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Abstract

Cyanide is an extreme hazard and extensively found in the wastes of refinery, coke plant, and metal plating industries.
A simple, fast, cost-effective, room-temperature wet chemical route, based on cyclohexylamine, for synthesizing zinc
oxide nanoparticles in aqueous and enthanolic media was established and tested for the photodegradation of cyanide
ions. Particles of polyhedra morphology were obtained for zinc oxide, prepared in ethanol (ZnOE), while spherical and
some chunky particles were observed for zinc oxide, prepared in water (ZnOW). The morphology was crucial in
enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the
efficiency of ZnOW at an equivalent concentration of 0.02 wt.% ZnO. Increasing the concentration wt.% of ZnOE from
0.01 to 0.09 led to an increase in the photocatalytic degradation efficiency from 85% to almost 100% after 180 min and
a doubling of the first-order rate constant (k).
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Background
Cyanide has numerous applications in industry such as
chelating agent, electroplating, pharmaceuticals, and
mining [1,2]. This extensive use of cyanide results in the
generation of a huge amount of cyanide waste and in-
creases the cyanide spill risk to the environment [3,4].
Thus, cyanide must be treated before discharging. Differ-
ent protocols such as adsorption, complexation, and
oxidation are used for abating cyanides [1,2,5-7]. The
procedures other than oxidation give highly concen-
trated products in which toxic cyanides still exist [8,9].
Highly powerful, economically method is the photocata-

lytic oxidation of cyanide, which has been demonstrated in
several studies [10-17]. However, an inexpensive photocata-
lyst is needed for the economical removal of large quan-
tities of cyanide. ZnO is one of the most promising
materials for executing this task, as an alternative to the
widely used, relatively expensive titania (TiO2). Although
researchers recognized comparable photodegradation
mechanisms with both ZnO and TiO2, they proved that
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ZnO was the superior photocatalyst in degrading pesticide
carbetamide, herbicide triclopyr, pulp mill bleaching waste-
water, 2-phenylphenol, phenol, blue 19, and acid red 14.
This superiority of ZnO photocatalytic activity is because it
has more active sites, higher reaction rates, and is more
effective in generating hydrogen peroxide [18].
Due to its direct, wide bandgap of 3.37 eV, ZnO has a

wide range of applications in optoelectronic devices [19]
such as light-emitting diodes, photodetectors, and p-n
homojunctions. The large exciton binding energy of 60
meV [19], compared to that of GaN (approximately 25
meV) [20], enhances the luminescence efficiency of the
emitted light even at room temperature and higher. The
visible photoluminescence (PL) emission at approxi-
mately 2.5 eV (approximately 495 nm), originated from
intrinsic defects [21], makes ZnO suitable for applica-
tions in field emission and vacuum fluorescent displays.
Many techniques including chemical vapor deposition

[22], pulsed laser deposition [23], molecular beam epi-
taxy [24], sputtering [25], hydrothermal synthesis [26],
and oxidation of metallic zinc powder [27,28] have been
used to prepare ZnO in different forms and structures
for various applications. Nanoparticulate form enhances
the catalytic activity due to its large surface area and the
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presence of vacancies and uncoordinated atoms at cor-
ners and edges. The photocatalytic activity is also im-
proved by bandgap engineering, as a result of the
quantum confinement effect [29-31].
A well-controlled synthesis process at room temperature

is needed for the economical use of ZnO in catalytic appli-
cations such as water treatment and other environmental
applications. Herein, we are reporting, for the first time
to the best of our knowledge, a direct, simple, room-
temperature synthesis method for ZnO nanoparticles using
cyclohexylamine (CHA), as a precipitating agent, and zinc
nitrate hexahydrate, as a source of zinc, in both aqueous
and ethanolic media. The synthesized ZnO nanoparticles
were examined as a photocatalyst for the degradation of the
highly toxic cyanide anion [CN-

(aq)] in the aqueous medium
at room temperature. The kinetics for cyanide photodegra-
dation were investigated with respect to ZnO concentration
of weight percentage.

