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Abstract In the present study, we examine non-Gaussian spreading of solutes subject to
advection, dispersion and kinetic sorption (adsorption/desorption). We start considering the
behavior of a single particle and apply a random walk to describe advection/dispersion plus a
Markov chain to describe kinetic sorption. We show in a rigorous way that this model leads to
a set of differential equations. For this combination of stochastic processes, such a derivation
is new. Then, to illustrate the mechanism that leads to non-Gaussian spreading, we analyze
this set of equations at first leaving out the Gaussian dispersion term (microdispersion). The
set of equations now transforms to the telegrapher’s equation. Characteristic for this system
is a longitudinal spreading that becomes Gaussian only in the longtime limit. We refer to this
as kinetics-induced spreading. When the microdispersion process is included back again, the
characteristics of the telegraph equations are still present. Now, two spreading phenomena
are active, the Gaussian microdispersive spreading plus the kinetics-induced non-Gaussian
spreading. In the long run, the latter becomes Gaussian as well. Another non-Gaussian feature
shows itself in the 2D situation. Here, the lateral spread and the longitudinal displacement
are no longer independent, as should be the case for a 2D Gaussian spreading process. In a
displacing plume, this interdependence is displayed as a ‘tailing’ effect. We also analyze mar-
ginal and conditional moments, which confirm this result. With respect to effective properties
(velocity and dispersion), we conclude that effective parameters can be defined properly only
for large times (asymptotic times). In the two-dimensional case, it appears that the transverse
spreading depends on the longitudinal coordinate. This results in ‘cigar-shaped’ contours.

G. Uffink (B) · J. Bruining
Department of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1,
2628 CN, Delft, The Netherlands
e-mail: G.J.M.Uffink@tudelft.nl

A. Elfeki
Department of Water Resources, Faculty of Metereorology, Environment and Arid Land Agriculture,
King Abdul Aziz University, Jeddah, Saudi Arabia

M. Dekking · C. Kraaikamp
Department EWI (DIAM), Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands

123

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Springer - Publisher Connector

https://core.ac.uk/display/81287578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


548 G. Uffink et al.

Keywords Advection-diffusion equation · Kinetic adsorption · Random walk ·
Markov chain · Solute transport · Telegraph equation

1 Introduction

It is well known that in the field a contaminant plume spreads at a higher rate than as predicted
by theory and laboratory experiments. In addition, one observes that the spreading pattern
often deviates from the Gaussian pattern, especially at early times (tailing). These phenomena
have been analyzed intensively, theoretically, numerically and by field experiments (Gelhar
et al. 1979; Neuman et al. 1987; Dagan 1988; Dieulin et al. 1981a,b; Scheidegger 1959;
Biggar and Nielsen 1962; Maloszewski and Zuber 1992; Berkowitz et al. 2006; Dentz and
Castro 2009; Dentz and Tartakovsky 2006; Schumer et al. 2003). Many papers on this sub-
ject attribute non-Gaussian behavior to the heterogeneity of the medium. In a homogeneous
aquifer, a similar behavior occurs when contaminants are subject to a relatively slow kinetic
adsorption/desorption reaction.

We consider a homogeneous medium and follow a (solute) particle during its
motion through the pore system, while simultaneously it is subject to adsorption/desorption.
Although the porous medium itself is simply homogeneous and non-stochastic, the particle’s
behavior is still chaotic and, therefore, our particle model will be stochastic. Note that our
approach differs from that of papers on particle tracking in the sense that we do not start with
the advection–dispersion–reaction equations and, accordingly, perform a particle tracking
algorithm to solve or simulate the equations. Instead, we start with a stochastic description
for the movement of a single particle and work our way towards the differential equations.
Frequently, particle tracking papers on advection-dispersion with kinetic sorption assume
an analogy between particle tracking and the differential equations by just stating the valid-
ity of this analogy (e.g. Valocchi and Quinodoz 1989; Valocchi 1988). To our knowledge,
a rigorous derivation of the differential equations for advective-dispersive transport with
kinetic sorption starting from a stochastic model for a single particle does not exist in any
of those papers (in the absence of dispersion a similar derivation is given in Mishra et al.
1999, p.554). The paper by Benson and Meerschaert (2009) provides an alternative rigorous
derivation based on a time change approach (also known as subordination).

We also discuss particle models used in various other fields, such as the velocity jump
model (chemotaxis or movement of bacteria, Hillel 1995). This velocity jump model (or
Giddings–Eyring model, e.g. Giddings and Eyring 1955) leads to a telegraph equation. It
differs from our model by the fact that there is no diffusion or dispersion phenomenon. We
will demonstrate that, when the velocity jump is extended with dispersion/diffusion, the tele-
graph character stills remains. This explains the non-Gaussian behavior in the pre-asymptotic
stage.

The non-Gaussian features can also be illustrated by (spatial) moments, especially by the
third (skewness) and fourth (kurtosis) centralized moments. For the 1D situation, first and
second moments were studied by previous authors e.g. Valocchi (1988), Chrysikopoulos et
al. (1992) and Souadnia et al. (2002). These papers mainly focused on the large time (asymp-
totic) results. Pre-asymptotic expressions for first and second moments were first derived by
Michalak and Kitanidis (2000). Unfortunately, in the formulation of the solutions, Michalak
and Kitanidis suggest that for an arbitrary initial distribution of the phases the mean and
variance in each separate phase can be obtained by a linear combination. However, this is
only true for the non-centralized moments, but not for the variance. Moreover, one of the 4
solutions is incorrect (see Sect. 5.1, and also Dekking and Kong 2011a,b).
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Understanding the Non-Gaussian Nature of Linear Reactive Solute Transport 549

In our paper, we shall consider the moments for the 2D situation and examine in detail
the conditional moments. These moments manifest more clearly the non-Gaussian behavior
than the 1D or marginal moments. It shows that non-Gaussian behavior can exist, even when
the marginal moments suggest that the behavior is Gaussian.

In our ‘particle view’, the behavior of a particle is described by a random walk and a two-
state Markov process. A similar model was used by Valocchi (1988), Valocchi and Quinodoz
(1989) and Van Kooten (1996). Equivalent processes occur in other fields, such as chro-
matography (Giddings and Eyring 1955; Giddings 1963; Keller and Giddings 1960) or in
statistical physics (e.g. Fürth 1920; Goldstein 1951; Kac 1956; Weiss 2002 and Masoliver
and Weiss 1996).

In groundwater solute transport, a concept with some similarity to kinetic sorption is that
of the dual porosity. The dual porosity concept was introduced in a pioneering paper by
Barenblatt et al. (1960). It defines solute concentrations both in a flowing and in a stagnant
fluid phase. In the general description, the full time dependence of the diffusion into the
stagnant phase has to be taken into account, in which case we obtain an integro-differential
equation (De Smedt and Wierenga 1979). This equation can also be handled with the use
of temporal moments (Harvey and Gorelick 1995). The mass transfer between stagnant and
flowing phase is often simplified by a forward and backward rate expression analogous to
model of kinetics sorption. This simplified approach has been validated by numerous exper-
iments (Coats and Smith 1964; Haggerty et al. 2004; Nkedi-Kizza et al. 1984; Roth and Jury
1993; Van Genuchten and Wierenga, 1977). The kinetic sorption model and dual porosity
model can be shown to be equivalent for many conditions of practical interest (Haggerty and
Gorelick 1995; Nkedi-Kizza et al. 1984), in particular in the longtime limit (Van Genuchten
and Wierenga 1976; Carrera et al. 1998; Haggerty et al. 2000).

