(k−d)/ ln(2k−d−l)/ l

)))
,

where L p=
(
log(2/p)

)−1/2
. In particular for every ε > 0 and p ≥ n−

k−2
2(k−1) log−1/2 n,

P
(
YH (n, p) ≥ (1+ ε)EYH (n, p)

) ≤ 2 exp
(
− 1

Ck
(ε2 ∧ ε2/k)n2 p2 log(2/p)

)
.

In order to prove the above proposition we need to estimate the corresponding ‖·‖J
norms. Since a major part of the argument does not rely on the fact that H is a cycle
and bounds on ‖ · ‖J norms may be of independent interest, we will now consider
arbitrary graphs. Let thus H be a fixed graph with no isolated vertices.

Similarly to [35], it will be more convenient to count “ordered” copies of a graph
H in G(n, p). Namely, for H = ([k], EH ), each sequence of k distinct vertices in the
clique Kn, i ∈ [n]k determines an ordered copy G i of H in Kn , where G i = i(H), i.e.,
V (G i) = i([k]) and E(G i) = {i(e) : e ∈ E(H)} = {{iu, iv} : {u, v} ∈ E(H)}. Define

XH (n, p) :=
∑

i∈[n]k
1{Gi⊆G(n,p)} =

∑

i∈[n]k

∏

ẽ∈E(Gi)

Xẽ.

Clearly XH (n, p) = #Aut(H)YH (n, p) and XH (n, p) = f (X), where

f (x) :=
∑

i∈[n]k

∏

ẽ∈E(Gi)

xẽ =
∑

i∈[n]k

∏

e∈E(H)

xi(e). (58)

A sequence of distinct edges (ẽ1, . . . , ẽd) ∈ E(Kn)
d determines a subgraph G0 ⊆ Kn

with V (G0) =⋃d
i=1 ẽi , E(G0) = {ẽ1, . . . , ẽd}. Note that

∂G0 f (x) :=
∂d f (x)

∂xẽ1 · · · ∂xẽd
=

∑

i∈[n]k : Gi⊇G0

∏

ẽ∈E(Gi)\E(G0)

xẽ

and thus

E∂G0 f (X) = pe(H)−d#{i ∈ [n]k : G0 ⊆ G i}.

Consider e = (e1, . . . , ed) ∈ E(H)d and let H0(e) be the subgraph of H with
V (H0(e)) =⋃d

i=1 ei , E(H0(e)) = {e1, . . . , ed}. Clearly, for any i ∈ [n]k, i(H0(e)) ⊆
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G i. We write (e1, . . . ed)  (ẽ1, . . . , ẽd) if there exists i ∈ [n]k such that i(e j ) = ẽ j
for j = 1, . . . , d.

Note that given (ẽ1, . . . , ẽd) ∈ E(Kn)
d and the corresponding graph G0,

#{i ∈ [n]k : G0 ⊆ G i} =
∑

e∈E(H)d

#{i ∈ [n]k : i(e j ) = ẽ j for j = 1, . . . , d}

=
∑

e∈E(H)d

2s(H0(e))(n − v(H0(e)))k−v(H0(e))1{(ẽ1,...,ẽd ) e},

where for a graph G, v(G) is the number of vertices of G and s(G) is the number of
edges in G with no other adjacent edge. Therefore,

EDd f (X)= pe(H)−d ∑

e∈E(H)d

2s(H0(e))(n−v(H0(e)))k−v(H0(e))
(
1{(ẽ1,...,ẽd ) e}

)
(ẽ1...,ẽd )

.

Let J be a partition of [d]. By the triangle inequality for the norms ‖·‖J ,

∥∥∥EDd f (X)

∥∥∥J ≤ pe(H)−d ∑

e∈E(H)d

2s(H0(e))nk−v(H0(e))
∥∥∥
(
1{(ẽ1,...,ẽd ) e}

)
(ẽ1...,ẽd )

∥∥∥J .