Method
Materials
Zinc nitrate hexahydrate (pure, POCH), cyclohexyl-
amine (GC >99%, Merck, Whitehouse Station, NJ, USA),
absolute ethanol (EtOH, 99.9%, Scharlau, Sentmenat,
Barcelona, Spain), potassium cyanide (≥97%, Sigma-
Aldrich, St. Louis, MO, USA), potassium iodide (≥99.5%,
Sigma-Aldrich), and ammonia solution (28-30% NH3

basis, Sigma-Aldrich) were commercially available and
were used as received. Deionized water (18.2 MΩ.cm)
was obtained from a Milli-Q water purification system
(Millipore, Billerica, MA, USA).

Synthesis of ZnO nanoparticles in water (ZnOW) and in
ethanol (ZnOE)
Thirty millimoles of zinc nitrate hexahydrate was dis-
solved in 60 ml of water at room temperature, under
continuous magnetic stirring. In a separate beaker, 60
mmol of CHA was dissolved in 20 ml water at room
temperature. The CHA solution was poured into the
zinc solution, resulting in a white precipitate upon mag-
netic stirring. An extra amount of 80 ml water was
added to the reaction mixture, which was left stirring for
4 days. The precipitate was filtered off through an F-size
fritted filter and then was washed with 100 ml water.
The precipitate was dried at room temperature under
vacuum for 1 day. After drying, the precipitate was
mixed with 300 ml water and was magnetically stirred
for 1 day for the removal of any impurity. The precipi-
tate was filtered off and was dried room temperature
under vacuum to give 2.43 g (yield% = 89.7). This dried
sample was then calcined at 500°C under air for 3 h.
The temperature was ramped from room temperature to
the target temperature by 1°C/min. Inductively coupled
plasma (ICP) elemental analysis was carried out for the
uncalcined sample, which proved the formation of zinc
oxide at room temperature with a formula of ZnO · 1/
2H2O [Zn (cal. 72.3%, exp. 72.9%)].
In addition, the same procedure was carried out to

prepare ZnO nanoparticles in ethanolic medium instead
of water. The precipitate gave 2.572 g (yield% = 98.1) of
ZnO · 1/3H2O, as proven by ICP elemental analysis [Zn
(cal. 74.8%, exp. 74.2%)]. Both of uncalcined ZnO nano-
particles in water (ZnOW) and in ethanol (ZnOE) were
found to be soluble in HCl and NaOH, evidencing the
chemical identity of ZnO.

Material characterization
Inductively coupled plasma (ICP) was used to determine
the percentage of the zinc component in uncalcined
ZnO samples, obtained at room temperature. Brunauer,
Emmett, and Teller surface areas (BET-SA) and pore size
distribution of the catalysts were obtained on Micrometrics
Gemini III-2375 (Norcross, GA, USA) instrument by N2

physisorption at 77 K. Prior to the measurements, the
known amount of the catalyst was evacuated for 2 h at
150°C. Diffuse reflectance infrared Fourier transform
(DRIFT) spectra of ground, uncalcined ZnO powder sam-
ples, diluted with IR-grade potassium bromide (KBr), were
recorded on a Perkin Elmer FTIR system spectrum GX
(Waltham, MA, USA) in the range of 400 to 4,000 cm−1 at
room temperature. X-ray diffraction (XRD) patterns were
recorded for phase analysis and crystallite size measure-
ment on a Philips X pert pro diffractometer (Eindhoven,
Netherlands), operated at 40 mA and 40 kV by using CuKα