Several authors (e.g. Attinger et al. 1999; Dentz and Castro 2009) study sorptive-advec-
tive-dispersive solute transport using the concept of a retardation coefficient, assuming that
sorption has reached an equilibrium. Such a model is less complex than kinetic (non-equilib-
rium) sorption, but the authors give interesting applications for retardation factors that vary
randomly according to some stochastic models. These studies, e.g. Dentz and Bolster (2010)
and Dentz and Tartakovsky (2006) focus on the non-Gaussian features of the transport as
a consequence of a heterogeneous velocity field. In a homogeneous medium with constant
sorption parameters, non-Gaussianity may also arise as the result of the sorption kinetics, as
shown, e.g., by 1D examples given by Roth and Jury (1993). In our paper, we make this more
explicit and also discuss the 2D situation.

The particle approach used in our paper is the classical or discrete time random walk,
where particles perform steps of a random size but in a (fixed) period of time, Δt . The dif-
ferential equation describing advection, dispersion and kinetic sorption is obtained letting
Δt → 0 in the diffusion limit. An alternative method frequently encountered in the recent
literature is the continuous time random walk (CTRW) originally introduced by Montroll
and Weiss (1965), Weiss (1994). An early application of this model to the trapping of elec-
trons is given in Schmidlin (1977). In the CTRW, the particle moves in space in a number
of jumps, n, each step occurring in a time interval that varies randomly according to a step
probability function. This function is also called the memory function by some authors. The
amount of steps remains a finite, discrete (and random) number, unlike in the approach used
in our paper, where the number of steps approaches infinity and Δt → 0. The CTRW leads
to a different formulation, where the differential equations are finally obtained via Laplace
transforms. There exists an extensive literature on applications of CTRW describing plume
properties in relation to aquifer heterogeneity, see e.g. Dentz and Berkowitz (2003), Schumer
et al. (2003), Dentz et al. (2004) and Salamon et al. (2006). Sorption can be included, which is
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done often by introducing a retardation factor, based on the assumption of local equilibrium,
see e.g. Dentz and Castro (2009). Margolin et al. (2003), however, show that kinetic sorption
can also be taken into account by modifying the step probability function. Non-Gaussianity
may also be built in via the step probability function. Extensive reviews of the method can
be found in Bouchaud and Georges (1990) and Berkowitz et al. (2006). For a more general
review on the different random walk approaches including CTRW, see Delay et al. (2005).

2 The Particle View

2.1 A Stochastic Particle Model

We model the movement of a single particle subject to an advection/dispersion/sorption
process over a time interval [0, t]. For simplicity, we discuss the one-dimensional case. We
discretize time by choosing some n and by dividing [0, t] into n intervals of length Δt = t/n.
We observe the state of the particle at the time points 0,Δt, 2Δt, . . . , nΔt . For this state,
there are two possibilities: ‘free’ or ‘adsorbed,’ which we code by the letters f and a. The
particle can only move when it is ‘free,’ and its displacement has two components: dispersion
and advection.

Let Xk be the displacement due to the dispersion of the particle the kth time that it is
‘free.’ We model the Xk as independent random variables with mean and variance

E [Xk] = 0 and Var (Xk) = 2DΔt.

The displacement due to advection is given by vΔt , where v is the (deterministic) advection
velocity.

Let Kn be the number of intervals [kΔt, (k + 1)Δt) during [0, t] that the particle was
‘free.’ (Here, the open bracket at the right end indicates that the point (k + 1)Δt is not
included.) In other words, KnΔt is the free residence time of the particle in [0, t]. Let S(t)
be the position of the particle at time t . Combining the two types of displacement, we obtain

S(t) =
Kn∑

k=1

(Xk + vΔt).

The distribution of Kn is determined by the kinetics, i.e., by the switching between the ‘free’
and the ‘adsorbed’ state. This is naturally described by a two-state Markov chain. The state
transitions of this chain after a certain time step Δt are given by a transition probability
matrix (pi j ):

[
p f f p fa

paf paa

]
=

[
1 − b b

a 1 − a

]
. (1)

This means that for instance the transition from ‘adsorbed’ to ‘free’ has probability a = paf to
happen during the time interval [kΔt, (k +1)Δt) (note that actually we make this change—if
it takes place—at the end of the interval).

We will be mainly interested in the moments of S(t). Below, we will compute the first and
second moments, and in the next section, we discuss the (centered) third and fourth moments.
To compute E [S(t)], we use the well-known formula (see e.g. Ross 2000) for a random sum
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of Kn independent and identically distributed random variables Yk (also independent of Kn):

E

[ Kn∑

k=1

Yk

]
= E [Kn] E [Y1] .

Here, the mean of Kn equals:

E [Kn] = a

a + b
n.

This expression can be obtained from Viveros et al. (1994), or Dekking and Kong (2011a,b).
Substituting this, we find (with nΔt = t)

E [S(t)] = E [Kn] (E [X1 + vΔt]) = a

a + b
vt. (2)

Here, (a + b)/a is the retardation factor R. To see this, note that the probability vector(
b/(a + b) a/(a + b)

)
is the stationary distribution of the Markov chain, and so a/(a + b)

is the fraction of time the particle is free. Thus, the effective velocity v∗ = v/R. We have
implicitly required that the particle at time 0 is given the state ‘adsorbed’ or ‘free’ according
to this distribution, and for other initial distributions, there will be a correction term in the
formula for E [S(t)], which tends to 0 as t tends to infinity (cf. Dekking and Kong 2011a,b).

To compute Var (S(t)), we use the well-known formula (see e.g. Ross 2000) for the vari-
ance of a random sum of Kn i.i.d. random variables Yk (also independent of Kn):

Var

( Kn∑

k=1

Yk

)
= E [Kn] Var (Y1) + Var (Kn) (E [Y1])2. (3)

This yields with Yk = Xk + vΔt and nΔt = t :

Var (S(t)) = E [Kn] Var (Xk + vΔt) + Var (Kn) (E [Xk + vΔt])2

= a

a + b
2D t + Var (Kn) v2(Δt)2, (4)

where [as can be deduced from Viveros et al. (1994) or Dekking and Kong (2011a,b)]

Var (Kn) = ab(2 − a − b)

(a + b)3 n − 2ab(1 − a − b)

(a + b)4 [1−(1−a− b)n]. (5)

The Eqs. (4) and (5) thus tell us that the variance of the displacement of the particle grows
more or less linearly in time with (asymptotic) slope

a

a + b
2D + ab(2 − a − b)

(a + b)3 v2Δt.

