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1 Introduction and summary

The two-dimensional (2,2) gauged linear sigma model (GLSM) is a very useful tool for

studying conformal field theories of Calabi-Yau manifolds [1]. It allows us to understand

how the large volume limit is smoothly connected to Landau-Ginzburg descriptions, and

provides an intuitive and straightforward proof of the mirror symmetry.

The most notable development involving GLSM in recent years, by far, is the formu-

lation of GLSM on S2 and on squashed S2, and the computation of the partition function

thereof. As conjectured initially in ref. [2] and argued from the squashed S2 versions in

ref. [3], this leads to a new way to compute exact geometry of Kähler moduli space, with-

out referring to the mirror symmetry dual. The conjectured relationship to the A-model

tt∗-amplitude with Kähler parameters, or the complexified FI parameters τ , is

e−K(τ,τ̄) = R〈0|0̄〉R = ZS2(τ, τ̄) , (1.1)

where R〈0| is a canonical ground state of the Ramond sector [4], ZS2 is a two-sphere

partition function of (2,2) GLSM which was calculated exactly using supersymmetric lo-

calization at [5, 6]. This provides a direct method of computing Gromov-Witten invariants,

i.e., the world-sheet instanton contribution to the above quantity, in a manner that obviates

the mirror B-model.

This in turn leads to another natural question of how boundary state amplitudes are

computed in this new approach. Refs. [7–9] extended the above to a hemisphere partition

function. Interestingly, the supersymmetry that survives the squashing of S2 is such that

it is naturally A-twisted (anti-A-twisted) at the poles but at the same time B-twisted at

the equator. Thus, the boundary states one can attach to the hemisphere are holomorphic

cycles wrapped by D-branes. Along the same logic as above, the hemisphere partition

function then computes the overlap amplitude between the canonical vacuum and the

boundary states in question,

Π0
B(τ) = R〈0|B〉R = ZD2(B, τ) , (1.2)

which is nothing but the central charge of the D-brane.

One of more interesting results from this can be seen from the large volume limit.

Explicit results for simple hypersurface examples, say that the central charge in the large

volume limit is ∫
X
e−B−iJ ∧ ch(F) ∧ Γ̂c(T ) , (1.3)

where Γ̂c(T ) is a multiplicative characteristic class defined by

Γ̂c(T ) =
d∏
i=1

Γ
(

1 +
xi

2πi

)
, (1.4)

and T is the (holomorphic) tangent bundle of the Calabi-Yau. Most notably, this corrects

the conventional form of the central charge as√
A(T ) → Γ̂c(T ) . (1.5)
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This appearance of Γ̂c class has been foretold from various explicit computations via mirror

symmetry [10–13].

In this note, we initiate extending these works to the presence of Orientifold planes.

The simplest quantity one can compute is the vacuum-to-crosscap amplitude,

R〈0|C〉R . (1.6)

Pictorially, this is computed by a cigar-like geometry with the identity operator at the tip

and a crosscap at the other end. There are two possible choices for the crosscap, say, A-type

and B-type. The former corresponds to Orientifold planes wrapping Lagrange subcycles.

In this note, we are led to consider B-type parity for GLSM, for much the same reason

as in ref. [14], which corresponds to Orientifold planes wrapping the holomorphic cycles.

Topologically the world-sheet is that of RP2, and the same squashing deformation as in

ref. [3] is allowed, the partition function of GLSM on S2/Z2 = RP2 is expected to compute

the vacuum-to-crosscap amplitude,

R〈0|C〉R = ZRP2(O, τ) . (1.7)

In the convention of Brunner-Hori [14], the relevant parity action for our purpose here is of

type B, which leads to, generally, holomorphically embedded Orientifold planes. Compu-

tation of the partition function follows easily from the S2 partition function computation,

and the result is expressed in terms of a product of the Gamma functions. See section 3

for the complete expressions.

For Orientifold plane that wraps the Calabi-Yau X entirely, we also take the large

volume limit of the central charge. Conventionally, Orientifold planes, O±, have L1/2 class

as the counterpart of D-branes’ A1/2 class. Here we find that one must also replace√
L(T /4) → A(T /2)

Γ̂c(−T )
. (1.8)

The parity action on S2 can be augmented by additional Z2 action on the chiral fields,

which induces various combinations of O2(d−s) planes, say wrapping a submanifoldM. For

these cases, we must also replace√
L(T /4)

L(N/4)
→ A(T /2)

Γ̂c(−T )
∧ Γ̂c(N )

A(N/2)
, (1.9)

with the normal bundle N and the tangent bundle T of holomorphically embedded M in

the Calabi-Yau X . For more complete expression for the large volume limit, see section 5.

The results found here should be consistent with the hemisphere computation of the

D-brane central charges. Among those issues discussed are anomaly inflow and a twist

that is known to be present when the world-volume wraps a Spinc (rather than Spin, i.e.)

submanifold. Also, one outfall from having both D-brane and Orientifold plane central

charges available is the interpretation of exactly what the Gamma class corrects. The

central charge does not by itself tells us whether the correction goes to the RR-charge or

the vacuum expectation values of spacetime scalars, or equivalently the quantum volumes.

– 3 –
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Our conclusion is that the correction should be attributed entirely to the α′ correction of

volumes.

This note is organized as follows. Section 2 outlines GLSM on RP2 as a type B-parity

projection of that on S2, and briefly discusses squashing deformation of RP2 to motivate the

interpretation of the RP2 partition functions as vacuum-to-crosscap amplitudes. Section 3

computes the partition function exactly: we start with identification of two saddle points,

of even and odd holonomy respectively, and compute the relevant 1-loop determinants of

chiral and vector multiplets. The parity action can be accompanied by Z2 flavor rotations,

which correspond to Orientifold planes of even co-dimensions. In section 4, we turn to

the mirror Landau-Ginzburg description and recover the results of section 3. Here we also

learn how the two possible values of θ angle, i.e. θ = 0, π, affect the partition functions and

sometimes distinguish the (relative) type of Orientifolds from different holonomy sectors.

Section 5 specializes the result to the case of Calabi-Yau hypersurface X in CPN−1,

and various Orientifolds thereof, and extracts the perturbative contribution. This gives

the large volume expression of the central charge, where the Γ̂c class makes appearance as

in (1.8) and (1.9). Section 6 will consider subtleties and make some consistency checks,

from the simple tadpole condition to anomaly inflow. The latter in particular suggests

that topological content of D-branes and Orientifold planes remain unchanged despite the

changes in the central charges. We point out that, in all central charge expressions from

the hemisphere and RP2 partition functions, the multiplicative shift due to the appearance

of Γ̂c class must be understood as quantum shift of e−iJ , such that the RR-charges and

the Chern-Simon couplings remain unchanged.

In the appendices, we outline some technical aspects of the computation but also

address a well-known subtlety whenM is a proper submanifold of Spinc structure. Invoking

tachyon condensation, we motivate natural R-charge and gauge charge assignment for the

boundary Hilbert space, how an extra factor e−c1(N )/2 emerges for D-branes when M is a

proper and Spinc submanifold.

2 GLSM on RP2 and squashing

In this section, we start with a brief review on general aspects of parity symmetries in 2d

(2,2) theory on R1+1, which were thoroughly studied in ref. [14]. To begin with, the parity

action on the 2-dimensional superspace (x± = x0 ± x1, θ±, θ̄±) is x1 → −x1, accompanied

by the proper action in the fermionic coordinates. Depending on the latter there are two

distinct possibilities,

ΩA : (x±, θ±, θ̄±)→ (x∓,−θ̄∓,−θ∓) ,

ΩB : (x±, θ±, θ̄±)→ (x∓, θ∓, θ̄∓) , (2.1)

which we will call A and B-parity respectively. Under this action, the four supercharges

transform as

A : Q± → Q̄∓, Q̄± → Q∓,

D± → D̄∓, D̄± → D∓,

B : Q± → Q∓, Q̄± → Q̄∓,

D± → D∓, D̄± → D̄∓ . (2.2)
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Hence, under the A-parity action, half of the supersymmetry is broken, leaving QA ≡
Q+ + Q̄− and Q†A invariant. Under B-parity, and QB ≡ Q̄+ + Q̄− and Q†B survive.

Furthermore, the simplest transformation rule for a chiral field (φ, ψ, F ) is

A : φ(x)→ φ̄(x′) ,

ψ±(x)→ ψ̄∓(x′) ,

F (x)→ F̄ (x′) , (2.3)

B : φ(x)→ φ(x′) ,

ψ±(x)→ ψ∓(x′) ,

F (x)→ −F (x′) , (2.4)

and one can check that these leave the kinetic lagrangian of the chiral multiplet invariant.

For a twisted chiral multiplet, transformation rules under A and B-parities are exchanged.

For each parity projection, we can associate a crosscap state denoted by |CA,B〉. Then

we can think of the overlap between this state and a (twisted) chiral ring element, such as

〈a|CB〉 . (2.5)

We naturally expect that this quantity calculates the Orientifold analogue of the D-brane

central charge. Among these overlaps, there are distinguished element 〈0|CB〉 that no chiral

field is inserted at the tip of the hemisphere. The path integral can be done by doubling

of the hemisphere by gluing its mirror image. Topology of the world-sheet is that of a two

sphere with antipodal points identified, i.e., RP2.

2.1 GLSM on RP2

The supersymmetric Lagrangian we are considering is the same as that used in [5, 6];

L = Lvector + Lchiral + LW + LFI , (2.6)

where the kinetic terms for the vector and the charged chiral multiplets are, respectively,

Lvector =
1

2g2
Tr

[(
F12 +

σ1

r

)2
+ (Dµσ1)2 + (Dµσ2)2 − [σ1, σ2]2 +D2

+ iλ̄γµDµλ+ iλ̄[σ1, λ] + iλ̄γ3[σ2, λ]

]
, (2.7)

Lchiral = φ̄

(
−DµDµ + σ2

1 + σ2
2 + iD + i

q − 1

r
σ2 +

q(2− q)
4r2

)
φ+ F̄F

− iψ̄
(
γµDµ − σ1 − iγ3σ2 +

q

2r
γ3
)
ψ + iψ̄λφ− iφ̄λ̄ψ , (2.8)

and the potential terms take the following form,

LW =
∑
i

∂W
∂φi

F i − 1

2

∑
i,j

∂2W
∂φi∂φj

ψiψj + c.c. . (2.9)
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Finally the Fayet-Illiopoulos (FI) coupling and the two-dimensional topological term are

LFI = −τ
2

Tr
[
D − σ2

r
+ iF12

]
+
τ̄

2
Tr
[
D − σ2

r
− iF12

]
, (2.10)

where τ = iξ + θ
2π , (ξ ∈ R, θ ∈ [0, 2π]). Note that the superpotential W(φ) should carry

R-charge two to preserve the supersymmetry on RP2.

The Lagrangian is invariant under the supersymmetry transformation rules,

δλ =(iV1γ
1 + iV2γ

2 + iV3γ
3 −D)ε ,

δλ̄ =(iV̄1γ
1 + iV̄2γ

2 + iV̄3γ
3 + D)ε̄ ,

δAi =− i

2

(
ε̄γiλ− λ̄γiε

)
,

δσ1 =
1

2

(
ε̄λ− λ̄ε

)
,

δσ2 =− i

2

(
ε̄γ3λ− λ̄γ3ε

)
,

δD =− i

2
ε̄γµDµλ−

i

2

[
σ1, ε̄λ

]
− 1

2

[
σ2, ε̄γ

3λ
]
,

+
i

2
εγµDµλ̄−

i

2

[
σ1, λ̄ε

]
− 1

2

[
σ2, λ̄γ

3ε
]
, (2.11)

with

~V ≡
(

+D1σ1 +D2σ2, +D2σ1 −D1σ2, F12 + i[σ1, σ2] +
1

r
σ1

)
,

~̄V ≡
(
−D1σ1 +D2σ2, −D2σ1 −D1σ2, F12 − i[σ1, σ2] +

1

r
σ1

)
, (2.12)

and

δφ =ε̄ψ ,

δφ̄ =εψ̄ ,

δψ =iγµεDµφ+ iεσ1φ+ γ3εσ2φ+ i
q

2r
γ3εφ+ ε̄F ,

δψ̄ =iγµε̄Dµφ̄+ iε̄φ̄σ1 − γ3ε̄φ̄σ2 − i
q

2r
γ3ε̄φ̄+ εF̄ ,

δF =ε
(
iγiDiψ − iσ1ψ + γ3σ2ψ − iλφ

)
− iq

2
ψγiDiε ,

δF̄ =ε̄
(
iγiDiψ̄ − iψ̄σ1 − γ3ψ̄σ2 + iφ̄λ

)
− iq

2
ψ̄γiDiε̄ . (2.13)

Here the spinors ε and ε̄ are given by1

ε = eiϕ/2

(
cos θ/2

sin θ/2

)
, ε̄ = e−iϕ/2

(
sin θ/2

cos θ/2

)
, (2.14)

satisfying the Killing spinor equations

∇µε =
1

2r
γµγ

3ε , ∇µε̄ = − 1

2r
γµγ

3ε̄ . (2.15)

1See appendix A for our gauge choice.
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Note that the surviving supersymmetry (2.14) becomes A-type and B-type supersymmetry

at the pole (θ = 0) and the equator (θ = π/2), respectively.

In order to define the theory on RP2, we further impose a suitable parity projection

condition on the dynamical fields so that the Lagrangian is invariant under the parity.