radiation and a nickel filter, in the 2-theta range from 2° to
80° in steps of 0.02°, with a sampling time of 1 s per step.
The crystallite size was estimated using Scherer's equation.
XRD patterns were recorded for uncalcined and calcined
(500°C) ZnO materials. The morphology was investigated
using a field-emission scanning electron microscope (FE-
SEM model: FEI-200NNL, Hillsboro, OR, USA), equipped
with an energy-dispersive X-ray (EDX) spectrometer for
elemental analysis, and a high-resolution transmission
electron microscope (HRTEM model: JEM-2100 F JEOL,
Akishima-shi, Tokyo, Japan). Carbon-coated copper grids
were used for mounting the samples for HRTEM analysis.
Solid-state ultraviolet-visible (UV-vis) absorption spectra
for calcined ZnO powder samples were recorded on a Per-
kin Elmer Lambda 950 UV/Vis/NIR spectrophotometer,
equipped with a 150-mm snap-in integrating sphere for
capturing diffuse and specular reflectance.

Photocatalytic test
The photocatalytic evaluation was carried out using a
horizontal cylinder annular batch reactor. A black light-
blue florescent bulb (F18W-BLB) was positioned at the
axis of the reactor to supply UV illumination. Reaction
suspension was irradiated by UV light of 365 nm at a



Table 1 BET surface area and pore volume of calcined
ZnO nanoparticles, prepared either in EtOH or H2O

Sample BET-SA (m2/g) Pore volume (cm3/g)

ZnOE 7.51 0.02

ZnOW 12.41 0.05
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power of 18 W. The experiments were performed by
suspending 0.01, 0.02, 0.03, 0.05, 0.07, or 0.09 wt.% of
calcined ZnO into a 300-ml, 100 ppm potassium cyanide
(KCN) solution, with its pH adjusted to 8.5 by ammonia
solution. The reaction was carried out isothermally at
25°C, and samples of the reaction mixture were taken at
different intervals for a total reaction time of 360 min.
The CN-

(aq) concentration in the samples was estimated
by volumetric titration with AgNO3, using potassium
iodide to determine the titration end-point [32]. The
percentage of degradation of CN-

(aq) has been measured
by applying the following equation: %Degradation =
(Co − C)/Co × 100, where Co is the initial concentration
of CN-

(aq) and C is the concentration of uncomplexed
CN-

(aq) in solution.

Results and discussion
Formation of ZnO nanoparticles in an aqueous and
ethanolic media
Formation of zinc oxide from the combination of zinc
nitrate hexahydrate and CHA either in aqueous or etha-
nolic medium can be illustrated by Equation 1:

Zn NO3ð Þ2 aq or alcð Þ þ 2C6H11NH2 aq or alcð Þ
þ þH2O lð Þ → ZnO ncð Þ
þ þ2C6H11NH3NO3 aq or alcð Þ ð1Þ

CHA, according to Equation 1, acts as a base in the
Brønsted-Lowry sense, but not as a base in the Lewis
sense (a ligand). This behavior of CHA was proven by
the isolation and determination of the structure of cyclo-
hexylammonium nitrate crystals by single-crystal XRD
[33]. This observed Brønsted-Lowry activity of CHA can
be attributed to its moderate base strength (pKb = 3.36)
when hydrolyzing in water according to Equation 2:

C6H11NH2 aqð Þ þH2O lð Þ⇄C6H11NH3
þ

aqð Þ þOH aqð Þ
ð2Þ

Due to the high basicity of the CHA solution
(pH = 12.5), zinc ions react with the hydroxide ions and
form different hydroxyl complexes such as [ZnOH]+,
[Zn(OH)2](aq), [Zn(OH)3]

−
(aq), and [Zn(OH)4]

2−
(aq). Fur-

thermore, the high basicity makes the chemical poten-
tial of hydroxide ion [OH]− high, leading to a shift in
the equilibrium in Equation 3 toward the formation of
oxide ion (O2−):