2.2 Skewness and Kurtosis

To obtain the skewness of S(t), we must use the not so well-known formula for the third
central moment of a random sum of Kn i.i.d. random variables Yk (also independent of Kn):

E
[(

S(t) − E [S(t)]
)3

]
= E

⎡

⎣
( Kn∑

k=1

Yk − E

[ Kn∑

k=1

Yk

])3⎤

⎦

= E [Kn] E
[
(Y1 − E [Y1])3] + 3E [Y1] Var (Y1) Var (Kn)

+ (E [Y1])3 E
[
(Kn − E [Kn])3] .
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To actually derive a formula for the skewness of the displacement of the particle from this
equation will lead to very heavy computations (and the situation for the kurtosis is even
worse). However, without doing any computations, we can already tell that as t → ∞, the
skewness must tend to zero and the kurtosis to 3: this is because the distribution of the dis-
placement of the particle will tend to a Gaussian by the central limit theorem for random
sums of independent identically distributed random variables. In our case, this follows since
Kn/n tends in the mean and hence in probability to a/(a + b), see Feller (1971), p. 258.

2.3 Decreasing the Time Steps

The discrete time steps are somewhat unnatural. We would like to let Δt tend to 0. But then
we have to realize that a and b are functions of Δt . Since the probability that the particle
changes its state is proportional to the time Δt it is observed (if Δt is not too large), we
should put

a = μΔt, b = λΔt, (6)

where μ and λ are now the rates at which the particle switches from ‘adsorbed’ to ‘free’ and
from ‘free’ to ‘adsorbed’. Substituting this in Eqs (4) and (5), we obtain

Var (S(t)) = μ

λ + μ
2Dt + λμ(2 − (λ + μ)Δt)

(λ + μ)3 v2t

− 2λμ(1 − (λ + μ)Δt)

(λ + μ)4

[
1 −

(
1 − (λ + μ)

t

n

)n]
v2.

Letting Δt → 0 and hence n → ∞ we obtain

Var (S(t)) = μ

λ + μ
2Dt + 2λμ

(λ + μ)3 v2t − 2λμ

(λ + μ)4

[
1 − e−(λ+μ)t

]
v2. (7)

Thus, we recuperate a (more general and more detailed) version of the main result of Gut
and Ahlberg (1981), and there is a match with the expression that comes from the moment
analysis based on the differential equations (as can be derived by correcting the results in
Michalak and Kitanidis (2000)).

2.4 The State of the Particle at Time t

Let S f (t) be the position of the particle at time t given that it is free at time t .

To find the distribution of S f (t), we need the distribution of K ( f )
n , the number of intervals

[kΔt, (k + 1)Δt) during [0, t] that the particle was free, given that it is free at time t = nΔt .

We find now (where E
[

K ( f )
n

]
can be deduced from Viveros et al. 1994) that:

E
[
S f (t)

] = E
[

K ( f )
n

]
vΔt

=
[

a

a + b
n + b (1 − (1 − a − b)n)

(a + b)2

]
vΔt

= a

a + b
vt + b (1 − (1 − a − b)t/Δt )

(a + b)2 vΔt.

Substituting a = μΔt, b = λΔt, and letting Δt → 0 we obtain

E
[
S f (t)

] = μ

λ+μ
vt + λv

(λ + μ)2

(
1−e−(λ+μ)t

)
. (8)
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From Dekking and Kong (2011a,b), we have that Var
(

K ( f )
n

)
equals

[
a b (2 − a − b)

(a + b)3 + 2 b (a − b) (1 − a − b)n

(a + b)3

]
n

+
[

b (3 a − b)

(a + b)3 − 4 a b

(a + b)4

] [
1 − (1 − a − b)n] + b2

(a + b)4

[
1 − (1 − a − b)2 n]

.

Using Eq. (3) we derive from this

Var
(
S f (t)

) = E
[

K ( f )
n

]
Var (Xk + vΔt) + Var

(
K ( f )

n

)
(E [Xk + vΔt])2

= a

a + b
2Dt + Var

(
K ( f )

n

)
v2(Δt)2 + b (1 − (1 − a − b))t/Δt

(a + b)2 2DΔt.

Substituting a = μΔt, b = λΔt , and letting Δt → 0 we obtain

Var
(
S f (t)

) = μ

λ + μ
2Dt + λ

(λ + μ)2

(
1 − e−(λ+μ)t

)
2D

+
[

2λμ

(λ + μ)3 + 2λ(μ − λ)

(λ + μ)3 e−(λ+μ)t
]

v2t

− 4λμ

(λ + μ)4

[
1 − e−(λ+μ)t

]
v2 + λ2

(λ + μ)4

[
1 − e−2(λ+μ)t

]
v2. (9)

It can be shown that this matches with the expressions in Michalak and Kitanidis (2000),
when these are corrected as in Dekking and Kong (2011a,b). Similar computations can be
made for the displacement of the particle given that it is absorbed at time t .

2.5 Derivation of the Differential Equations

We will now show how the fundamental differential Eqs. (15), (16) can be obtained from a
diffusion limit of the single particle model. Our approach is similar to the one followed for
transport in fluidized beds in Dehling et al. (2000).

In order to obtain this diffusion limit, we extend the model of the previous section by also
discretizing space in locations

iΔx, i = . . . ,−1, 0, 1, . . . .

Here, we let Δx depend on Δt in the classical way, which is motivated by the fact that
typically at time t the spatial fluctuations are of order

√
t :

Δx = c
√

Δt, (10)

where c > 0 will be chosen later. Relation (10) forms the basis for all diffusion processes
and goes back to Einstein.

The particle moves according to a Markov chain (Zn), which is a birth–death process
(birth=one step to the right, death=one step to the left), with the additional possibility that
the particle may become adsorbed and free again. The state space is therefore a product

S = {. . . ,−1, 0, 1, . . . } × {a, f },
where, e.g., Zn = (i, a) means that at time nΔt the particle is at iΔx and is absorbed.

Let βi , δi and αi be the probabilities that the particle (in the free state) moves from iΔx to
(i + 1)Δx and from iΔx to (i − 1)Δx or stays at iΔx . Note that in this model the dispersion
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Fig. 1 The three possible
movements of the particle when it
is free

may depend on the location, i.e., we could more generally consider (deterministic) inhomo-
geneous media. To make this more realistic, we could also let the adsorption and desorption
rates depend on i . As we consider here only the homogeneous case, we take βi = β, δi = δ

and αi = α for each i . To fit the new model with the model in Sect. 2.1, we choose values
for β, δ and α in the following fashion: (Fig.1)

β = D
Δt

(Δx)2 + v2

2

( Δt

Δx

)2 + v

2

Δt

Δx

δ = D
Δt

(Δx)2 + v2

2

( Δt

Δx

)2 − v

2

Δt

Δx

α = 1 − β − δ = 1 − 2D
Δt

(Δx)2 − v2
( Δt

Δx

)2
.