Particularly, one has to consider the type B-parity in the following discussion. This is

because the Killing spinors (2.14) transform as

ε± → iε∓ , ε̄± → −iε̄∓ , (2.16)

under the parity action (θ, ϕ)→ (π−θ, ϕ+π). It implies that the B-type Orientifold plane

can be naturally placed at the equator θ = π/2.

We remark here that, as in the case of the S2, the Lagrangian except LFI can be made

Q-exact with the supersymmetry chosen by (2.14). For instance,

Lvector =
1

g2
δεδε̄Tr

[
1

2
λ̄γ3λ− 2iDσ2 +

i

r
σ2

2

]
, (2.17)

and

Lchiral = −δεδε̄
[
ψ̄γ3ψ − 2φ̄

(
σ2 + i

q

2r

)
φ+

i

r
φ̄φ

]
. (2.18)

Consequently, the partition function on RP2 contains only the A-model data.

2.2 Squashed RP2 and crosscap amplitudes

We propose that the partition function of N = (2, 2) GLSM on RP2 computes the overlap

between the supersymmetric ground state and the type B-crosscap state in the Ramond

sector

ZRP2 = R〈0|CB〉R , (2.19)

which is the central charge of the Orientifold plane. To understand the above proposal, it is

useful to consider a squashed RP2, denoted by RP2
b , where the Hilbert space interpretation

of the results in section 3 becomes clear.

The squashed RP2 can be described by

x2
1 + x2

2

l2
+
x2

3

l̃2
= 1 (2.20)

with Z2 identification below

Z2 : (x1, x2, x3) → (−x1,−x2,−x3) . (2.21)

The metric on this space is

ds2 = f2(θ)dθ2 + l2 sin2 θdϕ2 , (2.22)

– 7 –
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where f2(θ) = l̃2 sin2 θ+ l2 cos2 θ. The world-sheet parity Z2 acts on the polar coordinates

as follows

Z2 : (θ, ϕ) → (π − θ, π + ϕ) . (2.23)

An Orientifold plane is placed at the equator θ = π/2. By turning on a suitable background

gauge field coupled to the U(1)V current,

V =
1

2

(
1− l

f(θ)

)
dϕ , (2.24)

valid in the region 0 < θ < π, one can show the Killing spinors (2.14) on the squashed RP2

satisfying the generalized Killing spinor equations

Dmε =
1

2f
γmγ

3ε , Dmε̄ = − 1

2f
γmγ

3ε̄ , (2.25)

where the covariant derivative denotes Dm = ∂m − iVm. Here we normalize the R-charge

so that the Killing spinor ε (ε̄) carries +1 (−1) R-charge.

As in ref. [3], one can show that the partition function is invariant no matter how

much we squash the space RP2, i.e., it is independent of the squashing parameter b = l/l̃.

Appendix B shows detailed computations for this. In the limit b→ 0, we have an infinitely

stretched cigar-like geometry where the type B-crosscap state |CB〉 is prepared at θ = π/2.

Near θ ' π/2, all the fields can be made periodic along the circle S1 due to the background

gauge field V ' 1
2dϕ, which implies that the theory is in the Ramond sector near θ ' π/2.

Moreover, as mentioned earlier, the partition function on the squashed RP2 contains only

the A-model data.

Combining all these facts, we can identify the partition function on RP2
b as the overlap

in the Ramond sector between A-model ground state corresponding to the identity operator

at the tip and the B-type crosscap state defined by an appropriate projection condition we

discuss soon,

ZRP2 = ZRP2
b

b→0
= R〈0|CB〉R . (2.26)

3 Exact RP2 partition function

In this section, we compute the partition function of GLSM on RP2 exactly, via the local-

ization technique. The analysis is parallel to the computation of the two-sphere partition

function [5, 6].

As we will be working with the Coulomb phase saddle points, the gauge group is ef-

fectively reduced to the Cartan subgroup U(1)rG , whose scalar partners will be collectively

denoted by σ. The relevant gauge charges are expressed via weights and roots. For chiral

multiplets in the G-representation R, these U(1)rG gauge charges will be denoted collec-

tively as w, so the 1-loop determinant of a chiral multiplet with weight w is a function

of w · σ. When the gauge group is Abelian as in sections 4, 5, and 6, we also use the

notation Q for the gauge charges, so w · σ is written as Q · σ. Similarly, contribution from

– 8 –
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each massive “off-diagonal” vector multiplet is determined entirely by its charge under the

unbroken U(1)rG ; the determinant is then written in terms of α · σ. In the end, we take a

product over all the weights, w, and all the roots, α.

3.1 Saddle points

To apply the localization technique, we choose the kinetic terms Lvector and Lchiral as the

Q-exact deformation and scale them up to infinitely. The path-integral then localizes at

the supersymmetric saddle points satisfying the equations

F12 = −σ1

r
=

B

2r2
, Dµσ1 = Dµσ2 = [σ1, σ2] = 0, D +

σ2

r
= 0 , (3.1)

with all the other fields vanishing. Among these saddle configurations, the only one invari-

ant under the B-type Orientifold projection is

F12 = 0, σ1 = 0, Dµσ2 = 0, D +
σ2

r
= 0 . (3.2)

However, since RP2 has a non-contractible loop C which connects two antipodal points

in the equator, F12 = 0 is solved by a flat connection with a discrete Z2 holonomy

P exp

[
i

∫
C
A

]
∈ Z2 . (3.3)

Hence there are two kinds of saddle points, which we call even and odd holonomy. Near the

odd holonomy, fields effectively satisfy twisted boundary condition that picks up additional

sign along the loop.

Finally, using U(N) gauge transformation, we can make Aµ holonomy and constant

mode of σ2 both diagonal, as the two must commute with each other. Then the saddle

point configurations all reduce to

σ2 = σ, D = −σ
r
, (3.4)

where σ is arbitrary constant element in the Cartan subalgebra. The classical action at

the saddle points is,

Zclassical = e−i2πrξσ. (3.5)

3.2 Chiral multiplets

In this section, we calculate one-loop determinants of chiral multiplets, say, in the repre-

sentation R of the gauge group G. To compute the one-loop determinant, we truncate the

regulator action up to quadratic order in small fluctuation, around each saddle point

Schiral = Sbchiral + Sfchiral

with

Sbchiral =

∫
d2x
√
g φ̄

[
−D2

µ + σ2 + i
q − 1

r
σ +

q(2− q)
4r2

]
φ , (3.6)

and

Sfchiral =

∫
d2x
√
g ψ̄γ3

[
− iγ3γµDµ −

(
σ + i

q

2r

)]
ψ . (3.7)

We refer readers to appendix A for properties of the relevant spherical harmonics.
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Even Holonomy. First, we will calculate the contribution near the first saddle point,

where the holonomy is trivial. For this, we impose the B-type Orientifold projection,2

φ(π − θ, π + ϕ) = + φ(θ, ϕ) ,

ψ±(π − θ, π + ϕ) =− iψ∓(θ, ϕ) ,

ψ̄±(π − θ, π + ϕ) = + iψ̄∓(θ, ϕ) ,

F (π − θ, π + ϕ) = + F (θ, ϕ) . (3.8)

For simplicity, let us first consider a single chiral multiplet of charge +1 under a U(1) gauge

group. Thanks to the property, with our gauge choice,

Yq,jm(π − θ, π + ϕ) =(−1)je−iπ|q|Y−q,jm(θ, ϕ) , (3.9)

we can write scalar fluctuations that survive under the projection (3.8) as

φ(θ, ϕ) =
∑
j=2k
k≥0

j∑
m=−j

φjmYjm . (3.10)

The bosonic part of the quadratic action then becomes

Sbchiral =
1

2

∑
j=2k
k≥0

j∑
m=−j

φ̄jm

[ (
j +

q

2
− irσ

)(
j + 1− q

2
+ irσ

) ]
φjm , (3.11)

which leads to

Detφ =
∏
k≥0

(
2k +

q

2
− irσ

)4k+1 (
2k + 1− q

2
+ irσ

)4k+1
. (3.12)

Next, the mode expansion of the fermion fluctuation invariant under the projection (3.8)

takes the form

ψ =
∑

j=2k+1/2
k≥0

j∑
m=−j

ψ+
jmΨ+

jm +
∑

j=2k+3/2
k≥0

j∑
m=−j

ψ−jmΨ−jm ,

ψ̄ =
∑

j=2k+1/2
k≥0

j∑
m=−j

ψ̄+
jmΨ̄+

jm +
∑

j=2k+3/2
k≥0

j∑
m=−j

ψ̄−jmΨ̄−jm , (3.13)

where the spinor harmonics Ψ±j,m are

Ψ±jm =

(
Y− 1

2
,jm

±Y 1
2
,jm

)
, Ψ̄±jm =

 Y ∗1
2
,jm

±Y ∗− 1
2
,jm

 . (3.14)

2This choice of projection condition is consistent with the supersymmetry (2.13) and (2.14).
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In terms of the mode variables, the fermionic part of the quadratic action can be ex-

pressed as

Sfchiral = + i
∑

j=2k+1/2
k≥0

j∑
m=−j

ψ̄+
jm

[
j +

1

2
− q

2
+ irσ

]
ψ+
jm

− i
∑

j=2k+3/2
k≥0

j∑
m=−j

ψ̄−jm

[
j +

1

2
+
q

2
− irσ

]
ψ̄−jm . (3.15)

As a consequence, the determinant for the fermion modes equals to

Detψ =
∏
k≥0

(
2k + 1− q

2
+ irσ

)4k+2 (
2k +

q

2
− irσ

)4k
. (3.16)

One can easily generalize the above results for a chiral multiplet of weight w under G by

the replacement σ → w · σ.

Combining these two expressions, we find that the one-loop contribution from a chiral

multiplet in the representation R under the gauge group G is

Zchiral
1-loop =

Detφ
Detψ

=
∏
w∈R

∏
k≥0

2k + 1− q
2 + irw · σ

2k + q
2 − irw · σ

. (3.17)

This can be regularized with Gamma function representation

Γ(a) = lim
nmax→∞

nmax!(nmax)a∏nmax
n=0 (a+ n)

, (3.18)

where we should take care to introduce the UV cutoff Λ via rΛ ' 2kmax since (2k+ · · · )/r
are the physical eigenvalues. Then,

Zchiral
1-loop =

∏
w∈R

lim
kmax→∞

(kmax)
1
2−

q
2+irw·σ

·
Γ
( q

4 − irw · σ/2
)

Γ
(

1
2 −

q
4 + irw · σ/2

)
=
∏
w∈R

e[
1−q
2

+irw·σ] log(rΛ/2) ·
Γ
( q

4 − irw · σ/2
)

Γ
(

1
2 −

q
4 + irw · σ/2

) · Γ
(
− q

4 + irw · σ/2
)

Γ
(
− q

4 + irw · σ/2
)

=
∏
w∈R

1

2
√

2π
· e[

1−q
2

+irw·σ] log(rΛ) Γ
( q

4 −
irw·σ

2

)
· Γ
(
− q

4 + irw·σ
2

)
Γ
(
− q

2 + irw · σ
) , (3.19)

where we used

Γ

(
1

2
+ x

)
Γ(x) = 21−2x√π Γ(2x) , (3.20)

for the last equality. The exponential factor which diverges when Λ → ∞ is understood

to be one-loop running of the FI-parameter and appearance of central charge defined as

c ≡ 3(
∑

i(1− qi)− dG) when combined with vector multiplet contribution.
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Odd Holonomy. Let us now in turn consider the fluctuation near the second saddle

point with nontrivial holonomy. At the odd holonomy fixed point, the boundary condition

for charged field must be twisted by eiw·h = ±1, where eih·H is the Z2 holonomy with unit-

normalized Cartan generators H. The chiral fields can then be classified into two classes,

with even charge we and with odd charge wo, respectively, depending on the above sign.

For even ones, we, one-loop determinant is unchanged from the even holonomy case, so we

focus on a chiral multiplet with odd charge wo

exp
[
i

∫
C
wo ·A

]
= −1 . (3.21)

Effectively, we impose the twisted projection condition on those carrying odd charges wo as

φ(π − θ, π + ϕ) =− φ(θ, ϕ) ,

ψ±(π − θ, π + ϕ) = + iψ∓(θ, ϕ) ,

ψ̄±(π − θ, π + ϕ) =− iψ̄∓(θ, ϕ) ,

F (π − θ, π + ϕ) =− F (θ, ϕ) , (3.22)

without a background gauge field. Thus the spectral analysis is parallel to the previous

one except the twisted projection picks exactly opposite eigenvalues, which were projected

out under the original B-type parity action. Therefore, one obtains

Detφ =

∏
k≥0

(
2k + 1 +

q

2
− irwo · σ

)4k+3 ∏
k≥1

(
2k − q

2
+ irwo · σ

)4k−1

 , (3.23)

for bosons, and

Detψ =
∏
k≥0

(
2k − q

2
+ irwo · σ

)4k (
2k + 1 +

q

2
− irwo · σ

)4k+2
, (3.24)

for fermions. Hence the one-loop determinant at this saddle point becomes

Zchiral
1-loop =

∏
wo∈R

∏
k≥0

2k + 2− q
2 + irwo · σ

2k + 1 + q
2 − irwo · σ

. (3.25)

With the same procedure, we can further simplify this expression as

Zchiral
1-loop =

∏
wo∈R

lim
kmax→∞

(kmax)
1
2
− q

2
+irwo·σΓ

(
1
2 + q

4 −
irwo·σ

2

)
Γ
(
1− q

4 + irwo·σ
2

) (3.26)

=
∏
wo∈R

2
√

2π · e[
1−q
2

+irwo·σ] log(rΛ) Γ
( q

2 − irwo · σ
)

Γ
(
− q

4 + irwo·σ
2

)
Γ
( q

4 −
irwo·σ

2

) · 1

− q
2 + irw0 · σ

.