2OH−
aqð Þ ⇄ O2−

aqð Þ þH2O lð Þ ð3Þ

The formation of zinc hydroxide complexes and oxide
ions shifts the equilibrium in Equation 2 forward, caus-
ing further protonation of CHA and the formation of
more hydroxide ions.
The formation of oxide ion according to Equation 3 is
responsible for the construction of Zn-O-Zn bonds by
transforming the zinc hydroxide complexes into solid-
phase according to Equation 4:

2 Zn OHð Þn
� �2−n

aqð Þ ⇄ Zn2O OHð Þ2n−2
� �4−2n

aqð Þ
þ þH2O lð Þ ð4Þ

Equation 4 shows that the construction of ZnO crystal
takes place via the interaction between the surface hy-
droxide of the growing crystals and the hydroxide li-
gands of the zinc complexes. Therefore, the formation of
ZnO, according to the above proposed mechanism, is
due to the high basicity of the reaction medium, which
causes an increase in the concentration of the precursors
(zinc hydroxide complexes) and an increase in the
chemical potential of hydroxide ions [34].

BET surface area
In general, specific surface area is a significant micro-
structural parameter of materials particles, which de-
pends on the geometrical shape and porosity. It is also
well known that a large surface area could be an import-
ant factor, prompting the photocatalytic degradation of
organic materials [35]. The specific surface areas and
pore volumes of our ZnO, prepared in either EtOH or
H2O medium, are presented in Table 1. It is clear from
the table that the BET surface area and pore volumes are
observed to change marginally by changing the reaction
medium. Interestingly, our results showed that in com-
parison with the morphology of ZnO nanoparticles, the
surface area is not a significant parameter in photocata-
lytic activity; ZnO prepared in ethanol with higher effi-
ciency (see Table 1) has somewhat lower surface area
(7.51 m2/g) in comparison with ZnO prepared in H2O
(12.41 m2/g). Lower photocatalytic activity of ZnO pre-
pared in H2O can be attributed to the shape and morph-
ology as we will discuss on details later on.

DRIFT investigation
Figure 1 shows the DRIFT spectra of the uncalcined
ZnO nanoparticles, prepared in either H2O or EtOH
medium. The absorption bands in the region of 600 to
400 cm−1 include those for crystal (lattice) and coordi-
nated water as well as ZnO. The absorption bands for
ZnO are weak and overlap with those of rotational
H-O-H vibration and vibrational of trapped H2O. The



Figure 1 DRIFT spectra of uncalcined ZnO nanoparticles,
prepared either in EtOH (ZnOE) or H2O.

Figure 2 XRD patterns of uncalcined and calcined (500°C) ZnO
nanoparticles, prepared in H2O (ZnOW) and EtOH (ZnOE).

Table 2 Average crystallite size of uncalcined [a] and
calcined [b] ZnOE and ZnOW

Miller indices (hkl) Average
crystallite
size (nm)

100 002 101

ZnOE
a 13.9 14.5 18.2 15.6

ZnOW
a 33.5 28.9 39.3 33.9

ZnOE
b 33.5 24.8 28.2 28.8

ZnOW
b 33.5 24.8 28.2 28.8

aUncalcined ZnOE and ZnOW;
bcalcined ZnOE and ZnOW.
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asymmetric and symmetric stretching H-O-H vibration
bands are observed between 3,600 and 3,200 cm−1, while
the bending H-O-H vibration bands are observed be-
tween 1,630 and 1,600 cm−1 [36,37]. The doublet band
at approximately 1,400 cm−1 can be ascribed to H-O-H
bending vibrations. The bands, observed between 880
and 650 cm−1, can be attributed to the bending vibra-
tional modes (wagging, twisting, and rocking) of coordi-
nated water molecules. The water diagnosis by DRIFT is
in agreement with the ICP-prediction of water presence
in the uncalcined ZnOW and ZnOE samples (see synthe-
sis in the ‘Method’ section).

