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1 Introduction

Light-cone wave functions are fundamental ingredients for the perturbative QCD factor-

ization of hard exclusive reactions. Apart from computing short-distance coefficient func-

tions with increasing accuracy in perturbation theory, advanced theoretical predictions for

physical observables cannot be achieved without deep understanding of nonperturbative

hadronic wave functions, which should be compatible with the factorization theorem and

take on maximal universality among different exclusive processes. Tremendous efforts have

been devoted to the understanding of collinear factorization properties for a large amount

of hard exclusive processes, such as the pion-photon transition form factor [1–3], the pion

electromagnetic form factor [4–6] and heavy-to-light transition form factors [7–11]. The

corresponding light-cone distribution amplitudes are defined as non-local matrix elements

of light-ray operators with a rather intuitive Wilson-link structure. Light-cone distribution

amplitudes also serve as non-perturbative inputs in the factorization formulas of correla-

tion functions, which are used to construct QCD light-cone sum rules for heavy-to-light

transition form factors [12–14] and for hadron strong couplings [15, 16].

A transverse-momentum-dependent (TMD) wave function provides the three-

dimensional profile of the underlying structure of a hadronic bound state in the kT fac-

torization theorem. Compared to light-cone distribution amplitudes, it is nontrivial to

establish a well-defined TMD wave function as elaborated in [17, 18], in spite of many

phenomenologically successful applications of the kT factorization to hard exclusive pro-

cesses [19–23]. The point resides in the design of the associated Wilson links and the in-

troduction of soft subtraction, so that rapidity divergences [24] and Wilson-line self-energy

divergences are avoided [25]. As light-like Wilson lines are adopted in the un-subtracted

TMD definition, rapidity divergences from radiative gluons collimated to the Wilson lines

are produced [26–30]. As these rapidity divergences are regularized by rotating the Wilson

lines away from the light cone [26] (a non-light-like axial gauge n · A = 0 with n2 6= 0

was chosen actually), the self-energy divergences attributed to the infinitely long dipolar

Wilson lines [25] appear. To overcome the above difficulties, complicated soft subtraction,

which involves a square root of a ratio of soft functions, has been suggested [31]. This

definition is an improvement of the one with multiple non-light-like Wilson links in [32]
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(see [33] for an overview of TMD parton densities). For comparison with the TMD parton

densities defined in soft-collinear effective theory [34–37], refer to [17].

In this paper we will propose a simpler definition for a TMD wave function, which does

not contain the square root of soft functions, but is compatible with the kT factorization

theorem, namely, free of both rapidity and self-energy divergences. The key is to rotate the

Wilson links in the un-subtracted wave function away from the light cone, and to orient the

two pieces of non-light-like Wilson links in different directions. The arguments to support

this proposal include: (i) the above rotation of the Wilson links serves as infrared regu-

larization for the rapidity and self-energy divergences; (ii) as long as collinear divergences

are concerned, the directions of Wilson links could be arbitrary; (iii) soft divergences still

cancel between the pair of diagrams, in which radiative gluons from the Wilson links in

arbitrary directions attach to the valence quark and to the valence anti-quark, because of

color transparency (or between virtual and real corrections to an inclusive process); (iv)

once the two pieces of Wilson links are oriented in different directions, the dipolar structure

is broken, and the pinched singularity in Wilson-line self-energy corrections, arising from

the integrand [(n · l + i0)(n · l − i0)]−1, is alleviated into [(n · l + i0)(n′ · l − i0)]−1. The

soft subtraction required to remove this ordinary infrared singularity is much simpler. We

consider the special case with the two pieces of Wilson links being orthogonal to each other,

i.e., n · n′ = 0 for demonstration, for which even no soft function is needed.

In section 2 we study the complicated definition of a TMD wave function with the dipo-

lar Wilson links [17, 31], taking the pion wave function extracted from the pion transition

form factor as an example. We discuss the essential difference between parton densities for

inclusive processes and wave functions for exclusive processes, which concerns choices of

the time-like or space-like gauge vector. The novel definition for the TMD wave function

with non-dipolar Wilson lines is proposed in section 3, whose infrared behavior is explicitly

shown to be the same as the complicated definition at one loop. The equivalence between

the simpler and complicated definitions is extended to all orders by considering their evo-

lutions in the Wilson-link rapidity in section 4. We then conclude in section 5 with a brief

discussion on the extensions of our proposals to the B-meson light-cone wave functions and

polarized TMD parton densities in spin physics.