3.3 Parity accompanied by flavor rotations

For theories with non-trivial flavor symmetry, we can enrich the Z2 projection by combi-

nation with flavor rotations, i.e.,

φi(x) → M i
jφ
j(x′) ,

ψi±(x) → M i
jψ

j
∓(x′) , (3.27)
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where M i
j is a flavor rotation which squares to the identity. Let us consider the simplest

example where M i
j exchanges two chiral multiplets Φ1(x) ↔ Φ2(x′). The contribution of

these modes to the 1-loop determinant is easily obtained, by noting that fluctuations of one

of Φ1,2 is completely determined by that of the other in the opposite hemisphere. Hence,

these two effectively contribute as one chiral multiplet without Z2 projection, i.e., that of

the full two-sphere partition function∏
w∈R

e[1−q+2irw·σ] log(rΛ) ·
Γ
( q

2 − irw · σ
)

Γ
(
1− q

2 + irw · σ
) , (3.28)

calculated in ref. [5, 6].

All other Z2 flavor transformations are generated by combination of the above rotation

and a gauge transformation. For example, we can consider a projection of type Φ1(x) →
−Φ1(x′), when the superpotential respects such symmetry. The result of this sign flip is

the same as in (3.25), so we find∏
w∈R

2
√

2π · e[
1−q
2

+irw·σ] log(rΛ) ·
Γ
( q

2 − irw · σ
)

Γ
(
− q

4 + irw·σ
2

)
Γ
( q

4 −
irw·σ

2

) · 1

− q
2 + irw · σ

. (3.29)

These observations will be useful in the next section where we consider lower-dimensional

Orientifold planes embedded as a hypersurface in the Calabi-Yau ambient space.

3.4 Vector multiplets

Finally, we come to the vector multiplets. We follow the Fadeev-Popov method to deal

with the gauge symmetry, and introduce ghost fields c, c̄. Up to the quadratic order, the

action around the saddle point is

Svector = Sbvector + Sfvector + SFPvector , (3.30)

where

Sbvec =

∫
1

2
Tr
[
Da ∧ ∗Da−

[
σ, a
]
∧
[
σ, ∗a

]
+Dσ1 ∧ ∗Dσ1 −

[
σ, σ1

]
∧
[
σ, ∗σ1

]
+

1

r2
σ1 ∧ ∗σ1 +Dϕ ∧ ∗Dϕ+

2

r
Da ∧ σ1 + iDϕ ∧

[
σ, ∗a

]
+ i
[
σ, a
]
∧ ∗Dϕ

]
,

Sfvec =

∫
d2x
√
g

1

2
Tr
[
λ̄γ3

(
iγ3γiDiλ+

[
σ, λ
]) ]

,

SFPvec =

∫
d2x
√
g Tr

[
Dµc̄Dµc+

1

2
f ∧ ∗f

]
, (3.31)

with the gauge fixing functional

f = ∗D ∗ a . (3.32)

Here a and ϕ are the small fluctuation part of the gauge field and of the scalar field σ2,

respectively,

A = Aflat + a , σ2 = σ + ϕ . (3.33)
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Even Holonomy. When the holonomy is trivial, we impose the ordinary type B projec-

tion condition

A(π − θ, π + ϕ) = +A(θ, ϕ) ,

σ1(π − θ, π + ϕ) =− σ1(θ, ϕ) ,

σ2(π − θ, π + ϕ) = + σ2(θ, ϕ) ,

λ±(π − θ, π + ϕ) = + iλ∓(θ, ϕ) ,

λ̄±(π − θ, π + ϕ) =− iλ̄∓(θ, ϕ) ,

D(π − θ, π + ϕ) = +D(θ, ϕ) . (3.34)

First, decompose all the fluctuation fields into Cartan-Weyl basis, and then consider the

off-diagonal modes carrying the charge α, a root of G. In terms of the one-form and the

scalar spherical harmonics Cλjm,3 Yjm, one can expand the bosonic fluctuations aα, ϕα, and

σα1 as

a =
∑
j=2k
k≥1

j∑
m=−j

a1
jmC

1
jm +

∑
j=2k+1
k≥0

j∑
m=−j

a2
jmC

2
jm ,

σ1 =
∑

j=2k+1
k≥0

j∑
m=−j

σ1
jmYjm ,

ϕ =
∑
j=2k
k≥0

j∑
m=−j

ϕjmYjm , (3.35)

under the projection condition (3.34). From now on, the superscript α is suppressed un-

less it causes any confusion. The Laplacian operator O(1)
b acting on (a2

jm, σ
1
jm) can be

summarized into

O(1)
b

.
=

(
j(j + 1) + (σ · α)2

√
j(j + 1)√

j(j + 1) j(j + 1) + (σ · α)2 + 1

)
, (3.36)

with j = 2k + 1 (k ≥ 0). The determinant of this operator is therefore,√
detO(1)

b =
∏
k≥0

[
(2k + 1)(2k + 2)

](4k+3)rG

×
∏
α∈∆+

∏
k≥0

[ (
(2k + 1)2 + (α · σ)2

) (
(2k + 2)2 + (α · σ)2

) ]4k+3
, (3.37)

where rG is rank of the gauge group. The operator O(2)
b acting on the modes (a1

jm, ϕjm)

with j = 2k (k ≥ 1) can be read from (3.31),

O(2)
b

.
=

(
j(j + 1) + (σ · α)2 i

√
j(j + 1)(σ · α)

−i
√
j(j + 1)(σ · α) j(j + 1)

)
. (3.38)

3Useful properties of Cλjm are summarized in appendix A.
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When j = 0, the operator has a vanishing eigenvalue that corresponds to the shift of the

saddle point σ2 = σ. The determinant of this operator is therefore√
det ′O(2)

b =
∏
k=1

[
2k(2k + 1)

](4k+1)dG
, (3.39)

where dG is dimension of the gauge group G, and the prime in det ′ denotes the fact that

the zero mode of σ2 is removed. For the ghosts, we require the same projection condition

as ϕ, ϕ̄, and find

detOFP =
∏
k=1

[
2k(2k + 1)

]dG(4j+1)
, (3.40)

which cancels with O(2)
b determinant exactly. For fermions, the structure of determinants

are essentially the same as that of the adjoint chiral multiplet with the twisted projection

condition. Therefore, gaugino with root α contributes

detOλ =
∏
k≥0

[
(2k + 1)(2k + 2)

]rG(4k+2)

×
∏
α∈∆+

∏
k≥0

[ (
(2k + 1)2 + (α · σ)2

) (
(2k + 2)2 + (α · σ)2

) ]4k+2
. (3.41)

Let us combine all these contributions from vector multiplets together. The Cartan

part of the vector multiplets contributes,

∏
j=0

(
2j + 2

2j + 3

)rG
=

[
Γ
(

3
2

)
Γ(1)

· e−
1
2

log(rΛ/2)

]rG
=
(π

2

) rG
2
e−

rG
2

log(rΛ) . (3.42)

while the “off-diagonal part” regularize to∏
α∈∆+

∏
k=0

(2k)2 + (α · σ)2

(2k + 1)2 + (α · σ)2
· 1

(α · σ)2

= e−
1
2

(dG−rG) log(rΛ/2)
∏
α∈∆+

Γ
(

1
2 + iα·σ

2

)
Γ
(

1
2 −

iα·σ
2

)
4 · Γ

(
1 + iα·σ

2

)
Γ
(
1− iα·σ

2

)
= e−

1
2

(dG−rG) log(rΛ/2)
∏
α∈∆+

2π sin
[
πα·σ

2

]
sinπα · σ

·
sin
[
πα·σ

2

]
2πα · σ

= e−
1
2

(dG−rG) log(rΛ)
∏
α∈∆+

1

α · σ
· tan

(πα · σ
2

)
. (3.43)

As the zero mode part contributes

1

|WG|

∫
drGσ

∏
α·σ>0

(α · σ)2 , (3.44)

with the Vandermonde determinant and the Weyl factor, we obtain the even holonomy part

of the partition function, where the vector multiplet contributions in the even holonomy
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sector can be displayed explicitly as

Zeven =
1

|WG|

∫
drGσ

(π
2

) rG
2 · e−

dG
2

log(rΛ) (3.45)

×
∏
α∈∆+

α · σ tan
(πα · σ

2

)
× · · · , (3.46)

where the ellipsis reminds us that for the GLSM partition function, we need to insert,

multiplicatively, the 1-loop contributions from the chiral multiplets in the integrand.

Odd Holonomy. At the odd holonomy fixed point, the boundary condition for the

vector multiplet fluctuation must be twisted by eiα·h = ±1, where, as before, eih·H is the

Z2 holonomy with the Cartan generators H. Thus, we only need to modify, in eq. (3.45), as

tan
(πα · σ

2

)
→ cot

(πα · σ
2

)
, (3.47)

for each and every root with eiα·h = −1. So, splitting the positive root space ∆+ into the

even part ∆e
+ and the odd part ∆e

+, relative to the holonomy eih·H , we find that the odd

holonomy sector contributes additively to the partition function

Zodd =
η

|WG|

∫
drGσ

(π
2

) rG
2 · e−

dG
2

log(rΛ) (3.48)

×
∏

αe∈∆e
+

αe · σ tan
(παe · σ

2

) ∏
αo∈∆o

+

αo · σ cot
(παo · σ

2

)
× · · · ,

where, again, the ellipsis in the integrand denotes multiplicative contributions from the

chiral multiplet 1-loop determinants.

The numerical factor η = ±1 represents our ignorance regarding fermion determinants.

As with any determinant computation involving fermions, the signs of various 1-loop factors

are difficult to fix. Among such, η which is the relative sign between the two additive

contributions, from the even holonomy and the odd holonomy sectors, is an important

physical quantity but is not accessible from the Coulomb-phase GLSM computation. For

this reason, and also as a consistency check, we make a short excursion to the mirror

LG computation for the Abelian GLSM, in next section, which will teach about how this

relative sign may be fixed.

4 Landau-Ginzburg model and mirror symmetry

Before we consider examples and the large volume limit, let us make a brief look at the

mirror pair of the Abelian GLSM. In particular, we consider U(1) theory with chiral mul-

tiplets Φa with gauge charges Qa. As shown by Hori and Vafa [15], the mirror theory is a

Landau-Ginzburg (LG) type with twisted chiral multiplet Ya’s and the twisted superpoten-

tial W (Ya), generated by the vortex instantons. On RP2, the supersymmetric Lagrangian

of a LG model with twisted chiral multiplets takes the following form

L = Ltwisted + LW , (4.1)
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with

Ltwisted = DµȲ DµY + iχ̄γmDmχ+ ḠG , (4.2)

and the twisted superpotential terms,

LW = +
[
− iW ′(Y )G−W ′′(Y )χ̄γ−χ+

i

r
W (Y )

]
+
[
− iW̄ ′(Ȳ )Ḡ+ W̄ ′′(Ȳ )χ̄γ+χ+

i

r
W̄ (Ȳ )

]
, (4.3)

where γ± = 1+γ3

2 . One can show that the above Lagrangian is invariant under the super-

symmetric variation rules given by

δY = + iε̄γ−χ− iεγ+χ̄ ,

δY =− iε̄γ+χ+ iεγ−χ̄ ,

δχ = + γµγ+εDµY − γµγ−εDµY − γ+εḠ− γ−εG ,
δχ̄ = + γµγ+ε̄DµY − γµγ−ε̄DµY + γ+ε̄G+ γ−ε̄Ḡ ,

δG =− iε̄γµγ−Dµχ+ iεγµγ+Dµχ̄ ,

δḠ =− iε̄γµγ+Dµχ+ iεγµγ−Dµχ̄ , (4.4)

where ε and ε̄ are the Killing spinors (2.14). The kinetic terms are again Q-exact [3, 16],

Ltwisted = δεδε̄

[ i
r
Ȳ Y − iḠY − iȲ G

]
. (4.5)

Type B-parity action on the twisted chiral fields resembles the type A-parity on the

chiral fields, naturally, which we first outline. One important fact, perhaps not too obvious

immediately, is that the parity action which flips Y to Ȳ should be accompanied by a

half-shift of the imaginary part, in order to preserve the action. Due to this, the fixed

submanifolds are spanned by

Y = x+ in
π

2
, (4.6)

with n = ±1.

On this mirror side, the role of θ angle becomes more visible. From the equation of

motion for the vector multiplet, we learn allowed values of n’s have to be such that

1

2

∑
a

Qan
a =

θ

π
mod Z2 , (4.7)

which restricts the sum over na = ±1 into two disjoint sets, depending on the value of θ.