XRD investigation
Figure 2 shows the XRD diffraction patterns of uncal-
cined and calcined ZnO nanoparticles, prepared in water
and ethanol. The patterns consist of broad peaks, which
match the common ZnO hexagonal phase, i.e., wurtzite
structure [80–0074, JCPDS]. The sharper and higher
peak intensities of the uncalcined ZnOW than those of
the uncalcined ZnOE imply that the latter has a smaller
crystallite size than that of the former. The average
crystallite size, estimated by Scherrer's equation for the
(100), (002), and (101) diffraction peaks, for the uncal-
cined ZnOE is almost half that of the uncalcined ZnOW

(Table 2). After calcination, however, both ZnOE and
ZnOW had the same average crystallite size of 28.8 nm
(Table 2). Such observation could be attributed to
the difference in the number of moles of water of
crystallization in each material, resulting in more shrink-
age relative to the particle coarsening effect upon
calcination for the ZnOW [38].

SEM investigation
Figure 3A shows the SEM images of uncalcined and
calcined (inset) ZnOE samples, while Figure 3B shows
the SEM images of uncalcined and calcined (inset)
ZnOW samples. Uncalcined ZnOE sample is composed
of homogeneously defined nanoparticles. On the other
hand, uncalcined ZnOW sample is made of irregularly
shaped, overlapped nanoparticles. Removal of lattice
water upon calcination process enhanced the nanoparti-
cles' features. Regular, polyhedral nanoparticles were
observed for ZnOE after calcination. Inhomogeneous,
spherical particles along with some chunky particles
were observed for ZnOW. The EDX analyses (not shown
here) for uncalcined and calcined samples indicate the
purity of all the synthesized samples with no peaks other
than Zn and O.

TEM investigation
TEM images (Figure 4) of un- and calcined ZnO samples
supported the SEM micrographs in confirming the
morphology of ZnO nanoparticles. Un- and calcined
ZnOE nanoparticles adopt hexagonal shape, which is con-
sistent with the regular, polyhedral morphology observed
by SEM (Figure 3A, inset), with an average particle size of
approximately 40 nm, obtained from TEM (Figure 4C).
However, calcined ZnOW nanoparticles adopt irregular
spherical shape with an average particle size of approxi-
mately 15 nm (Figure 4D), which is consistent with the



Figure 3 SEM of uncalcined and calcined ZnO nanoparticles, prepared either in EtOH (ZnOE) (A) or H2O (ZnOW) (B).
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observed morphology by SEM (Figure 3B, inset). The
more uniform polyhedral particles of ZnOE could be at-
tributed to the lower polarity of ethanol, compared to that
of water, leading to slower ionization and deposition rate
[39] and inhomogeneous nucleation that favor the
polyhedral-shaped particles [40].
In order to study deeply shape and crystallinity of ZnO

nanoparticles, prepared in ethanol and water, and further
to confirm the XRD patterns, high-resolution TEM
(HRTEM) was performed. This technique has provided us
information regarding the nature of the crystal faces.
HRTEM images of un- and calcined ZnOE and ZnOW are
shown in Figure 5A, B, C, D. These images obviously con-
firmed that un- and calcined ZnO (Figure 5A, C) prepared
in ethanol has hexagonal shape, whereas irregular spher-
ical shape of ZnO prepared in water (Figure 5B, D). In
addition, from HRTEM images of un- and calcined ZnO
prepared ethanol and water, one can clearly observe the



Figure 4 TEM images of the uncalcined ZnOE (A) and ZnOW (B), and calcined ZnOE (C) and ZnOW (D).
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crystal planes of ZnO. The lattice plane fringes of the
ZnO nanoparticles are used to calculate the d-spacing
values, and they were compared with those of bulk ZnO
(the values in Table 3), indicating the formation of ZnO
nanocrystals with different morphology depending on the
reaction medium. From Table 3, the distances between
Figure 5 HRTEM images of the uncalcined ZnOE (A) and ZnOW (B), an
the two lattice planes for un- and calcined ZnOE were
around 0.263 and 0.281 nm, which correspond to the d-
spacing of the (002) and (100) crystal planes, respectively,
of the wurtzite ZnO. On another hand, the interplanar
spacings of un- and calcined ZnOW were around 0.262
and 0.263, corresponding well to the (002) planes of ZnO.
d calcined ZnOE (C) and ZnOW (D).