(59)
The norms appearing on the right hand side of (59) are handled by the following

Lemma 5.7 Fix 1 ≤ d ≤ e(H), e = (e1, . . . , ed) ∈ E(H)d and J = {J1, . . . , Jl} ∈
Pd. Let H0 = H0(e) and for r = 1, . . . , l, let Hr be a subgraph of H0 spanned by the
set of edges {e j : j ∈ Jr }. Then,

∥∥∥
(
1{(ẽ1,...,ẽd ) (e1,...,ed )}

)
(ẽ1...,ẽd )

∥∥∥J ≤ 2−s(H0)+ 1
2

∑l
r=1 s(Hr )

× n
1
2 #{v∈V (H0) : v∈V (Hr ) for exactly one r∈[l]}.

Proof We shall bound the sum

∑

ẽ1,...,ẽd∈E(Kn)

1{(ẽ1,...,ẽd ) e}
l∏

r=1
x (r)
(ẽ j ) j∈Jr

(60)

under the constraints
∑

(ẽ j ) j∈Jr ∈E(Kn)Jr

(
x (r)
(ẽ j ) j∈Jr

)2 ≤ 1 for r = 1, . . . , l. Note that

we can assume x (r) ≥ 0 for all r ∈ [l]. Rewrite the sum (60) as the sum over a
sequence of vertices instead of edges:

2−s(H0)
∑

i∈[n]V (H0)

l∏

r=1
x (r)
(i(e j )) j∈Jr ,
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where for two sets A, B, AB is the set of 1-1 functions from B to A. Further note that
it is enough to prove the desired bound for the sum

2−s(H0)
∑

i∈[n]V (H0)

l∏

r=1
y(r)

iV (Hr )
(61)

under the constraints 2−s(Hr )
∑

i∈[n]V (Hr )

(
y(r)

iV (Hr )

)2 ≤ 1 for each r = 1, . . . , l. Indeed,

given x’s, for each r = 1, . . . , l and all i ∈ [n]V (Hr ) take y(r)
iV (Hr )

= x (r)
(i(e j )) j∈Jr and

notice that the sum (61) equals the sum (60) while the constraints for x’s imply the
constraints for y’s. Finally, by homogeneity and the fact that the sum (61) does not
depend on the full graph structure but only on the sets of vertices of the graphs Hr ,
the lemma will follow from the statement: For a sequence of finite, non-empty sets
V1, . . . , Vl , let V = V1 ∪ · · · ∪ Vl . Then

∑

i∈[n]V

l∏

r=1
y(r)

iVr
≤ n

1
2 #{v∈V : v∈Vr for exactly one r∈[l]} (62)

for y(1), . . . , y(l) ≥ 0 satisfying

∑

i∈[n]Vr

(
y(r)

iVr

)2 ≤ 1. (63)

We prove (62) by induction on #V . For V = ∅ (and l = 0), (62) holds trivially. For
the induction step fix any v0 ∈ V and put R = {r ∈ [l] : v0 ∈ Vr }. We write

∑

i∈[n]V

l∏

r=1
y(r)

iVr
=

∑

i∈[n]V \{v0}

⎛

⎝

⎛

⎝
∏

r∈[l]\R
y(r)

iVr

⎞

⎠
∑

iv0∈[n]\i(V \{v0})

∏

r∈R
y(r)

iVr

⎞

⎠ .

We bound the inner sum using the Cauchy-Schwarz inequality. If #R ≥ 2, we get

∑

iv0∈[n]\i(V \{v0})

∏

r∈R
y(r)

iVr
≤
∏

r∈R

⎛

⎝
∑

iv0∈[n]\i(V \{v0})

(
y(r)

iVr

)2
⎞

⎠
1/2

,

and if R = {r0} then

∑

iv0∈[n]\i(V \{v0})
y(r0)

iVr0
≤ √n

⎛

⎝
∑

iv0∈[n]\i(V \{v0})

(
y(r0)

iVr0

)2
⎞

⎠
1/2

.
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Now, for each r ∈ R put Wr = Vr\{v0} and define

z(r)iWr
=
⎛

⎝
∑

iv0∈[n]\i(Wr )

(
y(r)

iVr

)2
⎞

⎠
1/2

for all iWr ∈ [n]Wr .