Recall that the GLSM localization procedure was unable to see the distinction between

these two values. Instead, one finds ambiguity in the sign of the determiants, especially,

relative sign between different holonomy sectors. The two such sectors are topologically

distinct, so one can introduce this relative sign as a parameter of the theory, which we

called η in (3.48), which will be presently related to θ.
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4.1 Parity on the mirror

Under the type B-parity (2.16), one can show that the projection conditions are

Y (π − θ, π + ϕ) = Ȳ (θ, ϕ) + constant , (4.8)

and

χ±(π − θ, π + ϕ) = + iχ∓(θ, ϕ) ,

χ̄±(π − θ, π + ϕ) =− iχ̄∓(θ, ϕ) ,

G(π − θ, π + ϕ) = + Ḡ(θ, ϕ) (4.9)

are consistent to the SUSY variation rules, for free theories. In order to fix the constant

term in (4.8), we need to consider interactions such as twisted superpotential terms.

First, recall that the gauge multiplet can be written as a twisted chiral Σ, where

Y = σ2 + iσ1 , G = D + i
(
F12 +

σ1

r

)
,

χ = λ , χ̄ = λ̄ . (4.10)

As discussed above, we impose the projection conditions

σ1(π − θ, π + ϕ) =− σ1(θ, ϕ) ,

σ2(π − θ, π + ϕ) = + σ2(θ, ϕ) , (4.11)

in order to introduce a minimal coupling of a charged chiral multiplet. It implies that

Σ(π − θ, π + ϕ) = Σ̄(θ, ϕ) . (4.12)

Note also that Σ enters the tree-level twisted superpotential linearly as

W = − i
2
τΣ , (4.13)

with τ = iξ + θ
2π , which leads to the FI coupling and 2d topological term

LW + LW̄ = −iξ
(
D − σ2

r

)
− i θ

2π
F12 . (4.14)

Note that the complexified FI parameter is periodic τ ' τ + n (n ∈ Z). In order to make

the interaction invariant under the type B Orientifold action, the parameter τ has to satisfy

the following condition,

τ + τ̄ = n , n ∈ Z . (4.15)

In other words, the allowed value for the two-dimensional theta angle is either

θ = 0 or π . (4.16)

Second, let us consider a simple example mirror to the U(1) GLSM with n chiral

multiplets of gauge charge Qa where a runs from 1 to n. The chiral multiplets also carry
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U(1)V R-charges qa so that the superpotential W carries the R-charge two. The mirror

Landau-Ginzburg model involves n neutral twisted chiral multiplets Y a with period 2πi.

The dual description also comes with the following twisted superpotential

W = − 1

4π

[
Σ

(
n∑
a=1

QaY
a + 2πiτ

)
+
i

r

n∑
a=1

e−Y
a

]
. (4.17)

At low-energy, the field-strength multiplet Σ is effectively a Lagrange multiplier, leading

to the constraint:

n∑
a=1

QaY
a = −2πiτ . (4.18)

To make these Toda-like interaction terms invariant under the type B-parity, one has to

fix the constant piece in (4.8) by iπ. That is,

Y (π − θ, π + ϕ) = Ȳ (θ, ϕ) + iπ . (4.19)

4.2 Partition function on RP2

Choosing the kinetic terms Ltwisted as Q-exact deformation terms, one can show that the

path-integral localizes onto

Y = x+ iy , (4.20)

where x and y are real constants [3]. To obey the projection conditions (4.12) and (4.19),

the supersymmetric saddle points are

σ2 = σ , σ1 = 0 , F12 = 0 , (4.21)

and

Y a = xa +
iπ

2
na , (4.22)

where xa and σ are real constants over RP2. Here na = ±1 obeying the constraint, for

θ = 0,

1

2

∑
a

Qan
a = 2m, m ∈ Z , (4.23)

and for θ = π,

1

2

∑
a

Qan
a = 2m+ 1 , m ∈ Z , (4.24)

obeying the constraint ∑
a

QaY
a = −2πiτ . (4.25)
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RP2 Partition Function. It is easy to show that one-loop determinants around the

above supersymmetric saddle points are trivial in a sense that they are independent of σ

and xa. One can show that the partition function of the mirror LG model with the twisted

superpotential (4.17) on RP2 reduces to an ordinary contour integral,4

ZLG '
∫ ∞
−∞
dσ
∏
a

[∫ ∞
−∞

dxae−
qa
2
xa
] ∑
na=±1

1

2

(
1± eiπQana/2

)
· eirσ(Qaxa−2πξ) · eie−x

a
sin(πna/2)

=

∫ ∞
−∞

dσe−2iπrσξ

{∏
a

cos
[π

2

(qa
2
− irQaσ

) ]
Γ
[qa

2
− irQaσ

]
±
∏
b

cos
[π

2

(qb
2
− irQbσ

)
− π

2
Qb

]
Γ
[qb

2
− irQbσ

]}
, (4.26)

where “'” symbol in the first line reflects our ignorance of the overall numerical normal-

ization of the integration measure. Here the factors e−
qa
2
xa reflect the important fact that

the proper variables describing the mirror LG model are Xa = e−
qa
2
Y a rather than Y a [3].

Below, we compare to the GLSM side up to this normalization issue. The signs ± are for

θ = 0 and θ = π respectively.

The parity projection that leads to eq. (4.26) assumes no specific flavor symmetry in

the original GLSM, and thus must be the mirror of the spacetime-filling case of section

3.2. In the trivial holonomy sector, we start with the last line of eq. (3.19) and use the

identities

Γ

(
1

2
+ x

)
Γ(x) = 21−2x√πΓ(2x) , Γ

(
1− x

)
Γ
(
x
)

=
π

sinπx
, (4.27)

to massage the one-loop determinant into

Ztrivial
1-loop = Γ

[q
2
− iQσ

]
cos
[π

2

(q
2
− iQσ

)]
×
√

2

π
e[

1−q
2

+iQσ] log(rΛ) . (4.28)

In the nontrivial holonomy, a chiral multiplet carrying the even charge Qa = Qe, the same

result holds,

Znontrivial
1-loop,Qe = Γ

[q
2
− iQeσ

]
cos
[π

2

(q
2
− iQeσ

)]
×
√

2

π
e[

1−q
2

+iQσ] log(rΛ) , (4.29)

while for the odd charge, Qa = Qo, the partition function becomes

Znontrivial
1-loop,Qo =

∏
k≥0

2k + 2− q
2 + iQoσ

2k + 1− q
2 + iQoσ

4We used for the last equality an integral formula∫ ∞
−∞

dx eipx cos
[
e−x + z

]
= cos

[
iπp

2
− z
]

Γ[−ip] , if − 1 < Re[ip] < 0 .
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=

Γ

(
1
2 + q

4 −
iQoσ

2

)
Γ

(
1− q

4 + iQoσ
2

) × e[ 1−q2 +iQoσ] log(rΛ/2)

= Γ
[q

2
− iQoσ

]
sin
[π

2

(q
2
− iQoσ

)]
×
√

2

π
e[

1−q
2

+iQσ] log(rΛ) . (4.30)

Thus one can conclude that the first term in the final expression (4.26) of the LG partition

function corresponds to the partition function of GLSM with the even holonomy, while the

second term corresponds to the partition function with the odd holonomy.

After interpreting the exponentiated log piece as the renormalization of ξ, we learn

two additional facts. First, the common overall normalization
√

2/π should be incor-

porated into the measure on the mirror LG side. Second, an additional relative sign

η ≡ ±
∏
a(−1)[Qa/2] (for θ = 0, π, respectively) should sit between the trivial and the non-

trivial holonomy contributions in the GLSM side, and tells us how the discrete θ angles

must be understood from the localization computation: it dictates how the contributions

from topologically distinct holonomy sectors should be summed. When the Orientifold

projection produces more than one Orientifold planes, which we will see in examples of

next section, this sign η also distinguishes relative O± type of these Orientifold planes.5

5 Orientifolds in Calabi-Yau hypersurface

In this section, we consider the Orientifolds for a prototype Calabi-Yau manifold X , i.e., a

degree N hypersurface of CPN−1. At the level of GLSM, the chiral field contents are

U(1)G U(1)V
Xi=1,···N 1 q

P −N 2−Nq
(5.1)

where we displayed the gauge and the vector R-charges. As usual, the superpotential takes

the form P ·GN (X) with degree N homogeneous polynomial GN . For simplicity, we will call

ε = q/2−irσ below, and assume N odd. For N = even, the P multiplet contributions from

even and odd holonomy are exchanged. The number q is in principle arbitrary as it can be

shifted by mixing U(1)G and U(1)V , but we restrict it to be in the range 0 < q < 2/N [3].

The main goal of this section is to extract the large volume expressions for the central

charges of Orientifold planes. Traditionally, the latter were expressed in terms of the
√
L

class, but just as with D-brane central charge, we will see that Γ̂c class enters and corrects

the expression. Γ̂c is a multiplicative class associated with the function [7, 10–13]

Γ
(

1 +
x

2πi

)
, (5.2)

so that, for any holomorphic bundle F , an important identity

Γ̂c(F)Γ̂c(−F) = A(F) (5.3)

5Recall that Õ± type Orientifolds involve turning on discrete RR-flux [17], and thus are not accessible

from GLSM. See also ref. [18] for relationship between θ angle and Orientifold plane type for various

dimensions.

– 21 –



J
H
E
P
0
2
(
2
0
1
4
)
1
0
3

holds. In terms of the Chern characters, it can be expanded as

Γ̂c(F) = exp

 iγ
2π
ch1(F) +

∑
k≥2

(
i

2π

)k
(k − 1)!ζ(k)chk(F)

 , (5.4)

where γ = 0.577 . . . is the Euler-Mascheroni constant, and ζ(k) is the Riemann zeta func-

tion.

The results from this hypersurface examples suggest that, for a general Orientifold

plane that wraps a cycle M in the Calabi-Yau X , with the tangent bundle TM and the

normal bundle NM with respect to X , we must correct the characteristic class that appear

in the central charge as√
L(TM/4)√
L(NM/4)

→ A(TM/2)

Γ̂c(−TM)
∧ Γ̂c(NM)

A(NM/2)
. (5.5)

We devote the rest of this section to derivation of this, by isolating the perturbative con-

tributions for Orientifolds wrapping (partially) Calabi-Yau hypersurfaces in CPN−1.

5.1 Spacetime-filling orientifolds

First, let us consider the case where the Orientifold plane wraps X entirely, i.e., no flavor

symmetry action is mixed with the B-parity projection. With the classical contribution

Zclassical = e−i2πrξσ = e−2πξ(q/2−ε), (5.6)

we find

ZRP2 =

∫ q/2+i∞

q/2−i∞

dε

2πi

(
β1 · e2πξε

[
Γ
(
ε
2

)
Γ
(
− ε

2

)
Γ(−ε)

]N
·

[
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)
Γ(−1 +Nε)

]

+η · β2 · e2πξε

[
Γ(ε)/ε

Γ
(
ε
2

)
Γ
(
− ε

2

)]N · [Γ(1−Nε)/(1−Nε)
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)]) , (5.7)

where the constants β1,2 are

β1 = e−πξq · (2π)−N/2+1 · 2−(N+2) · e
c
6
·log(rΛ) ,

β2 = e−πξq · (2π)N/2+2 · 2N · e
c
6

log(rΛ) , (5.8)

with η = ±
∏
a(−1)[Qa/2] (for θ = 0, π, respectively). Strictly speaking, there is also an

overall sign ambiguity, which together with η affect O± type of Orientifolds that reside in

the each holonomy sector. Recall that the two lines are, respectively, contributions from the

even and the odd holonomy sector. Another common factor in β1,2, e
c
6

log(rΛ), renormalizes

the partition function. Because X is Calabi-Yau, ξ is not renormalized but the partition

function itself is multiplicatively renormalized with the exponent c/6 = (N − 2)/2 for this

model.

The first factor in β1,2, i.e., e−πξq, with an explicit dependence on the R-charge assign-

ment, looks a little strange as q is not uniquely defined. Note that q → q + δ is a shift of
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R-charges by the gauge charges. Something similar happens for hemisphere and also for

S2, where, for the latter, the partition function having been identified with e−K , the shift

is understood to be a Kähler transformation. On the other hand, S2 partition function

can be built from a pair of hemisphere partition functions and a cylinder, so it is to be

expected that the hemisphere partition function should be a section rather than a function.

Along the same line of thinking, then, the crosscap amplitudes should be no different from

boundary state amplitudes.6 With this in mind, we choose to set q → 0+ from this point

on as the canonical choice, following ref. [7]. Note that the integral converges only when q

is positive real [3].

When ξ > 0, the GLSM flows to the geometric phase in IR and we should close the

contour to the left infinity. For the even holonomy sector, the relevant poles are those

of Γ(ε/2) at ε = −2k (k = 0, 1, 2, · · · ). For the odd holonomy sector, the relevant poles

are those of Γ(ε)/Γ(ε/2) at ε = −(2k + 1) (k = 0, 1, 2, · · · ). Poles of other factors either

cancel out among themselves or are located outside of the contour. Of these, poles at ε < 0

capture the world-sheet instanton contributions, which are suppressed exponentially in the

large volume limit ξ � 1.

The perturbative part of the partition function, appropriate for the large volume limit,

comes entirely from the pole at ε = 0. With (5.7), therefore, only the even holonomy sector

contributes, giving us

Zpert.

RP2 = β1

∮
ε=0

dε

2πi
e2πξε

[
Γ
(
ε
2

)
Γ
(
− ε

2

)
Γ(−ε)

]N
·

[
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)
Γ(−1 +Nε)

]
. (5.9)

We first invoke the identity

Γ

(
1

2
+ x

)
Γ(x) = 21−2x√π Γ(2x) . (5.10)

to rewrite this as

Zpert.