Table 3 The inter planar spacing and diffraction planes of
un- and calcined ZnOE and ZnOW

Samples d-spacing
calculated from
HRTEM (nm)

d-spacing in
bulk ZnO (nm)

Miller indices
(hkl) assignment

ZnOE

(uncalcined)a
0.263 0.260 002

ZnOW

(uncalcined)b
0.262 0.260 002

ZnOE (calcined)
c 0.281 0.281 100

ZnOW (calcined)d 0.263 0.260 002
aFigure 5A; bFigure 5B; cFigure 5C; dFigure 5D.

Figure 6 UV-vis absorption spectrum (A) and direct bandgap
(B) for calcined ZnOw and ZnOE, respectively.

Table 4 Effect of the synthesis medium on photocatalytic
activity

Sample ZnO loading (wt.%) CN‾ degradation (%)

ZnOE 0.02 86

ZnOW 0.02 56
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UV-vis investigation
Figure 6A exhibits the UV-vis absorption spectra for the
calcined ZnOE and ZnOW samples. The ZnOE sample
showed slightly less absorbance between 300 and 400
nm than ZnOW. This decrease in absorbance could be
attributed to the larger particle size of ZnOE, which in
turn increases its Rayleigh scattering [41]. The direct
bandgap (Eg) estimations from these spectra for ZnOE

and ZnOW are depicted in Figure 6B, where the x-axis is
the photon energy (E) in electron-volt (eV) and y-axis is
the square of the product of absorbance (A) and energy
(AE)2. The Eg for ZnOE was 3.17 eV, while that for
ZnOW was 3.16 eV. Such observation implies that the
optical properties of these materials are not affected by
the synthesis medium.

Photocatalytic degradation of cyanide
Synthesis medium effect on photocatalytic oxidation
The mechanism for the photocatalytic oxidation of cyan-
ide by zinc oxide can be illustrated as follows [41]:

ZnOþ 2hv ¼ ZnO 2hþ þ 2e−
� �

§O2 þ 2 e− þH2O ¼ 2OH−

2OH− þ 2hþ ¼ 2OH:

CN− þ 2 OH: ¼ OCN− þH2O
2OCN− þO2 ¼ 2CO2 þN2

The overall reaction:

2CN− þ 2O2 →
ZnO=H2O

UV light
2CO2 þN2;

where h is Planck's constant and ν is the frequency of
UV light.
The effect of the synthesis medium on the photocata-

lytic efficiency of calcined ZnO nanoparticles was expli-
citly noticed by the much higher efficiency of ZnOE than
that of ZnOW in the photocatalytic degradation of cyan-
ide ion in the aqueous medium under the same condi-
tions. Table 4 shows that the photocatalytic activity of
ZnOE is as approximately 1.5 as that of ZnOW when ap-
plying 0.02 wt.% concentration of the ZnO photocatalyst.
The higher performance of ZnOE can be attributed to
the higher adsorption capability of its particles, owing to
its regular, polyhedral surface faces.
The superiority of ZnOE photocatalytic activity can be

correlated to its particle size and shape, as it is reported
in the literature [42-45]. However, the effect of ZnO par-
ticle shape on the photocatalytic activity is rarely studied
in the literature [46]. In this context, the edges and cor-
ners of ZnOE hexagonal particles have many coordina-
tively unsaturated sites, which usually are active in
catalysis. On the other hand, the spherical shape of
ZnOW particles would have much less active sites due to
the lack of edges and corners. Aligning with our inter-
pretation of ZnOE photocatalytic activity, El-sayed and