Note that if Wr = ∅ then z(r) is a scalar and by (63), 0 ≤ z(r) ≤ 1. For r ∈ [l]\R, just
put Wr = Vr and z(r) ≡ y(r). Let L = {r ∈ [l] : Wr 
= ∅}. Combining the estimates
obtained above, we arrive at

∑

i∈[n]V

l∏

r=1
y(r)

iVr
≤ (
√
n)1{v0∈Vr for exactly one r∈[l]}

∑

i∈[n]V \{v0}

∏

r∈L
z(r)iWr

.

Nowwe use the induction hypothesis for the sequence of sets (Wr )r∈L and the vectors
z(r), r ∈ L (note that

∑
i∈[n]Wr (z

(r)
iWr

)2 ≤ 1). ��
Remark The bound in Lemma 5.7 is essentially optimal, at least for large n, say
n ≥ 2k. To see this let us analyse optimality of (62) under the constraints (63) (one
can see that this is equivalent to the optimality in the original problem). Denote V0 =
{v ∈ V : v ∈ Vr for exactly one r ∈ [l]}. Fix any i(0) ∈ [n]k . Then for r = 1, . . . , l
take

y(r)
iVr
=
{
n− 1

2 #(Vr∩V0) if iVr \V0 ≡ i(0)Vr \V0
0 otherwise.

The vectors y(r) satisfy the constraints (63) and

∑

i∈[n]V

l∏

r=1
y(r)

iVr
=

∑

i∈[n]V : iV \V0≡i(0)V \V0

l∏

r=1
n−

1
2 #(Vr∩V0)

= (n − #(V \ V0))#V0 n−
1
2 #V0 ≥ (n/2)#V0n−

1
2 #V0 = 2−#V0n

1
2 #V0 .

Combining Lemma 5.7 with (59) we obtain

Lemma 5.8 Let H be any graph with k vertices, which are not isolated, and let f be
defined by (58). Then for any 1 ≤ d ≤ e(H) and any J = {J1, . . . , Jl} ∈ Pd,

‖EDd f (X)‖J
≤ pe(H)−d ∑

e∈E(H)d

2
1
2

∑l
r=1 s(Hr (e))nk−v(H0(e))+ 1

2 #{v∈V (H0(e)) : v∈V (Hr (e)) for exactly one r∈[l]},

where for e ∈ E(H)d and r ∈ [l], Hr (e) is the subgraph of H0(e) spanned by
{e j : j ∈ Jr }.

We are now ready for
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Proof of Proposition 5.6 We will use Lemma 5.8 to estimate ‖EDd f (X)‖J for any
d ≤ k and J ∈ Pd with #J = l. Note that for any e ∈ E(H)d ,

v(H0(e))− 1

2
#{v ∈ V (H0(e)) : v ∈ V (Hr (e)) for exactly one r ∈ [l]}

= 1

2

(
v(H0(e))+ #{v ∈ V (H0(e)) : v belongs to more than one V (Hr (e))}

)

{
= k/2 if d = k and l = 1,

≥ 1
2 (d + l) otherwise,

where to get the second inequality we used the fact that each vertex of H has degree
two. Thus we obtain

‖EDk f (X)‖{[k]} ≤ nk/2,

‖EDd f (X)‖J ≤ Ck p
k−dnk−

1
2 d− 1

2 l if d < k or l > 1.

Together with (56) this yields the first inequality of the proposition. Using the fact that
EYH (n, p) ≥ 1

Ck
nk pk , the second inequality follows by simple calculations. ��

6 Refined inequalities for polynomials in independent random variables
satisfying the modified log-Sobolev inequality

In this section we refine the inequalities which can be obtained from Theorem 3.3 for
polynomials in independent random variables satisfying the β-modified log-Sobolev
inequality (16) with β > 2. To this end we will use Theorem 3.4 together with a
result from [2], which is a counterpart of Theorem 3.1 for homogeneous tetrahedral
polynomials in general independent symmetric random variables with log-concave
tails, however only of degree at most 3. We recall that for a set I , by PI we denote the
family of partitions of I into pairwise disjoint, nonempty sets.