RP2 = 8πβ1

∮
ε=0

dε

2πi
e2πξε

[
Γ
(
ε
2

)
Γ
(
− ε

2

)
Γ(−ε)

]N/[
Γ
(
Nε
2

)
Γ
(
−Nε

2

)
Γ(−Nε)

]
(5.11)

= 8πβ1 · 22(N−1)

∮
ε=0

dε

2πi
e2πξε N

εN−1

×

[
Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)
Γ(1− ε)

]N/[
Γ
(
1 + Nε

2

)
Γ
(
1− Nε

2

)
Γ(1−Nε)

]
.

This can be further rewritten as an integral over X , with H the hyperplane class of CPN−1,

Zpert.

RP2 = C0

∫
X
e−iξH

[
Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)
Γ(1− H

2πi)

]N/[
Γ
(
1 + NH

4πi

)
Γ
(
1− NH

4πi

)
Γ(1− NH

2πi )

]
, (5.12)

with C0 = iN−2(2π)N/22N−2(Λr)c/6. We used
∫
X H

N−2 = N
∫
CPN−1 HN−1 = N .

6We are indebted to Kentaro Hori for explaining this point to us.
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Since X is a Calabi-Yau hypersurface embedded in CPN−1, we may also write

Γ̂c(T X ) =
Γ̂c(T CPN−1)

Γ̂c(NX )
, (5.13)

so that

Zpert.

RP2 = C0

∫
X
e−iJ

Γ̂c
(T X

2

)
Γ̂c
(
−T X2

)
Γ̂c(−T X )

= C0

∫
X
e−iJ

A
(T X

2

)
Γ̂c(−T X )

, (5.14)

where A is the Â class. This shows that in the large volume limit, the conventional overlap

amplitude between RR-ground state and a crosscap state (see e.g., [14]) are corrected by

replacing √
L(T X/4) → A (T X/2)

Γ̂c(−T X )
. (5.15)

In section 6, we will come back to this expression and explore the consequences.

5.2 Orientifolds with a normal bundle

Lower dimensional Orientifold planes, from B-parity projection, may wrap a holomorphi-

cally embedded surface M in the ambient Calabi-Yau X , if X admits Z2 discrete symme-

tries. At the level of GLSM, this is achieved by combining the parity projection with such

a flavor symmetry, as we considered in section 3.3.

For example, the simplest such Calabi-Yau has a superpotential P ·GN = P ·
∑N

a=1X
N
i

which is invariant under exchange of X’s among themselves. Exchanging a pair of chiral

fields X1 ↔ X2 gives rise to a fixed locus defined by X1 +X2 = 0, a complex co-dimension

one hypersurface as well as a complex co-dimension (N − 2) subspace, i.e., a point at

X3 = · · · = XN = 0. We can do the similar analysis for the symmetry exchanging

X1 ↔ X2 and X3 ↔ X4 simultaneously. This action gives complex co-dimension 2 fixed

locus defined as (X1, · · ·XN ) = (X,X, Y, Y,X5, · · · , XN ), and co-dimension (N − 3) fixed

locus, (X1, · · ·XN ) = (X,−X,Y,−Y, 0, · · · , 0). For the quintic, both of these correspond

to O5 planes. These results are summarized in the following table [14].

(X1, X2, X3, X4, X5)→ (X1, X2, X3, X4, X5) O9 (spacetime filling)

(X1, X2, X3, X4, X5)→ (X2, X1, X3, X4, X5)
O7 at (X,X,X3, X4, X5)

O3 at (X,−X, 0, 0, 0)

(X1, X2, X3, X4, X5)→ (X2, X1, X4, X3, X5)
O5 at (X,X, Y, Y,X5)

O5 at (X,−X,Y,−Y, 0)

(5.16)

As this shows, we generically end up with more than one Orientifold planes, given a

parity projection. The central charges must be all present in the RP2 partition function,

so the latter must be in general composed of more than one additive terms. What allows

this is the holonomy sectors we encountered in section 3. For a GLSM gauge group U(n),

for example, one has n + 1 such distinct holonomy sectors, and can accommodate several
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Orientifold planes. For the current example of U(1) GLSM, we have exactly two such

holonomy sectors, and thus up to two Orientifolds planes.7

In the end, our examples below, combined with the spacetime-filling case above, will

suggest a universal formula for the large volume central charge

Zpert.
RP2

= C−s

∫
X
e−iJ

A(TM/2)

Γ̂c(−TM)
∧ Γ̂c(NM)

A(NM/2)
∧ e(NM)

= C−s

∫
M
e−iJ ∧ A(TM/2)

Γ̂c(−TM)
∧ Γ̂c(NM)

A(NM/2)
, (5.17)

for an Orientifold plane M of real co-dimension 2s in a Calabi-Yau d-fold X, with C−s =

id−s2d−2s (2π)(d+2)/2 (rΛ)c/6.

5.2.1 Orientifold planes of complex co-dimensions 1 & N − 2

Let us consider the projection involving X1 ↔ X2. As the table above shows, this produces

two different fixed planes; an hyperplane with X1 = X2 and an isolated point at X3 =

· · · = XN = 0. Thus, we expect to recover additive contributions from these two planes,

for which existence of the two holonomy sectors is crucial.

As we are considering the ambient Calabi-Yau X as a hypersurface embedded in

CPN−1, the results of section 3.3 reads

(2π)−N/2+2 2−N (rΛ)c/6 resε=0
Γ(ε)

Γ (1− ε)
·

[
Γ
(
ε
2

)
Γ
(
− ε

2

)
Γ(−ε)

]N−2

·

[
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)
Γ(−1 +Nε)

]
,

(5.18)

from the even holonomy sector,

(2π)N/2+1 2N−2 (rΛ)c/6 resε=0
Γ(ε)

Γ (1− ε)
·

[
Γ(ε)/ε

Γ
(
ε
2

)
Γ
(
− ε

2

)]N−2

·

[
Γ(1−Nε)/(1−Nε)
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)] ,
(5.19)

from the odd holonomy sector. Note that, for this case, both sectors contribute to the

residue at ε = 0.

First, let us consider the even holonomy sector contribution. With (5.10), we may

write (5.18) as

−(2π)−N/2+3 2−N+2 (rΛ)c/6 resε=0
1

ε
· Γ(ε)

Γ
(
ε
2

)
Γ
(
− ε

2

)
×

[
Γ
(
ε
2

)
Γ
(
− ε

2

)
Γ(−ε)

]N−1
Γ(−Nε)

Γ
(
Nε
2

)
Γ
(
−Nε

2

) (5.20)

7For the spacetime-filling case of section 5.1, only even sector contributed to the large-volume limit, and

there was only one type of Orientifold plane. However, the odd holonomy piece is still important in the

following sense: thanks to the U(1) gauge symmetry of GLSM, one can alternatively project with X → −X
and P → (−1)NP without changing the theory. However, this flips the even and the odd holonomy sector

precisely, which implies that the large-volume central charge of the spacetime-filling Orientifold planes

resides in the odd holonomy sector instead.
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= (2π)−N/2+3 2N−4 (rΛ)c/6 resε=0
N

εN−2
· Γ(1 + ε)

Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)
×

[
Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)
Γ(1− ε)

]N−1
Γ(1−Nε)

Γ
(
1 + Nε

2

)
Γ
(
1− Nε

2

) . (5.21)

Expressing the residue integral at ε = 0 via an integral over CX with the hyperplane class

H, we find

Zpert., even
RP2

= C−1

∫
X
e−iξH ∧H ∧

[
Γ(1 + H

2πi)

Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)] (5.22)

∧

[
Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)
Γ(1− H

2πi)

]N−1/[
Γ
(
1 + NH

4πi

)
Γ
(
1− NH

4πi

)
Γ(1− NH

2πi )

]
,

with C−1 = iN−3(2π)N/22N−4(rΛ)c/6. Note that, again in terms of the A and Γ̂c classes,

this formula can be organized as

Zpert., even
RP2

= C−1

∫
M−1

e−iJ ∧ A(TM−1/2)

Γ̂c(−TM−1)
∧ Γ̂c(NM−1)

A(NM−1/2)
, (5.23)

whereM−1 denotes for a complex co-dimension 1 fixed locus, parameterized by(X1, · · ·XN )

= (X,X,X3, · · ·XN ).

Contribution from the odd holonomy sector can be similarly written as

(−1)N−12−N+2 (2π)N/2 (rΛ)c/6 resε=0
1

ε
·

Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)
Γ(1− ε)

(5.24)

×

[
Γ(1 + ε)

Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)]N−1

·
Γ
(
1 + Nε

2

)
Γ
(
1− Nε

2

)
Γ (1 +Nε)

,

which is equivalent to

Zpert., odd
RP2

= C−(N−2)

∫
X
e−iJ ∧ H

N−2

N
∧

Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)
Γ(1− H

2πi)
(5.25)

∧

[
Γ(1 + H

2πi)

Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)]N−1/[
Γ
(
1 + NH

2πi

)
Γ
(
1 + NH

4πi

)
Γ
(
1− NH

4πi

)] ,
where C−(N−2) = (−1)N−12−N+2 (2π)N/2 (rΛ)c/6. Again we may rewrite this as an integral

Zpert., odd
RP2

= C−(N−2)

∫
M−(N−2)

e−iJ
A(TM−(N−2)/2)

Γ̂c(−TM−(N−2))
∧

Γ̂c(NM−(N−2))

A(NM−(N−2)/2)
, (5.26)

over MN−2 which, in this case, is actually evaluation at the fixed point at (X1, · · ·XN ) =

(X,−X, 0, · · · , 0).
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5.2.2 Orientifold planes of complex co-dimensions 2 & N − 3

Next, we consider the B-parity action that exchanges X1 ↔ X2 and X3 ↔ X4 simultane-

ously. Similarly, from the even holonomy sector, we have

(2π)−N/2+3 2−N+2(rΛ)c/6resε=0

[
Γ(ε)

Γ (1− ε)

]2
[

Γ
(
ε
2

)
Γ
(
− ε

2

)
Γ(−ε)

]N−4 [
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)
Γ(−1 +Nε)

]
,

(5.27)

and from the odd holonomy sector,

(2π)N/2 2N−4 (rΛ)c/6 resε=0

[
Γ(ε)

Γ (1− ε)

]2
[

Γ(ε)/ε

Γ
(
ε
2

)
Γ
(
− ε

2

)]N−4 [
Γ(1−Nε)/(1−Nε)
Γ
(

1−Nε
2

)
Γ
(
−1−Nε

2

)] .

(5.28)

Again, both holonomy sectors contribute for the residue at ε = 0.

For the even holonomy sector, a similar procedure gives

Zpert., even
RP2

= C−2

∫
X
e−iξH ∧H2 ∧

[
Γ(1 + H

2πi)

Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)]2

(5.29)

∧

[
Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)
Γ(1− H

2πi)

]N−2/[
Γ
(
1 + NH

4πi

)
Γ
(
1− NH

4πi

)
Γ(1− NH

2πi )

]
.

where C−2 = iN−4(2π)N/22N−6(rΛ)c/6. In terms of the characteristic classes, we rewrite

this

Zpert., even
RP2

= C−2

∫
M−2

e−iJ ∧ A(TM−2/2)

Γ̂c(−TM−2)
∧ Γ̂c(NM−2)

A(NM−2/2)
, (5.30)

with M−2 is complex co-dimension 2 fixed locus, (X1, · · ·XN ) = (X,X, Y, Y,X5, · · ·XN ).

Finally, from the odd holonomy sector, we have

Zpert., odd
RP2

= C−(N−3)

∫
X
e−iξH ∧ H

N−3

N
∧

[
Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)
Γ(1− H

2πi)

]2

∧

[
Γ(1 + H

2πi)

Γ
(
1 + H

4πi

)
Γ
(
1− H

4πi

)]N−2/[
Γ
(
1 + NH

2πi

)
Γ
(
1 + NH

4πi

)
Γ
(
1− NH

4πi

)] , (5.31)

where C−(N−3) = i(−1)N−1(2π)N/2 2−N+4. This again can be summarized as

Zpert., odd
RP2

= C−(N−3)

∫
M−(N−3)

e−iJ ∧
A(TM−(N−3)/2)

Γ̂c(−TM−(N−3))
∧

Γ̂c(NM−(N−3))

A(NM−(N−3)/2)
, (5.32)

where M−(N−3) is a co-dimension N − 3 locus spanned by (X,−X,Y,−Y, 0, · · · , 0).

6 Consistency checks and subtleties

In this last section, we explore the disk amplitudes R〈0|B〉R and the crosscap amplitudes

R〈0|C〉R further. The most immediate question is whether these two types of amplitudes,
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or equivalently the central charges, come out with the correct relative normalization, for

which we kept the overall coefficients carefully in the above. We will then ask subtler

questions of what should happen when M is not Spin but only Spinc, for which we can

only offer a guess for the final expression but not a derivation.

We then move on to the anomaly inflow and also how we should extract, from the

computed central charge, the RR-tensor Chern-Simons coupling. Having both R〈0|B〉R and

R〈0|C〉R explicitly is most telling in this regard, whereby we discover that the difference

between the conventional central charges and the newly computed ones is universal; the

extra multiplicative factor due to Γ̂c class is common for both D-branes and Orientifold

planes and the same again makes appearance in S2 partition function as well. This strongly

suggests that the change should be attributed to the quantum volume of the cycles in X ,

rather than to the characteristic class that appears in the world-volume Chern-Simons

coupling to the spacetime RR tensor fields.