2 TMD wave function with dipolar Wilson lines

We consider the TMD pion wave function defined for the kT factorization of the exclusive

process γ∗ → πγ. The TMD pion wave function constructed from the involved pion

transition form factor [19, 21], following the suggestion of [24], is only free of rapidity

divergences. To remove both the rapidity and pinched singularities, the complicated soft

substraction factor with a square root [31] is introduced to the un-subtracted wave function:

φC(k′+, k
′
T , y2) = lim

y1→+∞
yu→−∞

∫

dz−
2π

∫

d2zT
(2π)2

ei(k
′

+z−−k′
T
zT )

×〈0|d̄(0)W †
u(+∞, 0) 6 n− γ5Wu(+∞, z)u(z)|π+(p)〉

×

√

S(z; y1, y2)

S(z; y1, yu)S(z; y2, yu)
, (2.1)
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with the coordinate z = (0, z−, zT ) of the u quark field and the Wilson link

Wn(+∞, z) = P exp

[

igs

∫ +∞

0
dλT a n ·Aa(λn+ z)

]

.

The soft function in eq. (2.1) reads

S(z; yA, yB) =
1

Nc
〈0|W †

nB
(∞, z)caWnA

(∞, z)adWnB
(∞, 0)bcW

†
nA

(∞, 0)db|0〉, (2.2)

where yA and yB denote the rapidities of the gauge vectors nA and nB, respectively, and

the color indices a, b, c, d have been specified in [31]. The gauge vector u associated with

the un-subtracted wave function approaches to the light-like direction n− = (0, 1,0T ) in

the limit yu → −∞. The vertical Wilson lines connecting the longitudinal Wilson lines in

eq. (2.1) at infinity do not contribute in covariant gauge [28].

In contrast to a space-like gauge vector for defining a TMD parton density in ref. [31,

38], we have adopted the time-like vector n2 = (ey2 , e−y2 ,0T ) with the rapidity y2 in the

soft subtraction factor. Notice the essential difference between a parton density and a

wave function attributed to the final-state cut in the former. The pinch singularity from

the Wilson-line self-energy correction with a real radiative gluon is only present in a TMD

parton density with a space-like gauge vector, but not in the one with a time-like gauge

vector. As explained in [25], the pole of the involved eikonal propagator cannot be reached

by an on-shell gluon under a time-like gauge vector. However, the pinched singularity

appears in the TMD wave functions with both space-like and time-like gauge vectors,

because the radiative gluon is virtual. As indicated by the corresponding loop integrand

n2
2

(l2 + i0) (n2 · l + i0) (n2 · l − i0)
, (2.3)

the minus component l− of the loop momentum is not bounded at all, so the singularity

at n2 · l = 0 can be reached for a general n2. One can also find such a divergence from the

loop integral in coordinate space [17]

I =

∫ ∞

0
dλ1

∫ ∞

0
dλ2

1

[(λ1 − λ2)n2 − z]2

= lim
L→∞

[

π
√

z2/n2
2

L− lnL+ ln

(
√

z2

n2
2

)

− 1 +O(1/L)

]

, (2.4)

where the condition n2 · z = 0 has been implemented to simplify the expression, and L

denotes the length of the Wilson lines.

It is a crucial criterion that the linear divergence proportional to the length of Wilson

lines should cancel in factorization-compatible definitions of a TMD wave function, leading

to one of the key requirements for the construction of the soft subtraction factor. The soft

factor is designed in the way that the rapidity divergences associated with the gauge vector

n1 cancel between S(z; y1, y2) and S(z; y1, yu), the pinched singularities in the self-energy

corrections to the Wilson lines in n2, mentioned above, cancel between S(z; y1, y2) and

S(z; y2, yu), and the rapidity divergences in the un-subtracted wave function are cancelled
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Wn1
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(∞, 0)

W †
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(∞, z) Wn2
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n1
(∞, 0)

W †
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Wu(∞, 0)

Wn2
(∞, z) W †
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W †
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(a)