Theorems 3.1 and 3.2 and 3.4 from [2] specialized to Weibull variables can be
translated into

Theorem 6.1 Let α ∈ [1, 2] and let Y1, . . . ,Yn be a sequence of i.i.d. symmetric
random variables satisfying P(|Yi | ≥ t) = exp(−tα). Define Y = (Y1, . . . ,Yn) and
let Z1, . . . , Zd be independent copies of Y . Consider a d-indexed matrix A. Define
also

md(p, A) =
∑

I⊆[d]

∑

J ∈PI

∑

K∈P[d]\I
p#J /2+#K/α‖A‖J |K, (64)

where for J = {J1, . . . , Jr } ∈ PI and K = {K1, . . . , Kk} ∈ P[d]\I ,

123



578 R. Adamczak, P. Wolff

‖A‖J |K =
∑

s1∈K1,...,sk∈Kk

sup

⎧
⎨

⎩
∑

i∈[n]d
ai

r∏

l=1
x (l)

iJl

k∏

l=1
y(l)

iJl
: ‖(x (l)

iJl
)‖2 ≤ 1,

for 1 ≤ l ≤ r and
∑

isl≤n
‖(y(l)

iKl
)iKl \{sl }‖α2 ≤ 1, for 1 ≤ l ≤ k

⎫
⎬

⎭ .

If d ≤ 3, then for any p ≥ 2,

C−1d md(p, A) ≤ ‖〈A, Z1 ⊗ · · · ⊗ Zd〉‖p ≤ Cdmd(p, A).

Moreover, if α = 1, then the above inequality holds for all d ≥ 1.

Before we proceed, let us provide a few specific examples of the norms ‖A‖J |K,
which for α < 2 are more complicated than in the Gaussian case. In what follows,
β = α

α−1 (with β = ∞ for α = 1). For d = 1,

‖(ai )‖{1}|∅ = sup
{∑

ai xi :
∑

x2i ≤ 1
} = |(ai )|2,

‖(ai )‖∅|{1} = sup
{∑

ai yi :
∑

|yi |α ≤ 1
} = |(ai )|β.

For d = 2, ‖(ai j )‖{1,2}|∅ = ‖(ai j )‖HS, ‖(ai j )‖{1}{2}|∅ = ‖(ai j )‖�2→�2 ,

‖(ai j )‖{1}|{2} = sup
{∑

ai j xi y j :
∑

x2i ≤ 1,
∑

|y j |α ≤ 1
} = ‖(ai j )‖�α→�2 ,

‖(ai j )‖{2}|{1} = sup
{∑

ai j yi x j :
∑

x2j ≤ 1,
∑

|yi |α ≤ 1
} = ‖(ai j )‖�2→�β ,

‖(ai j )‖∅|{1}{2} = sup
{∑

ai j yi z j :
∑

|yi |α ≤ 1,
∑

|z j |α ≤ 1
} = ‖(ai j )‖�α→�β ,

and

‖(ai j )‖∅|{1,2} = sup

⎧
⎪⎨

⎪⎩

∑
ai j yi j :

∑

i

⎛

⎝
∑

j

y2i j

⎞

⎠

α
2

≤ 1

⎫
⎪⎬

⎪⎭

+ sup

⎧
⎨

⎩
∑

ai j yi j :
∑

j

(
∑

i

y2i j

) α
2

≤ 1

⎫
⎬

⎭

=
⎛

⎜⎝
∑

i

⎛

⎝
∑

j

a2i j

⎞

⎠
β/2
⎞

⎟⎠

1/β

+
⎛

⎝
∑

j

(
∑

i

a2i j

)β/2
⎞

⎠
1/β

.

For d = 3, we have, for example,

‖(ai jk)‖{2}|{1}{3} = sup
{∑

ai jk yi x j zk :
∑

|x j |2≤1,
∑

|yi |α≤1,
∑

|zk |α ≤ 1
}

,
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‖(ai jk)‖{2}|{1,3} = sup

⎧
⎨

⎩
∑

ai jk x j yik :
∑

x2j ≤ 1,
∑

i

(
∑

k

y2ik

) α
2

≤ 1

⎫
⎬

⎭

+ sup

⎧
⎨

⎩
∑

ai jk x j yik :
∑

x2j ≤ 1,
∑

k

(
∑

i

y2ik

) α
2

≤ 1

⎫
⎬

⎭ ,

‖(ai jk)‖∅|{1}{2,3} = sup

⎧
⎨

⎩
∑

ai jk yi z jk :
∑

|yi |α ≤ 1,
∑

j

(
∑

k

z2jk

) α
2

≤ 1

⎫
⎬

⎭

+ sup

⎧
⎪⎨

⎪⎩

∑
ai jk yi z jk :

∑
|yi |α ≤ 1,

∑

k

⎛

⎝
∑

j

z2jk

⎞

⎠

α
2

≤ 1

⎫
⎪⎬

⎪⎭
.