By fitting, we mean that the mean and the variance of the displacement in a time interval of
length Δt of the particle (in the free state) are the same in the two models. Indeed, the mean
of this displacement equals βΔx − δΔx = vΔt , and the variance equals

β(Δx)2 + δ(Δx)2 − (vΔt)2 = 2DΔt.

In terms of Δt only, using (10), the displacement probabilities are

β = D

c2 + v2Δt

2c2 + v
√

Δt

2c

δ = D

c2 + v2Δt

2c2 − v
√

Δt

2c

α = 1 − 2D

c2 − v2Δt

c2 .

From this, we see that these are indeed probabilities for Δt small enough, provided we choose
c >

√
2D. The possible transitions of the chain are

The corresponding transition probabilities are:

p(i, f ),(i+1, f ) = β(1 − λΔt) p(i, f ),(i+1,a) = βλΔt

p(i, f ),(i−1, f ) = δ(1 − λΔt) p(i, f ),(i−1,a) = δλΔt

p(i,a),(i,a) = 1 − μΔt p(i,a),(i, f ) = μΔt

p(i, f ),(i, f ) = α(1 − λΔt) p(i, f ),(i,a) = αλΔt

Let p f (i, n), respectively pa(i, n), be the probability that at time t = nΔt the particle is free,
respectively, absorbed and at position iΔx .

The master equations or Chapman–Kolmogorov equations for the particle are

p f (i, n + 1) = p f (i − 1, n)β(1 − λΔt) + p f (i + 1, n)δ(1 − λΔt)

+p f (i, n)α(1 − λΔt) + pa(i, n)μΔt, (11)
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and

pa(i, n + 1) = p f (i − 1, n)βλΔt + p f (i + 1, n)δλΔt

+ p f (i, n)αλΔt + pa(i, n)(1 − μΔt). (12)

With some abuse in notation regarding the functions pa and p f , we will denote the limiting
probabilities of pa(i, n) and p f (i, n) as iΔx → x , and t = nΔt by pa(x, t) and p f (x, t). We
will obtain partial differential equations for these limiting probabilities when we let Δt → 0,
and i = i(Δt) → ∞, in such a way that iΔx → x . (The obvious way to achieve this is to
take i(Δt) equal to the integer closest to x/(c

√
Δt).) Rearranging (11) we obtain

p f (i, n + 1) = p f (i − 1, n)β + p f (i + 1, n)δ + p f (i, n)α − λΔt[p f (i − 1, n)β

+ p f (i + 1, n)δ + p f (i, n)α] + pa(i, n)μΔt. (13)

In the first three terms of the right-hand side, we substitute the values for β, δ and α:

p f (i − 1, n)β + p f (i + 1, n)δ + p f (i, n)α

=
[

D
Δt

(Δx)2 + v2

2

( Δt

Δx

)2][
p f (i − 1, n) − 2p f (i, n) + p f (i + 1, n)

]

+
[v

2

Δt

Δx

][
p f (i − 1, n) + p f (i + 1, n)

]
+ p f (i, n). (14)

Substituting Eq. (14) into (13) and dividing by Δt , we obtain an equation for the difference
quotient (p f (i + 1, n) − p f (i, n))/Δt . Then, letting Δt → 0, we obtain

∂p f (x, t)

∂t
= D

∂2 p f (x, t)

∂x2 − v
∂p f (x, t)

∂x
− λp f (x, t) + μpa(x, t). (15)

For the adsorbed phase, a similar equation can be derived. Here, since the adsorbed particle
is not subject to advection or dispersion, the first and second terms at the right-hand side are
absent.

∂pa(x, t)

∂t
= −μpa(x, t) + λp f (x, t). (16)

2.6 From Particle to Plume

It might seem surprising that we study the behavior of a contaminant plume from the stochas-
tic analysis of a single particle. Here, we illustrate how these two approaches are connected.
We model the contaminant plume by a collection of N particles. These particles move inde-
pendently according to the same law as the single particle considered in the previous sections.
Let Si (t) be the position of the i th particle at time t . We are interested in the centroid Z(t)
of the plume at time t . This is given by

Z(t) = 1

N

N∑

i=1

Si (t).

We are also interested in the spreading of the plume around its centroid. We measure this by
the (empirical) variance V (t) of the particles given by

V (t) = 1

N

N∑

i=1

(Si (t) − Z(t))2 . (17)
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The random variable Z(t) is an average of independent identically distributed random
variables with finite expectation. Therefore by the strong law of large numbers for t fixed,
and N large

Z(t) ≈ E [S(t)] . (18)

We now turn to the spread of the plume. Here, the situation is more complicated because
the terms in the sum are no longer independent random variables and also depend on N . It is
well known that a rewriting of Eq. (17) yields

V (t) = 1

N

N∑

i=1

(Si (t) − Z(t))2

= 1

N

N∑

i=1

(Si (t) − E [S(t)])2−(Z(t)−E [S(t)])2 .

We have already argued (see (18)) that the last term is approximately 0, and another appli-
cation of the law of large numbers to the first term yields that

V (t) ≈ E
[
(S(t) − E [S(t)])2] = Var (S(t)) .

3 Giddings–Eyring Model

Now that we have derived the basic Eqs. (15) and (16) we turn to their analysis. To illustrate
the spreading induced by the kinetic sorption, we first consider a simpler, but related system,
given by the following equations:

∂ N f (x)

∂t
+ v

∂ N f (x)

∂x
= μNa(x) − λN f (x)

∂ Na(x)

∂t
= λN f (x) − μNa(x).

The difference with Eqs. (15) and (16) is that the hydrodynamic dispersion process is absent.
Also, we have replace the probability densities of a single particles by the (one-dimensional)
densities of the large number of particles, denoted by N f and Na . This system occurs in the
literature under various names. In probability theory and statistical physics, it is known as a
persistent or correlated random walk and has been studied e.g. by Fürth (1920), Goldstein
(1951), Taylor (1920), Kac (1956), and Weiss (2002). In the field of chromatography, the
system is intensively studied as well (Giddings and Eyring 1955; Giddings 1963; Keller and
Giddings 1960). Solutions for the probability density functions of the particles are given by
Giddings and Eyring, which is why we refer here to this system as the Giddings–Eyring
model. Hillel (1995) applies the equations to the movement of bacteria in the direction of the
gradient of food molecules (chemotaxis) and uses the term “velocity jump process”.

We introduce and analyze the Giddings–Eyring model first, since several interesting obser-
vations can be made with respect to the spreading of the particles. The particles are undergo-
ing an ‘apparent’ dispersion, despite the fact that (hydrodynamic) dispersion is not included
in the model. We show that this ‘kinetics-induced’ dispersion develops in a non-Gaussian
way. In the system described by (15) and (16), both hydrodynamic dispersion and the kinet-
ics-induced dispersion are present. When the latter is dominant, non-Gaussian spreading is
observed also in systems that includes hydrodynamic dispersion, as we shall illustrate later.
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For our analysis, first we introduce a moving coordinate system with velocity v∗. The new x
coordinate is:

x̄ = x − v∗t.

where v∗ = vμ/(λ + μ). In the new coordinate system, free particles move to the right
with velocity v f = v − v∗ = vλ/(λ + μ). The adsorbed particles ‘move’ with velocity
va = −v∗ = −v ×μ/(λ+μ). The minus sign indicates that the movement is to the left (i.e.
with respect to the new coordinate system). The equations are now:

∂ N f (x̄)

∂t
+ v f

∂ N f (x̄)

∂ x̄
= μNa(x̄) − λN f (x̄)

∂ Na(x̄)

∂t
+ va

∂ Na(x̄)

∂ x̄
= λN f (x̄) − μNa(x̄).