6.1 Tadpole

The simplest consistency check comes from the tadpole cancelation condition of the RR

ground states, which can be written as [19, 20]

R〈0|C〉R + R〈0|B〉R = 0 , (6.1)

and demand the boundary state be constrained to satisfy this equality. From the spacetime

viewpoint, this is the Gauss constraint for the RR-tensor fields, integrated over the compact

Calabi-Yau manifold. Recall that the RR-charge of a single Dp-brane and that of an Op±

Orientifold plane must have a relative weight of

± 2p−4 (6.2)

in the covering space. Obviously, the same numerical factor must appear in the central

charges.

For this numerical factor, we start with Hori and Romo [7], and consider tachyon

condensation to obtain the disk partition function for a D-brane wrapping M in X

ZD2 = (rΛ)c/6 (2π)(d+2)/2

∫
M
e−B−iJ ∧ ch(E) ∧ Γ̂c(T )

Γ̂c(−N )
∧ e−c1(N )/2 , (6.3)

where d is the complex dimension of the Calabi-Yau X . See appendix C for details of this

procedure. On the other hand, the result of section 5 can be written as

ZRP2 = 2d−2s(rΛ)c/6(2π)(d+2)/2

∫
M
e−iJ ∧ A(T /2)

Γ̂c(−T )
∧ Γ̂c(N )

A(N/2)
, (6.4)

where the complex co-dimension of M is denoted by s. The last factor in (6.3) and its

apparent absence in (6.4) is the subject of the next subsection; for tadpole issue, it suffices

to know that the 0-form part of the two expressions differ by the numerical factor of

rank(E), prior to the projection, and also by 2d−2s. For the familiar Ramond-Ramond

tadpole cancelation condition to emerge correctly, therefore, 2d−2s must equal 2p−4. For

ten-dimensional spacetime, d = 10/2 = 5 and p = 9 − 2s, so d − 2s = p − 4, precisely as

needed.
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6.2 A subtlety with spinc structure

A well-known subtlety with D-branes occurs when they wrap a manifold M which is not

Spin. This causes a global anomaly in 2D boundary CFT, whereby the world-sheet fermion

determinant has an ill-defined sign. As pointed out by Freed and Witten [21] this ambiguity

is cancelable by additional phase factor, provided that M is Spinc,

exp

(
i

∫
∂Σ
Â

)
, (6.5)

with some world-volume Abelian “gauge field” Â. The latter is equally ill-defined, precisely

such that the sign flip due to the world-sheet global anomaly is canceled by the sign

ambiguity of the latter.

A related observation is that spacetime spinor is ill-defined on a Spinc manifold, which

is nevertheless correctable if we think of the spinor as a section of L̂1/2 ⊗ S(TM), where

Â is the “connection” on the ill-defined bundle L̂1/2. This implies that the Dirac index on

M is equally ill-defined unless we twist the Dirac operator by L̂1/2 and once this is done

we have an index theorem, ∫
M
eF̂ /2π ∧ A(TM) ∧ · · · (6.6)

with F̂ = dÂ, where the ellipsis denotes contributions from the well-defined part of the

gauge bundle. A little experiment with this index formula8 suggests that a good de Rham

cohomology representative for F̂ /2π is c1(M)/2. One can understand this from the fact

that it is c1(M), or more precisely the 2nd Stiefel-Whitney class

w2(M) = c1(M) mod Z2

that determines whether the manifold is Spin. With w3(M) = 0, therefore, c1(M)/2

determines whether the manifold is Spin or Spinc.

ForM embedded in an Calabi-Yau ambient X so that c1(T ) + c1(N ) = 0, this implies

an additional factor

eF̂ /2π = e−c1(N )/2 (6.7)

in the central charge (and in the RR-charge) of the D-brane, whose presence was argued

by Minasian and Moore [23]: the correct central charge must have this extra factor,

ZD2 ∼
∫
M
e−B−iJ ∧ ch(E) ∧ · · · ∧ e−c1(N )/2 . (6.8)

In view of its origin as the “half line bundle” L̂1/2, it makes more sense to think of it as

part of the “gauge bundle” E → E ⊗ L̂1/2.

When M is Spin, however, this is a mere redefinition of E since L̂1/2 is a proper

line bundle when F̂ /2π = c1(M)/2 is integral. The D-brane spectra is, as expected, not

affected by such factor when M is Spin. For this reason (and also because the Orientifold

8With the aim at obtaining integer values of the index for completely smooth an compact examples like

CP2k or other toric Spinc manifold. See also [22].
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cannot admit gauge bundles), the right thing to do is to keep this factor explicitly only

when M is Spinc. With this in mind, we will write, instead

ZD2 ∼
∫
M
e−B−iJ ∧ ch(E) ∧ · · · ∧ ed(M)/2 , (6.9)

where

d(M) =

{
0 M is Spin

c1(TM) = −c1(NM) M is Spinc

}
,

again by redefinition of the gauge bundle E .

For D-branes, appendix C outlines how one can compute the hemisphere partition

functions, starting with the result in [7, 9], via the tachyon condensation. In this approach,

one does find the factor e−c1(N )/2, where the key point lies with charge assignment for

the Hilbert space vacua [7, 9, 24] associated with the boundary degrees of freedom. With

“correct” choice of the charges, we find eq. (6.3). In view of the global anomaly, this result

is quite natural. Since the original Calabi-Yau manifold is always Spin and thus free of the

global anomaly, the lower dimensional D-brane induced from it must be equipped with the

necessary twist to countermand the potential anomaly on the induced D-brane, as it must

flow to a well-defined boundary CFT again.

However, if one imposes the Dirichlet boundary condition from the outset, to obtain

lower dimensional D-branes in the hemisphere partition function [7], the origin of such a

factor is at best subtle. The naive computation from imposing the Dirichlet boundary

condition, in contrast to the tachyon condensation above, does not seem to generate the

factor in question. Again, we refer the readers to appendix C for discussion on the matter.

The global anomaly and the resulting subtlety with Spinc manifold must also exist for

Orientifold planes. Distler, Freed, and Moore [25, 26] have stated that a similar global

anomaly is present but canceled by the sign ambiguity of the factor

exp

(
i

∫
Σ
B

)
, (6.10)

although, because one works with non-orientable manifolds, even the definition of this

expression requires more work. An important evidence that favors the same extra factor

on Orientifolds is the anomaly inflow onto D-branes and I-branes. See next subsection for

how such a coupling on D-brane world-volume basically demands the same factor to appear

on the Orientifold world-volume.

Its origin for the Orientifolds is however even less clear than the D-brane case. For one

thing, the tachyon condensation does not yield Orientifold planes. There must be subtleties

with B field coupling that should be responsible for this, which we are yet to understand

properly. In the next subsection, we will see how simultaneous restoration of this factor

on both D-branes and Orientifold planes is consistent with anomaly inflow need to cancel

world-volume anomaly. For large volume central charges with Calabi-Yau X , this involves

multiplying a factor ed(M)/2 on the right hand sides of eqs. (5.17), (5.23), (5.26), (5.30),

(5.32), and (6.4).

– 30 –



J
H
E
P
0
2
(
2
0
1
4
)
1
0
3

6.3 Anomaly inflow and indices

Let |a〉RR denote one of the crosscap or boundary states in the Ramond-Ramond sector.

Then one can naturally define the Witten index as

I(a, b) = lim
T→∞

RR〈a|e−TH |b〉RR , (6.11)

which calculates the indices of open strings attached between D-branes and Orientifold

planes. Following figures are three distinguished topologies which give rise to the indices

for brane-brane, brane-plane, and plane-plane respectively.

Due to the Riemann bilinear identity, these indices can be expressed in terms of the

partition functions as follows [14].

I(BE ,BF ) =
∑
ij

〈BE |i〉ηij〈j|BF 〉 , (6.12)

I(BE , C) =
∑
ij

〈BE |i〉ηij〈j|C〉 , (6.13)

I(C, C) =
∑
ij

〈C|i〉ηij〈j|C〉 , (6.14)

where all the states are in the Ramond-Ramond sector, and ηij is the topological metric

of the chiral ring elements. Since the overlap between the RR ground states and the

boundary/crosscap states measures the coupling to the RR gauge fields, this formula can

be thought of as inflow mechanism which cancels the one-loop anomaly from each open

string sector. Since the expression for these indices in the geometric limit are well-known in

the literature, we can check whether our results generate expected indices, and consistency

with the original inflow mechanism [23, 27, 28].

Following the discussion of the previous subsection, here we assume that an extra factor

ed(M)/2 is present not only on the world-volumes of D-branes but also on the world-volumes

of Orientifold planes. Otherwise, amplitudes involving boundary states only and amplitude

involving a boundary state and a crosscap cannot be summed up; this would lead to net

world-volume anomaly and make the spacetime theory inconsistent. Because we assume X
itself to be Spin, d(M)/2 is always expressed as a sum over −c1/2 of the normal bundles

of the world-volumes. As we have not demonstrated the GLSM origin of this factor for

Orientifolds, the readers may wish to regard the following with the assumption of d = 0,

that is, only for Spin M’s.

Cylinder. Index on the cylinder and relation to the disk partition function were studied

in [7] and [9].

We start with eq. (6.3) and use the relation (6.12) to calculate the open string index

stretched between two branes with (E1,M1) and (E2,M2) as

I(BE1 ,BE2)

∼
∫
M1∩M2

e−B−iJ ∧ ch(E1) ∧ Γ̂c(T1)

Γ̂c(−N1)
∧ ed(M1)/2

∧ eB+iJ ∧ ch(−E2) ∧ Γ̂c(−T2)

Γ̂c(N2)
∧ e−d(M2)/2 ∧ e(N12) (6.15)
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Figure 1. Two dimensional topologies where indices are defined. The first one denotes for a

cylinder with two boundaries at the ends, and the second one corresponds to the Möbius strip with

one boundary and one crosscap. The last one is the Klein bottle, with two crosscap states at the

ends.

=

∫
M1∩M2

ch(E1) ∧ ch(−E2) ∧ A(T (M1 ∩M2))

A(N (M1 ∩M2))
∧ e(d(M1)−d(M2))/2 ∧ e(N12) ,

where Ti and Ni denote for tangent and normal bundles of Mi and N12 ≡ N1 ∩N2. From

the first to the second line, we used

Γ̂c(T1) ∧ Γ̂c(−T2)

Γ̂c(−N1) ∧ Γ̂c(N2)
=

Γ̂c(T1 ∩ T2)Γ̂c(−T1 ∩ T2)

Γ̂c(−N1 ∩N2)Γ̂c(N1 ∩N2)
=
A(T1 ∩ T2)

A(N1 ∩N2)
, (6.16)

since

T1\(T1 ∩ T2) = N2\(N1 ∩N2) . (6.17)

Note that, for the first equality, complex conjugation of the normal bundle in the denomi-

nator of eq. (6.3) is essential.

The factor e(d(M1)−d(M2))/2 in (6.15) can be understood from the fact that the I-brane

fermions onM1∩M2 are naturally sections of S(T1∩T2⊕N1∩N2). When the latter fails

to be Spin, the 2nd Stiefel-Whitney class that measures this failure is

w2(T1 ∩ T2 ⊕N1 ∩N2) = w2(T1)− w2(T2) ,

where the equality follows from the assumption that the ambient X is Spin. Since w2 = c1

mod Z2, the relevant correcting factor for the Spinc case is e(c1(T1)−c1(T2))/2. Note that this

factor reduces to 1 whenM1 andM2 are coincident, which is expected since T ⊕N = T X
is Spin. Next, we show how this extends to amplitudes involving Orientifold planes.

Möbius strip. Similarly, the index on the Möbius strip can be obtained via the rela-

tion (6.13). If we let M1 and M2 are locus where D-branes and Orientifolds exist, we
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have9

I(BE , C) ∼ 2p−4

∫
M1∩M2

ch2k(F) ∧ Γ̂(T1)

Γ̂(−N1)
∧ A(T2/2)Γ̂(−N2)

A(N2/2)Γ̂(T2)
∧ e(d(M1)−d(M2))/2 ∧ e(N12)

= 2p−4

∫
M1∩M2

ch2k(F) ∧

√
A(T1)L(T2/4)

A(N1)L(N2/4)
∧ e(d(M1)−d(M2))/2 ∧ e(N12) , (6.18)

which exactly reproduce the index formula of the Möbius strip calculated at the level of

non-linear sigma model [14, 29]. Here, p+ 1 is the dimension of the Orientifold plane.