In particular, from Theorem 6.1 it follows that for α ∈ [1, 2], if Y = (Y1, . . . ,Yn)
is as in Theorem 6.1 then for every x ∈ R

n ,

1

C
(
√
p|x |2 + p1/α|x |β) ≤ ‖〈x,Y 〉‖p ≤ C(

√
p|x |2 + p1/α|x |β),

where | · |r stands for the �nr norm (see also [29]). Thus, for β ∈ (2,∞), the inequality
(17) of Theorem 3.4, for m = n, k = 1 and a C1 function f : Rn → R, can be written
in the form

‖ f (X)− E f (X)‖p ≤ Cβ‖〈∇ f (X),Y 〉‖p. (65)

This allows for induction, just as in the proof of Proposition 3.2, except that instead of
Gaussian vectors we will have independent copies of Y . We can thus repeat the proof
of Theorem 3.3, using the above observation and Theorem 6.1 instead of Theorem
3.1. This argument will then yield the following proposition, which is a counterpart
of Theorem 3.3. At the moment we can prove it only for D ≤ 3, clearly generalizing
Theorem 6.1 to chaos of arbitrary degree would immediately imply it for general D.

Proposition 6.2 Let X = (X1, . . . , Xn) be a random vector in Rn, with independent
components. Let β ∈ (2,∞) and assume that for all i ≤ n, Xi satisfies the β-modified
logarithmic Sobolev inequality with constant DLSβ . Let f : Rn → R be a CD function.
Define

m(p, f ) = ∥∥mD(p, DD f (X))
∥∥
p +

∑

1≤d≤D−1
md(p,EDd f (X)),

where md(p, A) is defined by (64) with α = β
β−1 .

If D ≤ 3 then for p ≥ 2,

‖ f (X)− E f (X)‖p ≤ Cβ,DLSβ
m(p, f ).
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As a consequence, for all p ≥ 2,

P
(| f (X)− E f (X)| ≥ Cβ,DLSβ

m(p, f )
) ≤ e−p.

Remarks 1. For β = 2, the estimates of the above proposition agree with those of
Theorem 1.2. For β > 2 it improves on what can be obtained from Theorem 3.3
in two aspects (of course just for D ≤ 3). First, the exponent of p is smaller as
(γ − 1/2)d + #(J ∪ K)/2 = (1/α − 1/2)d + #J /2 + #K/2 ≥ #J /2 + #K/α.
Second ‖A‖J∪K ≥ ‖A‖J |K (since for α < 2, |x |α ≥ |x |2, so the supremum on the
left hand side is taken over a larger set).

2. From results in [2] it follows that if f is a tetrahedral polynomial of degree D
and Xi are i.i.d. symmetric random variables satisfying P(|Xi | ≥ t) = exp(−tα), then
the inequalities of Proposition 6.2 can be reversed (up to constants), i.e.,

‖ f (X)− E f (X)‖p ≥ 1

CD
m f (p).

This is true for any positive integer D.
3. One can also consider another functional inequality, which may be regarded

a counterpart of (16) for β = ∞. We say that a random vector X in R
n satisfies

the Bobkov-Ledoux inequality if for all locally Lipschitz positive functions such that
|∇ f (x)|∞ := max1≤i≤n | ∂

∂xi
f (x)| ≤ dBL f (x) for all x ,

Ent f 2(X) ≤ DBLE|∇ f (X)|2. (66)

This inequality has been introduced in [9] to provide a simple proof of Talagrand’s
two-level concentration for the symmetric exponential measure inRn . Here | ∂

∂xi
f (x)|

is defined as “partial length of gradient” (see (13)). Thus in the case of differentiable
functions |∇ f |∞ coincides with the �n∞ norm of the “true” gradient.