The equations can be rewritten as a single differential equation by considering first the sum
and difference of the particle distributions (Kac’s trick), i.e.,

u(x) = N f (x) + Na(x); w(x) = N f (x) − Na(x).

After summation and substraction of the differential equations, we obtain for u and w:

∂u

∂t
+

(
λ − μ

λ + μ

)
v

2

∂u

∂ x̄
+ v

2

∂w

∂ x̄
= 0

∂w

∂t
+

(
λ − μ

λ + μ

)
v

2

∂w

∂ x̄
+ v

2

∂u

∂ x̄
= −u(λ − μ) − w(λ + μ).

Now we differentiate the first equation to t and the second to x̄ and eliminate the derivatives
of w:

λμv2

(λ + μ)3

∂2u

∂ x̄2 − 1

λ + μ

∂2u

∂t2 − v (λ − μ)

(λ + μ)2

∂2u

∂t∂ x̄
= ∂u

∂t
(19)

This is a telegrapher’s equation with an additional term due to asymmetry (μ �= λ). Hillel
discusses the symmetrical (λ = μ) case only, but Weiss (2002) also makes some remarks on
asymmetry. Also see Masoliver and Weiss (1996) and Chandramouli (2002). The telegraph
equation may be interpreted either as an advection-dispersion equation with a perturbation
term that disappears at large times or as a wave equation with a perturbation term that disap-
pears at early times.

3.1 Large Time Behavior and the Advection-Dispersion Equation

Hillel uses the following argument that leads to a useful result for large times. For large
times, the velocity [LT −1] and sorption rates [T −1] typically are expressed in large time
units, and thus, their values become large. For example, when time is rescaled by the sub-
stitution t = ωτ and we introduce velocity v′ and sorption rates λ′, μ′ in the new time units
using v′ = ωv, λ′ = ωλ and μ′ = ωμ, Eq. (19) becomes:

λ′μ′v′2

(λ′ + μ′)3

∂2u

∂ x̄2 − 1

λ′ + μ′
∂2u

∂τ 2 − v′ (λ′ − μ′)

(λ′ + μ′)2

∂2u

∂τ∂ x̄
= ∂u

∂τ
(20)

For large times and thus large values of ω, v′, λ′ and μ′ become large. Accordingly, the
first term at the left-hand side of (20) dominates over the second and third terms. Therefore,
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at large times, the equation approximately describes a dispersion process with an equivalent
dispersion coefficient D∗, purely induced by the kinetics:

D∗ = λμv2

(λ + μ)3 (21)

3.2 Short Time Behavior and the Wave Equation

In a similar way, it can be shown that for small times the terms at the left hand remain, while
the right side becomes small. The remaining expression is a wave equation that can be written
as:

[
∂

∂t
+ λv

λ + μ

∂

∂ x̄

] [
∂

∂t
− μv

λ + μ

∂

∂ x̄

]
u = 0

or

∂u

∂t
+ v f

∂u

∂ x̄
= 0,

∂u

∂t
+ va

∂u

∂ x̄
= 0

For an initial pulse at x̄ = 0, the solution represents two pulses propagating along the char-
acteristics. In x̄-space, x̄ − v f t = 0 and x̄ − vat = 0, which in x-space correspond to:
x − vt = 0 and x = 0. These pulses can be identified as traveling pulse (original free
particles) and a stagnant pulse (the original adsorbed particles).

3.3 Intermediate Time Behavior

The wave equation and diffusion equation are approximations for the process at short and
large times, respectively. The intermediate time is described exactly by the full telegraphers’s
equation. Therefore, examination of the solutions to this equation will give information on
the pre-asymptotic spreading behavior of this process.

Solutions for the distribution of the particles have been derived by Giddings and Eyring
(see Giddings and Eyring 1955; Giddings 1963 and Keller and Giddings 1960). For detailed
discussions of these functions see Van Genuchten and Wierenga (1976), Lassey (1988) and
Van Kooten (1996).

Giddings and Eyring consider four types of densities h f f , haf , h fa, haa :

h f f (τ, t) = e−λτ−μ(t−τ)

√
λμτ

t − τ
I1 (θ) + e−λtδ(t − τ)

h fa(τ, t) = λe−λτ−μ(t−τ) I0 (θ)

haf (τ, t) = μe−λτ−μ(t−τ) I0 (θ)

haa(τ, t) = e−λτ−μ(t−τ)

√
λμ(t − τ)

τ
I1 (θ) + e−μtδ(τ ),

(22)

where τ = x/v, θ = 2
√

λμτ(t − τ) and I0(·) and I1(·) are modified Bessel functions. Note
that τ = x/v is not simply a convenient scaling of the x coordinate, but τ also represents
the residence time in the free phase. The expressions hi j represent the probability densities
of the free residence time for different phases and different initial states of the particles. The
first index indicates the initial state of the particle and the second index indicates the state of
the particles the pdf is referring to. The distributions are zero for τ < 0 and τ > t (x < 0 and
x > vt). The delta functions at τ = 0 and τ = t (which in x-space corresponds to x = 0 and
x = vt) represent exponentially decreasing pulses and can also be identified as the fractions
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Fig. 2 Distributions of separate phases and total plume at 4 moments in time. Symmetric case (λ = μ).
Solid (blue) line for total plume. Dashed lines for (green) adsorbed phase and (red) free phase and yellow
background for Gaussian distribution

of particles that, since t = 0, did not (yet) perform a change of state. In Figs. 2 and 3, we
present graphs with the evolution in time of these distributions, using as initial condition the
(unit) pulse consisting of free and adsorbed particles in equilibrium. Let π f and πa be the
initial amount of particles in each phase. Equilibrium exists for

π f
πa

= μ
λ

, and, if the total
amount is unity, we have:

πa = μ

λ + μ
; π f = λ

λ + μ
. (23)

Thus, for t = 0:

N f (x, t) = π f δ(x); Na(x, t) = πaδ(x).

We denote the residence distributions due to this initial condition as heq
f and heq

a :

heq
f (τ, t) =π f h f f (τ, t) + πahaf (τ, t)

heq
a (τ, t) =π f h fa(τ, t) + πahaa(τ, t),

(24)

while for the total amount of particles we have, heq
tot = heq

f + heq
a .