Figure 8 Photodegradation kinetic of cyanide ion over
calcined ZnOE.
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his coworkers, for instance, showed that the influence of
the particle shape on the catalytic activity is very import-
ant toward better activity [42,45]. In addition, the photo-
catalytic activity of acetaldehyde decomposition using
ZnO powder depended on several factors including the
morphology of the particles [46]. Finally, we believe that
the morphology of our ZnOE particles is crucial in
photocatalytic activity and our present findings will pro-
vide a hint about the role of morphology in the ZnOE

photocatalytic performance.
Based on the obtained results, ZnOE nanoparticles

were used in further investigation for improving the
cyanide degradation efficiency.

Photocatalytic degradation of CN− using different
concentrations wt.% of calcined ZnOE

Photocatalytic degradation of cyanide using different
weight percent of calcined ZnOE was performed and
found to depend on the ZnO concentration wt.%, as
shown in Figure 7. It is evident that at the initial reac-
tion stage, the catalyst concentration of ZnO has no not-
able effect on the catalytic performance, which might
due to the high essential activity of the ZnOE catalyst. It
is clear from Figure 6 that the smallest concentration of
0.01 wt.% ZnOE resulted in cyanide degradation of 85%
after 180 min, while it increased remarkably to 95% with
increasing the loading from 0.01 to 0.02 wt.%. However,
further increase in the ZnOE concentration from 0.02 to
0.09 wt.% had resulted in almost 100% CN removal effi-
ciency. This observation might be due to the increase in
photon absorption by the ZnOE, resulting in higher con-
centration of the charge carrier to degrade almost all
CN−

(aq). The degradation of cyanide, however, remained
relatively constant with further increase in the reaction
Figure 7 Photocatalytic degradation of cyanide using different
concentration wt.% of calcined ZnOE. Reaction conditions:
100 ppm KCN(aq), t = 25°C, pH = 8.5.
time beyond 180 min, indicating that the catalyst might
be deactivated by deposition of the reaction products on
the catalyst surface.
Kinetic photocatalytic degradation of CN− using
calcined ZnOE

The first order kinetic degradation of CN–
(aq) was fitted

to the following expression:

Log C½ �t ¼ −kt þ Log C½ �o;

where [C]t and [C]o represent the concentration in
(ppm) of CN¯

(aq) in solution at time zero and at time t of
illumination, respectively, and k represents the apparent
rate constant (min−1). The kinetic analysis of cyanide
photodegradation is depicted in Figure 8, which shows
that the rate of photocatalytic reaction depends on the
concentration of the catalyst. An excellent correlation to
the pseudo-first-order reaction kinetics (R > 0.99) was
found. Obviously, the photodegradation rate of the CN−

was found to increase from 19.2 to 42.9 × 10−3 min−1

with increasing ZnO loading from 0.01 to 0.07 wt.%
(Table 5).
Table 5 Apparent rate constant (k) at different
concentration wt.% of calcined ZnOE

ZnOE concentration, wt.% k (min × 10−3)

0.01 19.2

0.02 20.8

0.03 33.5

0.05 36.1

0.07 42.9



Bagabas et al. Nanoscale Research Letters 2013, 8:516 Page 9 of 10
http://www.nanoscalereslett.com/content/8/1/516
Conclusion
Zinc oxide nanoparticles were readily prepared at room
temperature from zinc nitrate hexahydrate and cyclohex-
ylamine either in aqueous or ethanolic medium. The cal-
cined ZnOE had a regular, polyhedra morphology while
the calcined ZnOW had irregular spherical morphology,
mixed with some chunky particles. The morphology was
a key factor in the superior photocatalytic behavior of
ZnOE over that of ZnOW. The differences in morph-
ology and photocatalytic behavior are strongly influ-
enced by the physicochemical properties of the synthesis
medium.
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