In view of Theorem3.4 it is natural to conjecture that theBobkov-Ledoux inequality
implies

‖ f (X)− E f (X)‖p ≤ C
(√

p
∥∥|∇ f (X)|∥∥p + p

∥∥|∇ f (X)|∞
∥∥
p

)
, (67)

which in turn implies (65) with Y = (Y1, . . . ,Yn) being a vector of independent
symmetric exponential variables and some C∞ < ∞. This would yield an analogue
of Proposition 6.2 for β = ∞, this time with no restriction on D.

Unfortunately at present we do not know whether the implication (66) #⇒ (67)
holds true or even if (67) holds for the symmetric exponential measure inRn . We only
are able to prove the following weaker inequality, which is however not sufficient to
obtain a counterpart of Proposition 6.2 for β = ∞.

Proposition 6.3 If X is a random vector in R
n, which satisfies (66), then for any

locally Lipschitz function f : Rn → R, and any p ≥ 2,

‖ f (X)− E f (X)‖p ≤ 3
(
D1/2

BL
√
p
∥∥|∇ f (X)|∥∥p + d−1BL p

∥∥|∇ f (X)|∞
∥∥∞
)
.
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Proof To simplify the notation we suppress the argument X . In what follows ‖ · ‖p
denotes the L p norm with respect to the distribution of X .

Let us fix p ≥ 2 and consider f1 = max( f, ‖ f ‖p/2). We have

‖ f1‖p ≥ ‖ f ‖p,
‖ f1‖2 ≤ 1

2
‖ f ‖p + ‖ f ‖2,

‖ f1‖p ≤ 3

2
‖ f ‖p ≤ 3min f1.

(68)

Moreover, f1 is locally Lipschitz and we have pointwise estimates |∇ f1| ≤
|∇ f |, |∇ f1|∞ ≤ |∇ f |∞. Assume now that we have proved that

‖ f1‖p ≤ ‖ f1‖2 +
√

DBL

2
√
p
∥∥|∇ f1|

∥∥
p +

3p

2dBL

∥∥|∇ f1|∞
∥∥∞. (69)

Then, using the first two inequalities of (68), we obtain

‖ f ‖p ≤ ‖ f1‖p ≤ ‖ f1‖2 +
√

DBL

2
√
p
∥∥|∇ f1|

∥∥
p +

3p

2dBL

∥∥|∇ f1|∞
∥∥∞

≤ 1

2
‖ f ‖p + ‖ f ‖2 +

√
DBL

2
√
p
∥∥|∇ f |∥∥p +

3p

2dBL

∥∥|∇ f |∞
∥∥∞,

which gives

‖ f ‖p ≤ 2

(
‖ f ‖2 +

√
DBL

2
√
p
∥∥|∇ f |∥∥p +

3p

2dBL

∥∥|∇ f |∞
∥∥∞

)
. (70)

Since (66) implies the Poincaré inequality with constant DBL/2 (see e.g. Proposition
2.3 in [28]), we can conclude the proof applying (70) to | f −E f | (similarly as in the
proof of Theorem 3.4). Thus it is enough to prove (69).

From now on we are going to work with the function f1 only, so for brevity we
will drop the subscript and write f instead of f1. Assume ‖ f ‖p ≥ 3p

2dBL
‖|∇ f |∞‖∞

(otherwise (69) is trivially satisfied). Then, using the third inequality of (68), for
2 ≤ t ≤ p and all x ∈ R

n ,

|∇ f t/2(x)|∞ ≤ t

2
f t/2−1(x)|∇ f (x)|∞ ≤ 3

2
f t/2(x)

p|∇ f (x)|∞
‖ f ‖p ≤ dBL f t/2(x).

We can thus apply (66) with f t/2, which together with Hölder’s inequality gives

Ent f t ≤ DBLE|∇ f t/2|2 ≤ DBL
t2

4
E
(
f t−2|∇ f |2) ≤ DBL

t2

4

∥∥|∇ f |∥∥2t (E f t )1−
2
t .
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Now, as in the proof of Theorem 3.4, we have

d

dt
(E f t )2/t = 2

t2
(E f t )

2
t −1Ent f t ≤ DBL

2

∥∥|∇ f |∥∥2p,

which upon integrating gives

‖ f ‖2p ≤ ‖ f ‖22 +
DBL

2
p
∥∥|∇ f |∥∥2p,

which clearly implies (69). ��
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7 Appendix

7.1 Decoupling inequalities

Let us here state the main decoupling result for U -statistics (Theorem 1 in [25]).