In Figs. 2 and 3, we compare distributions (24) and heq
tot with a Gaussian distribution with

mean v∗t and variance 2D∗t representing the distribution of a solute with velocity v∗ and
dispersion D∗. All distributions are plotted versus a scaled variable x̂ :

x̂ = x − v∗t√
2D∗ t

. (25)

Several stages of the system are shown. At early times (t = 1/4, Fig. 2, upper left graph)
the pulses of free and adsorbed mass are still distinguishable. The pulses move apart in x̂
space and are damped. The mass that ‘leaves’ the pulses gradually fills the space in between
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Fig. 3 Distributions of separate phases and total plume at 4 moments in time. Asymmetric case (λ �= μ).
Solid (blue) line for total plume. Dashed lines for (green) adsorbed phase and (red) free phase and yellow
background for Gaussian distribution

and builds up a distribution that becomes Gaussian in the end (e.g., t = 16, Fig. 2, lower
right graph). The distribution in the interval between the pulses is absent in a pure wave
system and is typical for the telegraph equation. In the final stage, the pulses are completely
damped and the distribution approaches the normal distribution. Summarized, at early times
the ‘wave-character’ dominates, at large times the ‘diffusion-character’ dominates, while at
intermediate times the system is adequately described by a telegraph equation (traveling and
dampened pulses + mixed zone in between). For λ = μ the Gaussian distribution is reached
slightly faster than in the asymmetric case (λ �= μ), as seen in Fig. 3. For both cases, the
pulses disappear for t exceeding both 3/λ and 3/μ. In the next section, local dispersion is
included. We show that the two-dimensional distribution still may deviate from two-dimen-
sional Gaussian functions even though the corresponding one-dimensional distribution is
close to Gaussian.

4 Giddings–Eyring Model Including Dispersion

We extend the Giddings–Eyring model by including longitudinal and transverse dispersion.
This way we obtain the following two-dimensional system.

∂ N f

∂t
− DL

∂2 N f

∂x2 − DT
∂2 N f

∂y2 + v
∂ N f

∂x
= μNa − λN f

(26)
∂ Na

∂t
= λN f − μNa,

where now N f and Na represent a two-dimensional particle density distribution
[
L−2

]

and DL and DT are the longitudinal and transverse dispersion coefficients. We do not use
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different notations for the one- and two-dimensional particle densities. We assume that their
distinction will be clear from the context.

It appears that the effect of transverse dispersion is much more dramatic than that of
longitudinal dispersion, while its solution is much easier to derive. Therefore, we analyze
longitudinal and transverse dispersion separately and start by including transverse dispersion
first.

4.1 Transverse Dispersion

We use an approach proposed by Van Kooten (1996). Consider two distinct species, an adsorb-
ing species (A) and a non-adsorbing (NA). Let the spatial distribution of the non-adsorbing
species be given by cNA(x, y, t). Further, let τ be the ‘free residence time’ of the adsorbing
particles and let the distribution of τ at time t be hi j (τ, t), i.e. for particles in phase j with an
initial unit pulse in phase i (see (22)). If the initial pulse in phase i is N 0

i , then at time t the
amount of particles with free residence time between τ and τ + dτ becomes N 0

i hi j (τ, t)dτ ,
where τ < t . The spatial distribution of this fraction, dNi j (x, y, t), is equal to that of the
non-adsorbing particles at t = τ , or cNA(x, y, τ ). Summation over τ for of these fractions
for τ, 0 ≤ τ ≤ t gives:

Ni j (x, y, t) = N 0
i

t∫

0

hi j (τ, t)cNA(x, y, τ ) dτ. (27)

We apply Van Kooten’s approach first to the case with only transverse dispersion. For a
non-adsorbing solute with advection in the x direction and dispersion in the y direction (DL

is assumed zero), the distribution is:

cNA(x, y, t) = 1

2
√

π DT t
exp

(
− y2

4DT t

)
δ(x − vt).

Insert this function in the integral (27). Because of the delta function, the integral can be
evaluated directly. After substitution of τ by x/v, we obtain:

Ni j (x, y, t) = N 0
i

hi j (
x
v
, t)

2
√

π DT
x
v

exp

(
− y2

4DT
x
v

)
. (28)

For a fixed value of x , expression (28) describes the distribution in y direction of a certain
amount of particles. The amount is equal to N 0

i hi j (
x
v
, t) per unit of length in x direction and

it spreads in the y direction as a Gaussian distribution with variance 2DT
x
v

. The transverse
variance now depends on the x coordinate, which is clearly in conflict with a 2D Gaussian
distribution. The interdependence of transverse variance and x coordinate can be understood
by considering the residence times in the free phase. During the ‘free phase’, time particles
travel in positive x direction and simultaneously spread in the y direction. At a given time
t , the particles that have spent more time in the free phase are found further along the x
direction. They are also more widely spread in y direction, since they have been subject
to dispersion for a longer time. Further, note that for x

v>t , the functions hi j (
x
v
, t) are zero.

Therefore, Ni j (x, y, t) is zero for x > vt .
In Fig. 4, this is illustrated by 2D contours for unit initial pulses in the free and adsorbed

phase. The following scaled coordinates are used:

x̂ = x − v∗t√
2D∗ t

; ŷ = y√
2DT t

. (29)
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Fig. 4 Contour-lines for free phase (red) and adsorbed phase (green) for several initial conditions. The sym-
metric case (λ = 5 and μ = 5) at time t = 1

For a Gaussian distribution with dispersion coefficients D∗ and DT /R in the longitudinal and
transverse direction one would expect elliptic contour-lines. Figure 4, however, shows typical
‘cigar-shaped’ contours. It is clear that close to the original injection point (in Fig. 4 around
x̂ = −2) the particles have spend a relatively short time, τ , in the ‘free’ phase. During this
time, not only the particles displace very little in longitudinal direction, but also the spread in
transverse direction is very limited. The result of this is that x displacement and y-spread are
no longer independent, which is in contradiction to a truly Gaussian system. Also note that in
the 1D case in Fig. 2 the same parameters have been used and the corresponding distribution
in x direction comes out almost as a Gaussian curve (Fig. 2, upper right graph).

4.2 Longitudinal and Transverse Dispersion

Analytical solutions including longitudinal and transverse dispersion have been ob-
tained by Carnahan and Remer (1984), but not in a closed-form. The integral expres-
sion by Carnahan is, in essence, equal to the one obtained by Van Kooten’s ap-
proach:

Ni j (x, y, t) = N 0
i√

DL DT

t∫

0

hi j (τ, t)

4πτ
e
− (x−vτ)2

4DL τ
− y2

4DT τ dτ (30)

We apply expression (30) to evaluate the ‘full’ system (i.e, including advection, dispersion
and sorption) using the following values: λ = 0.2, μ = 0.2, v = 1, DL = 0.5 and
DT = 0.1. The kinetics-induced dispersion coefficient D∗ now becomes 0.62, which is in
the same order of magnitude as DL .
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Fig. 5 Full two-dimensional case. Distribution of the free phase at various times for an initial pulse in equi-
librium; symmetric λ = 0.2 and μ = 0.2; DL = 0.5; DT = 0.1; v = 1