When Dp-branes are on the top of an Op-plane, in particular, we can read off p + 3-

form from I(BE , C) + I(C,BE), which gives anomaly inflow on the p+ 1 dimensional world-

volume as

± 2p−4 · [ch2k(F) + ch2k(F)] ∧ Γ̂(T )

Γ̂(−N )
∧ A(T /2)Γ̂(−N )

A(N/2)Γ̂(T )
∧ e(N )

∣∣∣∣∣
p+3

= ± 2p−4 ·
[
ch2k(F) + ch2k(F)

]
∧ A(T /2)

A(N/2)
∧ e(N )

∣∣∣∣∣
p+3

= ± ch2k(2F) ∧ A(T )

A(N )
∧ e(N )

∣∣∣∣∣
p+3

. (6.19)

Note that, since U(k) gauge group is enhanced to SO(2k) or Sp(k) group, we used the

relation ch2k(F) = ch2k(F). Adding two contributions from the cylinder and the Möbius

indices, we recover the open string Witten index, i.e., anomaly inflow for the SO(2N) or

Sp(N) gauge group according to the sign of (6.19),

ISO(2k),Sp(k) = [ch2k⊗2k(F)± ch2k(2F)] ∧ A(T )

A(N )
∧ e(N )

∣∣∣∣∣
p+3

= 2 · ch 1
2

2k(2k±1) ∧
A(T )

A(N )
∧ e(N )

∣∣∣∣∣
p+3

. (6.20)

Klein bottle. Finally, if there are two crosscap states as in the last diagram of the

figure, we have topology of the Klein bottle whose index is given by the relation (6.14).

Substituting our formula for the crosscap overlap into this identity, we have

I(C, C)∼ 2p1+p2−8

∫
M1∩M2

A(T1/2)Γ̂(N1)

A(N1/2)Γ̂(−T1)
∧ A(T2/2)Γ̂(−N2)

A(N2/2)Γ̂(T2)
∧ e(d(M1)−d(N2))/2 ∧ e(N12)

= 2p1+p2−8

∫
M1∩M2

(
A(T1 ∩ T2/2)

A(N1 ∩N2/2)

)2

∧ A(N1 ∩N2)

A(T1 ∩ T2)
∧ e(d(M1)−d(M2))/2 ∧ e(N12)

= 2p1+p2−8

∫
M1∩M2

L(T1 ∩ T2/4)

L(N1 ∩N2/4)
∧ e(d(M1)−d(M2))/2 ∧ e(N12) . (6.21)

This again gives the well-known formula for the Klein bottle index calculated in non-linear

sigma model. Since the B-type parity action corresponds to the Hodge star operation of the

9From the first to second line, we used the identity
√
A(T )

√
L(T /4) = A(T /2) .
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target space, it reproduces the Hirzebruch signature theorem [14]. Obviously, this index is

independent of the open string degrees of freedom, or the types of planes [32]. For type-I

string theory, this inflow precisely cancels the one-loop anomaly of supergravity multiplet.

6.4 RR-charges and quantum volumes

This brings us, finally, to a natural question of what part of the central charge should

be attributed to the RR-charges. Recall that the conventional RR-charges, or the Chern-

Simons coupling to RR-tensors, was deduced indirectly via anomaly inflow. For instance,

for the simplest case of the spacetime-filling D-brane, the relevant anomaly polynomial is

A(T ), the Â class, which is then reconstructed via inflow as

Ω(T ) ∧ Ω(−T ) = A(T ) , (6.22)

where Ω is the characteristic class that appears in the Chern-Simons coupling. With

an implicit assumption that log Ω is “even,” i.e., includes 4k-forms only, this leads to

Ω = A1/2 [23, 27, 28]. Some of early literatures were casual about distinction between

Ω(T ) and Ω(−T ), although more careful computations show the conjugation has to occur

for one of the two factors [28, 32]. Thus, in hindsight, the anomaly cancelation argument

fixes only “even” part of log Ω.

As was noted previously, Ω = Γ̂c is one multiplicative class that is consistent with the

anomaly inflow A in the above sense. This happens precisely because “even” part of log Γ̂c
coincides exactly with logA1/2. Our discussion in the previous section demonstrated that

replacements like

A1/2(T )→ Γ̂c(T ), L1/2(T /4)→ A(T /2)/Γ̂c(−T ) , (6.23)

for D-branes and Orientifold planes, respectively, would be still consistent with anomaly

inflow. However, since the central charge is made from RR-charges and quantum volumes

of various cycles, it is hardly clear whether such a change in the central charge should be

attributed to the RR-charge or not.

More generally, for a D-brane wrapping a cycleM in Calabi-Yau X , the gravitational

curvature contribution to the central charge is

Γ̂c(T )

Γ̂c(−N )
=

√
A(T )

A(N )
∧ exp

 i
∑
k≥1

(−1)k(2k)!ζ(2k + 1)

(2π)2k
ch2k+1(X )

 , (6.24)

so the deviation depends only on X . As shown in the present work, something quite similar

happens for the Orientifold planes,

A(T /2)

Γ̂c(−T )

Γ̂c(N )

A(N/2)
=

√
L(T /4)

L(N/4)
∧ exp

 i
∑
k≥1

(−1)k(2k)!ζ(2k + 1)

(2π)2k
ch2k+1(X )

 , (6.25)

where the deviation is identical to its D-brane counterpart. So the difference between

the new central charges and the conventional ones can be expressed by a universal factor,
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determined by X only, is independent of the choice of the cycle M, and its logarithm is

purely imaginary.

These properties all suggest that this factor should be interpreted as a α′ modification

of volumes, in the sense,

exp(−iJ) → exp

−iJ + i
∑
k≥1

(−1)k(2k)!ζ(2k + 1)

(2π)2k
ch2k+1(X )

 , (6.26)

rather than as a shift of RR-charges, or the Chern-Simons couplings, themselves. In fact,

this is precisely the same shift of J that appears in S2 partition function, or its large volume

expression,

ZS2 ∼
∫
X
e−2iJ ∧ Γ̂c(T X )

Γ̂c(−T X )

=

∫
X

exp

−2iJ + 2i
∑
k≥1

(−1)k(2k)!ζ(2k + 1)

(2π)2k
ch2k+1(X )

 . (6.27)

Here, the “even” part of the two Gamma classes cancel out completely, suggesting that

they, but not “odd” parts, carry RR-charge information. For Calabi-Yau 3-fold, the piece∫
X ch3(X ) is proportional to the Euler number and represents exactly the quantum shift of

the volume that has been seen in the mirror map [2, 13]. This viewpoint also conforms with

the fact that there is no modification for Calabi-Yau 2-fold (times remaining flat directions),

for which the ten-dimensional spacetime theory has as many as 16 supercharges.

The ambiguity in determining RR-charge from the anomaly inflow remains, as the

D-brane and the I-brane inflow mechanisms always conjugate one of the two factors as

in (6.22).10 However, once we accept (6.26) as the quantum version of the exponentiated

Kähler class, this ambiguity is lifted, and we come back to the same old Chern-Simons

coupling to spacetime RR-tensors for D-branes and Orientifold planes [23, 27–32].
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A Spherical harmonics

We summarize basic facts about the (monopole) spherical harmonics. In order to discuss

the projection condition under the parity, it is convenient to choose a gauge where the

10Although, in principle, the Chern-Simons coupling may be computable by direct string world-sheet

method along the line of refs. [29, 33–35], which had confirmed the first few terms of refs. [27, 28].
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monopole background vector field takes the following form

A = −B
2

cos θdϕ , (A.1)

valid in the region 0 < θ < π. In addition, we also need to choose a gauge for the spin

connection, as it affects the harmonics for spinors and vectors. Our choice,

wθ̂
φ̂

= − cos θdϕ , (A.2)

is such that spinor spherical harmonics are antiperiodic along φ→ φ+ 2π.

The scalar monopole harmonics Yq,jm with q = B
2 Q satisfy

−D2
mYq,jm = j(j + 1)− q2 , j = l + |q| (l = 0, 1, 2, . . .) , (A.3)

where the covariant derivative denotes

D = d− iQA . (A.4)

For later convenience, we present an explicit expression of the scalar monopole harmonics

below,

Yq,jm(θ, ϕ) = Mq,jm(1− x)α/2(1 + x)β/2Pαβn (x)eimϕ , (A.5)

with

x = cos θ , α = −q−m, β = q−m, n = j +m, (A.6)

and

Mq,jm = 2m

√
2j + 1

4π

(j −m)!(j +m)!

(j − q)!(j + q)!
. (A.7)

Here the Jacobi polynomial Pαβn (x) is defined by

Pαβn (x) =
(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn

[
(1− x)α+n(1 + x)β+n

]
. (A.8)

Using the fact that

Pαβn (−x) = (−1)nP βαn (x) , (A.9)

it is straightforward to show that, for 0 < θ < π,

Yq,jm(π − θ, π + ϕ) =(−1)neiπm Y−q,jm(θ, ϕ)

=(−1)le−iπ|q| Y−q,jm(θ, ϕ) . (A.10)

For instance,

Y± 1
2
,jm(π − θ, π + ϕ) = (−i)(−1)lY∓ 1

2
,jm(θ, ϕ) for j = l +

1

2
. (A.11)
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The complex conjugate of the monopole harmonics satisfy the following two relations,

Y ∗q,jm(θ, ϕ) = (−1)q+mY−q,j(−m)(θ, ϕ) , (A.12)

and ∫
S2

Y ∗q,jm(θ, ϕ)Yq′,j′m′(θ, ϕ) = δqq′δjj′δmm′ . (A.13)

We now move on to the spinor monopole harmonics. It is useful to consider the

eigenmodes Ψ±q,jm of a modified Dirac operator

−iγ3γmDmΨ±q,jm = iλ±Ψ±q,jm , λ± = ±

√(
j +

1

2

)2

− q2 , (A.14)

where

Ψ±q,jm =

(
Yq− 1

2
,jm

±Yq+ 1
2
,jm

)
. (A.15)

Here the covariant derivative is

D = d− iQA+
1

4
ωabγ

ab . (A.16)

Using the property of the monopole harmonics (A.11), one can show

Ψ±q=0,jm(π − θ, π + ϕ) = ∓i(−1)l

(
±Y 1

2
,jm(θ, ϕ)

Y− 1
2
,jm(θ, ϕ)

)
, (A.17)

with 0 < θ < π.

Finally let us discuss about the one-form spherical harmonics defined by

C1
jm = +

1√
j(j + 1)

dYlm ,

C2
jm =− 1√

j(j + 1)
∗ dYjm , (A.18)

where j ≥ 1. Useful properties of the vector spherical harmonics can be summarized as

follow,

∗C2
jm = C1

jm , ∗dC2
jm =

√
j(j + 1)Ylm , ∗dC1

jm = 0 , (A.19)

which lead to

∗d ∗ dC2
jm =− j(j + 1)C2

jm ,

∗d ∗ dC1
jm = 0 . (A.20)

Under the parity action, they transform as

C1
jm(π − θ, π + ϕ) = (−1)jC1

jm(θ, ϕ) ,

C2
jm(π − θ, π + ϕ) = (−1)j+1C2

jm(θ, ϕ) . (A.21)
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B One-loop determinant on RP2
b

We will show that the partition function on the squashed real projective space RP2
b is

independent of the squashing parameter b. This section largely relies on the discussion

in [3]. For details, please refer to appendix A of the reference.

To compute the one-loop determinant around the SUSY saddle points, it is not neces-

sary to know all the eigenmodes of boson and fermion kinetic operators. This is because,

as we see in section 3, the huge cancelation between boson and fermion eigenmodes occurs.

It is therefore sufficient to understand how the boson and fermion eigenmodes are paired

by the supersymmetry.

B.1 Chiral multiplet

We start with a chiral multiplet of unit U(1) gauge charge. To simplify the computation,

we choose a Q-exact regulator

Lreg = −δεδε̄
[
ψ̄γ3ψ − 2φ̄σ2φ

]
, (B.1)

different to the one used in the main context. The above choice leads to the kinetic

operators around the saddle points (3.1), (3.2)

∆b =−D2
m + σ2 +

q

4
R+

q − 1

f
vmDm +

q2 − 2q

4f2
,

∆f =− iγmDm − σγ3 − i 1

2f
γ3 + i

q − 1

2f
vmγ

m + i
q − 1

2f
w , (B.2)

where the covariant derivative involves the background gauge field V given in (2.24),

Dmφ = (∂m − iAm + iqVm)φ ,

Dmψ =

(
∂m − iAm +

1

4
wabγ

ab + i(q − 1)Vm

)
ψ , (B.3)

and

vm = ε̄γmε , w = ε̄ε . (B.4)

Here R denotes the scalar curvature of RP2. As in section 3, it is convenient to consider

spinor eigenmodes for an operator γ3∆f instead of ∆f .

One can show that there is a pair between a scalar eigenmode for ∆b
.
= −M(M + 2σ)

and two spinor eigenmodes for γ3∆f
.
= M,−(M + 2σ), subject to either (3.8) or (3.22)

projection conditions. The precise map which pairs the scalar and spinor eigenmodes is

the following; given a spinor eigenmode Ψ for γ3∆f
.
= M , one can show that

ε̄Ψ (B.5)

is a scalar eigenmode for ∆b
.
= −M(M + 2σ). On the other hand, one can define a pair of

spinors

Ψ1 = γ3εΦ , Ψ2 = iγmεDmΦ + γ3ε

(
σΦ + i

q

2f

)
Φ , (B.6)
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where Φ is a scalar eigenmode for ∆b
.
= −M(M + 2σ). One can show that

MΨ1 + Ψ2 , −(M + 2σ)Ψ1 + Ψ2 (B.7)

are the eigenmodes for γ3∆f
.
= M and γ3∆f

.
= −(M + 2σ) respectively.

Any modes in such a pair can not contribute to the one-loop determinant due to the

cancelation. As a consequence, the nontrivial contributions arise from the eigenmodes

where either the map (B.5) or the map (B.7) becomes ill-defined.