Theorem 7.1 For natural numbers n ≥ d let (Xi )
n
i=1 be a sequence of independent

random variables with values in a measurable space (S,S) and let (X ( j)
i )ni=1, j =

1, . . . , d be d independent copies of this sequence. Let B be a separable Banach space
and for each i ∈ [n]d let hi : Sd → B be a measurable function. Then for all t > 0,

P

(∥∥∥
∑

i∈[n]d
hi(Xi1 , . . . , Xid )

∥∥∥ > t
)
≤ CdP

(∥∥∥
∑

i∈[n]d
hi(X

(1)
i1

, . . . , X (d)
id

)

∥∥∥ > t/Cd

)
.

As a consequence for all p ≥ 1,

∥∥∥
∑

i∈[n]d
hi(Xi1 , . . . , Xid )

∥∥∥
p
≤ Cd

∥∥∥
∑

i∈[n]d
hi(X

(1)
i1

, . . . , X (d)
id

)

∥∥∥
p
.

If moreover the functions hi are symmetric in the sense that, for all x1, . . . , xd ∈ S
and all permutations π : [d] → [d], hi1,...,id (x1, . . . , xd) = hiπ1 ,...,iπd

(xπ1 , . . . , xπd ),
then for all t > 0,

P

(∥∥∥
∑

i∈[n]d
hi(X

(1)
i1

, . . . , X (d)
id

)

∥∥∥ > t
)
≤ CdP

(∥∥∥
∑

i∈[n]d
hi(Xi1 , . . . , Xid )

∥∥∥ > t/Cd

)
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and as a consequence for all p ≥ 1,

∥∥∥
∑

i∈[n]d
hi(X

(1)
i1

, . . . , X (d)
id

)

∥∥∥
p
≤ Cd

∥∥∥
∑

i∈[n]d
hi(Xi1 , . . . , Xid )

∥∥∥
p
.

7.2 Proof of Lemma 5.4

Without loss of generality we can assume that M = 1. It is easy to see that for some
constant Ck and t > 1,P(Ck |gi1 . . . gik | > t) ≥ 2 exp(−t2/k). Since P(|Yi | ≥ t) ≤
2 exp(−t2/k), we get

P(|Yi1|Yi |≥1| ≥ t) ≤ P(Ck |gi1 . . . gik | > t).

Therefore, using the inverse of the distribution function, we can define i.i.d. copies
Ỹi of |Yi1|Yi |≥1| and i.i.d copies Zi of |gi1 . . . gik |, such that Ỹi ≤ Ck Zi pointwise. We
may assume that these copies are defined on a common probability space with Yi and
gi j . We can now write for a sequence εi of i.i.d. Rademacher variables independent
of all the variables introduced so far,

∥∥∥
n∑

i=1
aiYi

∥∥∥
p
=
∥∥∥

n∑

i=1
aiεi |Yi |

∥∥∥
p

≤
∥∥∥

n∑

i=1
aiεi |Yi1{|Yi |<1}|

∥∥∥
p
+
∥∥∥

n∑

i=1
aiεi |Yi1{|Yi |≥1}|

∥∥∥
p

=
∥∥∥

n∑

i=1
aiεi |Yi1{|Yi |<1}|

∥∥∥
p
+
∥∥∥

n∑

i=1
aiεi Ỹi

∥∥∥
p

≤
∥∥∥

n∑

i=1
aiεi

∥∥∥
p
+ Ck

∥∥∥
n∑

i=1
aiεi Zi

∥∥∥
p

≤ Ck

∥∥∥
n∑

i=1
aiεiEZ Zi

∥∥∥
p
+ Ck

∥∥∥
n∑

i=1
aiεi Zi

∥∥∥
p

≤ Ck

∥∥∥
n∑

i=1
aiεi Zi

∥∥∥
p
= Ck

∥∥∥
n∑

i=1
ai gi1 · · · gik

∥∥∥
p
,

where in the second inequality we used the contraction principle (once conditionally
on Ỹi ’s and Zi ’s) and in the third one Jensen’s inequality.
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