The contour-lines in Fig. 5 represent the distribution of the free phase for t = 1, t = 20
and t = 150, for the case of an initial pulse in equilibrium. Note that for longitudinal and
transverse coordinates, we have applied the same scaling as in Fig. 4, (see (29)). At a short
time (t = 1), almost circular contours occur, which suggests Gaussianity. At this stage,
microdispersion dominates the spreading process, which now progresses in a Gaussian way.
At an intermediate time (t = 20), the ‘cigar-shaped’ contours start to develop. Here, we
observe an increasing influence of the non-Gaussian kinetics-induced dispersion. Finally, at
large times (t = 150), the distribution becomes Gaussian again, with elliptic contours. The
parameters of the early and late Gaussian distribution are quite different. For short times, we
have velocity v and dispersion coefficients DL and DT . For large times, the velocity becomes
v∗ and dispersion coefficients DL/R + D∗ and DT /R for the longitudinal and transverse
direction, respectively. The early Gaussian distribution occurs because directly after the start
of the pulse the effect of kinetic exchange between the phases is still small and the free phase
consists mainly of particles that did not yet change their state. Therefore, they behave as a
non-adsorbing solute. As time goes on the influence of kinetics becomes more apparent and
‘cigar-shaped’ contours develop.

5 Moment Analysis

5.1 One-Dimensional

Analysis of spatial moments and their development in time has been has been frequently
used in the literature to illustrate Gaussian and non-Gaussian features of transport processes.
The method was introduced by Aris (1956), while studying the flow of solutes through a
capillary tube (Taylor dispersion). Later, it was successfully applied to solute transport in a
layered porous medium in Marle et al. (1967). Recently, in the literature, there is a growing
interest for temporal moments of breakthrough curves, e.g. see Lawrence et al. (2002) and
Sanchez-Vila and Rubin (2003). In our paper, however, we focus only on the analysis of
the spatial moments. For contaminant transport with sorption, spatial moment analysis was
applied by Valocchi (1988), Valocchi and Quinodoz (1989), Chrysikopoulos et al. (1992)
and Souadnia et al. (2002). These authors examine the asymptotic values of zero, first and
second moments. Solutions for the entire pre-asymptotic regime of zeroth, first and second
moments are derived by Michalak and Kitanidis (2000). However, one of their expressions
for the central second moment turns out to be incorrect. We copy here the formula (the ⊕ is
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a +, but should be a −) from Michalak and Kitanidis (2000), page 2136 for the normalized
central moment, where the solute is in the free phase at time 0 and at time t :

σ 2
f f = t2 Av2β (β − 1)2

(β + 1)2(1 + β A)2 + t

(
2D

β + 1
+ 2v2β

k(β + 1)3

)

+ t A

(
4v2β

(−β2 A − β2 − β + 1
)

k(1 + β A)2(β + 1)3

)
+ t A

(
2D β (β − 1)

(β + 1)(1 + β A)

)

+ 2v2β (1 − A)
(
3 β2 A − 3 − β (A ⊕ 1)

)

k2(1 + β A)2(β + 1)4 + 4D β (1 − A)

k(1 + β A)(β + 1)2 . (31)

Here, Michalak and Kitanidis abbreviate A = A(t) = exp(−(β + 1)kt) and use the notation

k = μ, β = λ/μ.

By giving the expressions for σ 2
f f , σ 2

f a, σ 2
a f and σ 2

aa , Michalak and Kitanides suggest that
these expressions may be used to obtain variances for a general initial condition, by linearity.
However, such a superposition can only be composed for the non-centralized moments. At
large times, the first and second moments appear to increase at a constant rate, which suggest
that there exist an effective velocity ve and effective dispersion coefficient De:

ve = μ

λ + μ
v De = λμ

(λ + μ)3 v2 + μ

λ + μ
D. (32)

5.2 Two-Dimensional

The 2D case is described by the Eq. (26). We may distinguish two different types of moments.
The first type is that of the marginal moments, or moments with respect to the x coordinate
ignoring the information on the y coordinates of the particles. The second type consists of
conditional moments, either a moment with respect to x for a given value of y or a moment
with respect to the y for a given value of x . Interestingly, the marginal moments for the 2D
case are identical to the moments for the 1D case. In the following subsections, we discuss
the conditional moments.

5.2.1 The x-Moments Conditioned On y

This category of moments represents expected values of xn for a population of particles
with a specific y coordinate. Note that these moments are a function of y. We define these
moments as:

M (n)
f (y) =

+∞∫

−∞
xn N f (x, y) dx, M (n)

a (y) =
+∞∫

−∞
xn Na(x, y) dx

For n = 0 the expressions represent for each phase the particle distribution along the y
direction (the total mass of particles with the specified y coordinate). Note that the higher-
order moments (n > 0) are not yet divided by the zeroth moment, so higher-order moments
are not normalized. For the initial condition, we consider a (unit) pulse with the phases in
equilibrium. Then, the two-dimensional particle distribution becomes:

N eq
i (x, y) =

t∫

0

heq
i (τ, t)

e
− (x−vτ)2

4DL τ
− y2

4DT τ

4πτ
√

DL DT
dτ (33)
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where i is a or f . This expression is obtained by applying (30), replacing hi j by heq
i (see

(24)) and taking N 0
i equal to 1. For the equilibrium initial condition the moments are:

M (n)
i (y) =

+∞∫

−∞
xn N eq

i (x, y) dx

When we use (33) and change the order of integration, the zeroth, first and second moments
become:

M (0)
i (y) =

t∫

0

heq
i (τ, t)

e
− y2

4DT τ

2
√

π DT τ
dτ (34)

M (1)
i (y) =

t∫

0

vτ heq
i (τ, t)

e
− y2

4DT τ

2
√

π DT τ
dτ (35)

M (2)
i (y) =

t∫

0

(2DLτ + v2τ 2)heq
i (τ, t)

e
− y2

4DT τ

2
√

π DT τ
dτ. (36)

Figure 6 shows the distribution along the y-axis for the zeroth moments of free and adsorbed
phase for several times. The initial condition here is the equilibrium situation. The zeroth
moment is plotted horizontally. The figure shows that particles of both phases gradually
spread out in y direction. Note in the figure at the right-hand side that at t = 5 the adsorbed
phase is concentrated along y = 0 and the curve has a pulse-shaped component δ(y) for
y = 0. This pulse represents the particles that did not yet spend time in the free phase and
are still in the initial position. At larger times, most adsorbed particles do have spent time in
the free phase and the spreading in y direction becomes visible.

Figure 7 shows the first moment for the free phase. The first moment, plotted horizontally,
can be interpreted as the average distance travelled in the x direction for the particles with a
specific y coordinate. As it appears, for y = 0, the first moments are smaller than for values
of y greater or smaller than 0. It is an alternative illustration of the tailing effect. Particles
spending less time in the free phase have less opportunity to displace in the x direction and
spread in the y direction. Thus, a considerable fraction of these particles are found around the
point of origin. Further away from the y-axis, particles occur that have been able to disperse
laterally. Therefore, they did spend some time in the free phase and, consequently, were also
displaced further along the x-axis. Once more, we conclude that displacements in x and y
directions are mutually dependent. This dependence in the spreading pattern is non-Gaussian.