Unpaired spinor eigenmode. If a spinor eigenmode vanishes when contracted with ε̄,

there is no scalar partner. Such an unpaired spinor eigenmode takes the following form

Ψ = e−iJϕh(θ)ε̄ , (B.8)

where

iJ =

(
Ml + σl + i

q − 2

2

)
, (B.9)

and

1

f
∂θh = tan θ

(
J

l
− q − 2

2l
+ i

q − 2

2f

)
h . (B.10)

For the normalizability, one has to require J to be non-negative. Note that the function

h(θ) is even under the parity, i.e., h(θ) = h(π− θ). One can show that J should be further

restricted to be even (odd) to satisfy the projection conditions in the even (odd) holonomy,

i.e.,

Ml =i
(

2k + 1 + iσl − q

2

)
for even holonomy ,

Ml =i
(

2k + 2 + iσl − q

2

)
for odd holonomy , (B.11)

with k ≥ 0.

Missing spinor eigenmode. Suppose that a scalar eigenmode Φ for ∆b
.
= −M(M+2σ)

fails to provide two independent spinor eigenmodes via the map (B.7). It happens when

Ψ2 = −MΨ1 , (B.12)

which leads to a missing spinor eigenmode for γ3∆f
.
= M . One can verify that such a

scalar eigenmode Φ missing a spinor eigenmode takes the following form

Φ = eiJϕχ(θ) , (B.13)

where

iJ = −
(
Ml + σl + i

q

2

)
, (B.14)
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with J ≥ 0 for the normalizability, and

1

f
∂θχ = tan θ

(
J

l
+
q

2l
− q

2f

)
χ . (B.15)

To satisfy the projection condition in the even (odd) holonomy, one can show that

Ml =− i
(

2k − iσl +
q

2

)
for even holonomy ,

Ml =− i
(

2k + 1− iσl +
q

2

)
for odd holonomy , (B.16)

with k ≥ 0.

One-loop determinant. Combining all the results (B.11) and (B.16), one can show

det ∆f

det ∆b
'

det γ3∆f

det ∆b
'


∏
k≥0

2k+1+iσl− q
2

2k−iσl+ q
2

for even holonomy∏
k≥0

2k+2+iσl− q
2

2k+1−iσl+ q
2

for odd holonomy
, (B.17)

where the symbol ' represents the equality up to a sign independent of σ. From the

comparison to the results in section 3, one can fix the sign factor by the unity. These

results are in perfect agreement to those for RP2.

B.2 Vector multiplet

We now in turn compute the one-loop determinant from the vector multiplet. Denoting

the various fluctuation fields as follows

A = Aflat + a , σ1 = ζ , σ2 = σ + η , (B.18)

let us decompose all the adjoint fields (a, ζ, η) into Cartan-Weyl basis. From now on,

we focus on the W-boson of charge α, a root of G, and its super partners. The kinetic

Lagrangian for the vector multiplet is chosen as a Q-exact regulator.

As explained in [6] and [3] that the four bosonic modes contain two longitudinal modes

with a ∼ Dη that correspond to a gauge rotation and the volume of the gauge group G.

Using the standard Fadeev-Popov method, one can argue that these longitudinal modes

can not contribute to the one-loop determinant. Thus we need to find how two transverse

modes with ∗D ∗ a = 0 can be paired with spinor eigenmodes.

The kinetic operators of our interest are

∆b =

(
− ∗ d ∗ d+ (α · σ)2 − ∗ d 1

f

+ 1
f ∗ d − ∗ d ∗ d+ 1

f2
+ (α · σ)2

)
,

∆f =iγmDm + (α · σ)γ3 , (B.19)

with the gauge choice ∗d ∗ a = 0. The operator ∆b acts on the fluctuation fields (a, ζ)

subject to the projection conditions (3.34) for the even holonomy and the twisted projection
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conditions for the odd holonomy. Instead of ∆b, it is convenient to consider the following

operator

δb ≡

(
iα · σ − ∗ d
∗d 1

f + iα · σ

)
. (B.20)

One can show that the operator δb satisfies the relation δ2
b = ∆b+2i(α·σ)δb, or equivalently,

δb
.
= −iM ,+i(M + 2α · σ) ↔ ∆b

.
= −M(M + 2α · σ) . (B.21)

Let (A,Σ) and Λ be bosonic eigenmodes for δb
.
= −iM and fermionic eigenmodes for

γ3∆f
.
= −M . They can be shown to be mapped to each other by

A = −i (M + α · σ) ε̄γmΛem − d
(
ε̄γ3Λ

)
, Σ = (M + α · σ)ε̄Λ , (B.22)

and

Λ =
(
γ3γmAm + iΣγ3

)
ε . (B.23)

Again, one can have nontrivial contribution to the one-loop determinant from either un-

paired or missing spinor eigenmodes.

Unpaired spinor eigenmodes. An unpaired spinor eigenmode, annihilated by the

map (B.22), takes the following form

Λ = e−iJϕh(θ)ε̄ , (B.24)

where

i (J + 1) = Ml + α · σl , (B.25)

with J ≥ 0 due to the normalizability, and

1

f
∂θh+ tan θ

(
1

f
− J + 1

l

)
h = 0 . (B.26)

Note that the function h(θ) is even under the parity, h(π − θ) = h(θ). In order to satisfy

the projection conditions in the even (odd) holonomy, the non-negative integer J should

be further constrained to be odd (even), i.e.,

Ml =i (2k + 2 + iα · σ) for even holonomy ,

Ml =i (2k + 1 + iα · σ) for odd holonomy , (B.27)

with k ≥ 0.
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Missing spinor eigenmodes. One can show from the map (B.23) that a bosonic eigen-

mode with missing spinor partner can take the following form

A = ei(J+1)ϕχ(θ)
(
e1 + i cos θε2

)
, Σ = iei(J+1)ϕχ(θ) sin θ , (B.28)

where em denotes the vielbein of RP2
b , and

i(J + 1) = − (Ml + α · σl) , (B.29)

and

1

f
∂θχ+ tan θ

(
1

f
− J + 1

l

)
χ = 0 . (B.30)

The normalizability requires J to be non-negative. The projection conditions in even (odd)

holonomy are satisfied if J are even (odd), i.e.,

Ml =− i (2k + 1− iα · σ) for even holonomy ,

Ml =− i (2k + 2− iα · σ) for odd holonomy , (B.31)

with k ≥ 0.

One-loop determinant. Collecting all the results (B.27) and (B.31), the one-loop de-

terminant from the vector multiplet becomes

det ∆f√
det ∆b

'
det γ3∆f

det δb
'

{∏
α∈∆

∏
k≥0

2k+2+iα·σ
2k+1−iα·σ for even holonomy∏

α∈∆

∏
k≥0

2k+1+iα·σ
2k+2−iα·σ for odd holonomy

. (B.32)

By comparing the results to those in section 3, one can fix the sign factor by the unity.

Again, these results perfectly agree with those for RP2.

C Spinc structure and tachyon condensation

The central charge of the D-branes is recently revisited from the exact hemisphere partition

function computation [7, 9], which shows that Γ̂c class replaces the A1/2 class. In this note,

we computed central charges of Orientifold planes and show how L1/2 class in the traditional

central charge formula must be similarly modified in terms of A class and Γ̂c class. The

original formulae for the RR-charges and the central charges were motivated by anomaly

inflow, which can potentially miss some of (4k + 2)-form pieces in the exponent.

An odd fact is that the partition function computations, with Dirichlet condition ex-

plicitly imposed, also seem to miss a factor e−c1(N )/2 that is necessary whenM is a proper

submanifold of X and is not Spin but only Spinc. Here, we will outline how this factor

re-emerges, at least, from the viewpoint of tachyon condensation. After presenting results

in refs. [7, 9], we compute the central charge of a lower-dimensional D-brane wrapping a hy-

persurface in the Calabi-Yau space, with careful consideration given to charge assignment

of the vacua. From this computation, the subtle factor e−c1(N )/2 is rescued.
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In order to preserve the supersymmetry chosen as in (2.14) on the northern hemisphere,

one has to add the Chan-Paton factor

TrV

[
P exp

(
−i
∫
dϕ Aϕ

)]
(C.1)

with

Aϕ = ρ∗ (Aϕ + iσ2)− r∗
2r
− i
{
Q, Q̄

}
+

1√
2

(
ψi+ − ψi−

)
∂iQ+

1√
2

(
ψ̄i+ − ψ̄i−

)
∂iQ̄ . (C.2)

Here V denotes a Z2 graded Chan-Paton vector space. The tachyon profile Q(φ) is an oper-

ator acting on the vector space V, anti-commuting with fermions, and obeys the following

relation

Q2 =W · 1V , (C.3)

where W(φ) denotes a given superpotential. The G × U(1)v representation of the Chan-

Paton vector space V is specified by ρ∗ and r∗,

ρ(g)Q(φ)ρ(g)−1 = Q(gφ) ,

λ · λr∗Q(φ)λ−r∗ = Q(λqφ) , (C.4)

where g ∈ G. The exact hemisphere partition function can be expressed by

ZD2 ∝
1

|W (G)|

∫
t
dσ e−2πiξrentrσ−θtrσ × TrV

[
e2πρ∗(σ)+iπr∗

]
× Z1-loop (C.5)

with

Z1-loop =
∏
α>0

[
α · σ sinhα · σ

] ∏
wa∈Ra

Γ
(qa

2
− iwa · σ

)
, (C.6)

where t is the Cartan subalgebra of the gauge group G, and W (G) is the Weyl group.

In what follows, we consider the U(1) GLSM describing the degree N hypersurface of

CPN−1 studied in section 5 for simplicity.

W = PGN (Xi) , (C.7)

where GN (Xi) denotes a homogeneous polynomial of degree N . This model describes the

non-linear sigma model whose target space is a CY hypersurface X in CPN−1.

Taking into account for the Knörrer map to relate the GLSM brane BUV to the NLSM

brane BIR [24], one can show that

ch
[
BIR

]
=

1

1− e−2πiN(q/2−iσ)
× TrV

[
e2πρ∗(σ)+iπr∗

]
, (C.8)

where V denotes the Chan-Paton vector space of BUV . Note that the Knörrer map also

leads to the shift of the theta angle

θUV = θIR − πN . (C.9)
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The central charge of the NLSM brane BIR then takes the following form

Z (BIR) = 2iπβ

∫ q/2+i∞

q/2−i∞

dε

2πi
e2πξε−iθIRε × N

εN−1
× Γ(1 + ε)N

Γ(1 +Nε)
× ch

[
BIR

]
(C.10)

with β = (rΛ)c/6/(2π)(N−2)/2. Focusing on the perturbative part of the central charge, one

can finally obtain the large-volume expression [7, 9]

Zpert (BIR) = (2πi)N−2 β

∫
X
e−iξH−

θIR
2π

H ×
Γ
(
1 + H

2πi

)N
Γ
(
1 + NH

2πi

) × ch[BIR

]
= (2πi)N−2 β

∫
X
e−iJ−B ∧ Γ̂c(X) ∧ ch

[
BIR

]
, (C.11)

where H is the hyperplane class of CPN−1.

To be more concrete let us consider a tachyon profile Q

Q = Xaηa + P η̃ +GN ¯̃η , (C.12)

where the fermionic oscillators satisfy the following anti-commutation relations

{η̃, ¯̃η} = 1 , {ηa, η̄b} = δab (C.13)

with a = 1, 2, . . . , n. Since the boundary potential becomes{
Q, Q̄

}
=

n∑
a=1

|Xa|2 + |P |2 + |GN (Xi)|2 , (C.14)

the above tachyon profile describes a lower-dimensional brane wrapping a submanifold at

Xa = 0 in the Calabi-Yau space X in the geometric phase. One can easily show that the

Chern character of the brane BIR is

ch
[
BIR

]
= e−πinε

(
2i sin(πε)

)n
, (C.15)

where ε = q/2− iσ. Then, the central charge of the brane in the large volume limit (C.11)

can be written as

Zpert (BIR) = (2iπ)N−1 β

∫
X
e−iξH−

θIR
2π

H ×
Γ
(
1 + H

2πi

)N−n
Γ
(
1− H

2πi

)n
Γ
(
1 + NH

2πi

) ×Hn × e−
nH
2

= (2iπ)N−1 β

∫
X
e−iJ−B ∧ Γ̂c(T )

Γ̂c(−N )
∧ e(N ) ∧ e−

1
2
c1(N ) . (C.16)

Note that one can see the very subtle factor e−c1(N )/2 emerges from the partition function

computation again. As a byproduct, we also confirmed that the overall normalization

factor (2πi)N−1β = (2π)N/2iN−1(rΛ)c/6 are the same for any dimensional D-branes, which

is consistent with the tadpole comparison of the section 6 above.

What remains unclear to us is how this factor should be recovered when the Dirichlet

boundary condition is imposed from the outset.11 For D-branes here, the result (C.16)

11A related issue was addressed in ref. [9].
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obtained from the tachyon condensation exactly agrees with the central charge for a D-

brane supporting an extra “line bundle” O(−n/2), which can be described by imposing the

Dirichlet boundary condition on Xa and adding Wilson loop of charge ρ∗ = −n/2. The

line bundle O(−n/2) accounts for the factor e−
1
2
c1(N ) canceling the Freed-Witten global

anomaly. As there is analog of neither tachyon condensation representation nor Wilson

loop for Orientifold planes, however, a better understanding of this issue is needed for

addressing central charges of all RR-charged objects.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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