5.2.2 The y-Moments, Conditioned On x

The y-moments conditioned on x are defined as:

M (m)
f (x) =

∞∫

−∞
ym N f (x, y) dy, M (m)

a (x) =
∞∫

−∞
ym Na (x, y) dy,

We analyze the y-moments by the Laplace transform using the following initial conditions:

N f (x, y, t)
∣∣
t=0 = π f δ(x)δ(y) Na(x, y, t)|t=0 = πaδ(x)δ(y).
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Fig. 6 Zeroth moments as given by (34) versus y for t = 5, 20, 80, left free phase, right adsorbed phase;
λ = μ = 0.05; DT = 0.03. Zeroth moment on the horizontal axis. In the figure at the right-hand side, the
curve for t = 5 has a pulse-shaped component δ(y) at y = 0

Fig. 7 First moments for free
phase versus y from (35) for
t = 5, 10, 20. Numerical values:
λ = 0.05; μ = 0.05; v = 0.3;
DL = 0.3; DT = 0.03. First
moment on the horizontal axis

After applying the Laplace transform to Eq. (26) and eliminating the transform of Na , we
obtain the following differential equation:

DL
∂2 N̂ f

∂x2 + DT
∂2 N̂ f

∂y2 − v
∂ N̂ f

∂x
− sbN̂ f + bπ f δ(x)δ(y) = 0,
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Fig. 8 Zeroth moment for total concentration M(0) (dashed), free concentration M(0)
f (dotted) and adsorbed

M(0)
a concentration (drawn). Small numerical inaccuracies lead to the fact that the zeroth moment for the total

concentration is below the curve for the free concentration. The peaks at x = 0 representing the function δ(x)

are “approximated” by two exponential curves for reasons of illustration

where N̂ f denotes the particle density in Laplace space, s is the Laplace parameter and b is
an expression depending on s:

b = s + λ + μ

s + μ

N̂a is related to N̂ f by (see Eq. (26)):

(s + μ)N̂a − πaδ(x)δ(y) = λN̂ f

After taking the moments with respect to y, we find for the zeroth moment:

DL
∂2 M̂ (0)

f

∂x2 − v
∂ M̂ (0)

f

∂x
− sbM̂ (0)

f + bπ f δ(x) = 0

M̂ (0)
a = λ

s + μ
M̂ (0)

f + πa

s + μ
δ(x)

The solution for M̂ (0)
f = M̂ (0)

f (x) is

M̂ (0)
f = bπ f√

v2 + 4bs DL

exp

(
xv − |x |√v2 + 4bs DL

2DL

)

where we use that the concentrations are zero at x = ±∞. The inverse can be found with
numerical Laplace inversion algorithms (Davies and Martin 1979; Stehfest 1970; Abate and
Valkó 2004) and is shown in Fig. 8.

For the second moment, we obtain the equations:

DL
∂2 M̂ (2)

f

∂x2 − v
∂ M̂ (2)

f

∂x
− sbM̂ (2)

f + 2DT M̂ (0)
f = 0

s M̂ (2)
a = λM̂ (2)

f − μM̂ (2)
a
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where we use that
∞∫

−∞
y2 ∂2 N̂ f

∂y2 dy = M̂ (0)
f .

with the solution (for x > 0):

M̂ (2)
f (x) = bπ f

μ2 DL

λ + μ

exp

(
xv−x

√
v2+4bs DL

2DL

)

v2 + 4bs DL
× μ

v

(
x + 2DL√

v2 + 4bs DL

)
,

M̂ (2)
a (x) = λ

s + μ
M̂ (2)

f (x).

The ratio of the numerically (Stehfest 1970) inverted M̂ (2)
f and M̂ (0)

f is the normalized and
centralized second moment (conditioned on x) and this ratio turns out to be x/Pe. Thus, the
lateral spread depends on x , which (again) explains the tailing and the previously observed
‘cigar shape’.

6 Conclusions

We discuss a stochastic particle approach, considering a particle that changes between a
mobile and immobile state governed by a Markov chain, while its spatial displacement is
governed by a random walk. Our analysis shows that it is possible to derive the correct set
of differential equations from a stochastic model for a single particle.

To examine the non-Gaussian nature of the spreading process, we analyze first the telegra-
pher’s equation. This equation arises when only advection and kinetic sorption is considered.
We show that in such a system an apparent dispersion process occurs, generated only by the
kinetic changing of the particle in states with different velocities (i.e. zero orv). This ‘kinetics-
induced’ dispersion is non-Gaussian for short and intermediate times, while at large times the
process develops as Gaussian dispersion. When hydrodynamic dispersion is included again,
the spreading process becomes a combination of a Gaussian and non-Gaussian dispersion.
We illustrate this for the 2D case. At short times, the process is Gaussian, since hydrodynamic
dispersion is the dominating process. At intermediate times, the influence of kinetic-induced
dispersion increases and the spreading becomes non-Gaussian. Finally, at large times, the
dispersion becomes Gaussian again, but the (effective) longitudinal dispersion coefficient
has an additional term due to the kinetics. Moreover, we find for the 2D case that the trans-
verse spreading depends on the longitudinal coordinate, resulting in ‘cigar-shaped’ contours.
The mechanism is best illustrated when longitudinal dispersion is assumed zero. Here, the
particles displace in the x direction by advection and spread transversely by dispersion. Par-
ticles spending more time in the adsorbed phase are displaced less in x direction and also
less spread out in y direction. In a truly Gaussian distribution, the transverse spreading is
independent of the longitudinal coordinate. When longitudinal dispersion is included the
same effect is observed, although for short times (compared to the kinetic exchange rate)
the situation is now dominated by hydrodynamic dispersion. With respect of the validity
of effective properties (velocity and dispersion), we conclude the following. The velocity
and dispersion coefficients are represented by the rate of increase in the first and centralized
second moments (times 1/2). For cases with low adsorption and desorption rates, the rates
of increase for the moments remain time dependent for a relatively longtime. We conclude
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that even for a homogeneous medium constant effective properties cannot be defined directly
after the start of solute injection. For large times, an asymptotic behavior is observed with a
constant mean displacement and rate of dispersion, while the third moment vanishes and the
kurtosis approaches a value of 3. This can be proved via our stochastic model by applying
a sophisticated version of the central limit theorem (Sect. 2.2). The critical time, required
before dispersion coefficients becomes constant, is in the order of 3/(λ + μ). The effective
velocity is vμ/(λ + μ), exactly as in the case of linear equilibrium adsorption. However, at
early times, the free particles move with the original groundwater velocity and build up a lead
with respect to the adsorbed phase. In the asymptotic stage, the adsorbed and free particles
displace with the same average velocity, but the lead of the free plume is maintained. The
effective longitudinal dispersion can be much higher than in the case of linear equilibrium
adsorption. The additional term v2λμ/(λ + μ)3 depends also on the groundwater velocity.
It is remarkable that it depends on v2, while the microscale dispersion is linear in v.
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