1
2
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W †
n2
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(∞, 0)
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(∞, 0)

W †
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(b)

Figure 1. One-loop graphs for the soft subtraction factor in eq. (2.1).

by S(z; y1, yu) and S(z; y2, yu) in the limit yu → −∞. These cancellations are easily

understood from the typical one-loop diagrams for the soft factor in figure 1. As to the

order of taking limits of various regulators, the prescription is as follows: (a) Take the

trivial limit L → ∞ for the length of the Wilson links; (b) Compute the un-subtracted

wave function and the soft functions inD = 4−2 ǫ dimensions; (c) Take the limits of infinite

Wilson-line rapidities y1 → +∞ and yu → −∞; (d) Add the ultraviolet counterterms and

remove the ultraviolet regulator by setting ǫ → 0. Detailed discussions on the exchange of

the above limits can be found in ref. [31].

Figure 1(a) yields the integral

S(1)
a (k′+, k

′
T , y2) = −g2s CF µ2ǫ

∫

dl+
2π

∫

d2−2ǫlT
(2π)2−2ǫ

δ(k′+−k+−l+) δ(k
′
T−kT−lT ) (2.5)

×

[

θ(l+) θ(k̄+ − l+)

l++i0
−
θ(−l+) θ(l++k+)

l++i0

]

1

l2T+2 e−2y2 l2++m2
g−i0

,

where k
(′)
+ and k

(′)
T denote the plus and transverse components of the quark momentum

before (after) the gluon emission for the partonic configuration |u(k) d̄(p− k)〉 in the Fock-

state expansion of |π+(p)〉, and the shorthand notation k̄
(′)
+ = p+−k

(′)
+ has been employed.1

The gluon mass mg regularizes the soft divergence to be cancelled by the contribution from

figure 1(b),

S
(1)
b (k′+, k

′
T , y2) = g2s CF µ2ǫ

∫

dl+
2π

∫

d2−2ǫlT
(2π)2−2ǫ

δ(k+ − k′+) δ(kT − k′
T )

×

[

θ(l+)

l+ + i0
−

θ(−l+)

l+ + i0

]

1

l2T + 2 e−2y2 l2+ +m2
g − i0

. (2.6)

1The primed components k′

+ and k
′

T in the soft function S
(1)
a (k′

+, k
′

T , y2) appear as the conjugate variables

to the coordinate z in eq. (2.1) under the Fourier transformation.
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(d) (e) (f)

(a) (b) (c)

u(k′)

d̄(k̄′)

Figure 2. One-loop graphs for the un-subtracted TMD wave function.

The one-loop integrals for the un-subtracted TMD wave function from figure 2 are

written as

φC(1)
a (k′+, k

′
T ) = −g2s CF µ2ǫ

∫ 0

−k̄+

dl+
2π

∫

d2−2ǫlT
(2π)2−2ǫ

δ(k′+ − k+ + l+) δ(k
′
T − kT + lT )

×
1

l+ + i0

1

l2T − l+
l++k̄+

(lT − kT )
2 + i0

,

φC(1)
c (k′+, k

′
T ) = −ig2s CF (2− 2ǫ)µ2ǫ

∫

d4−2ǫl

(2π)4−2ǫ
δ(k′+ − k+ + l+) δ(k

′
T − kT + lT )

×
(kT − lT )

2

[(p− k + l)2 + i0][(k − l)2 + i0][l2 + i0]
,

φC(1)
e (k′+, k

′
T ) = g2s CF µ2ǫ

∫ 0

−k̄+

dl+
2π

∫

d2−2ǫlT
(2π)2−2ǫ

δ(k+ − k′+) δ(kT − k′
T
)

×
1

l+ + i0

1

l2T − l+
l++k̄+

(lT − kT )
2 + i0

,

φ
C(1)
b (d) (k

′
+, k

′
T ) = φ

(1)
a (e)

[

k
(′)
+ → k̄

(′)
+ ,k

(′)
T → −k

(′)
T

]

. (2.7)

The contribution from figure 2(f) vanishes in Feynman gauge due to the light-like gauge

link in the direction of n−, and it is cancelled by those of the corresponding diagrams from

S(z; y1, yu) and S(z; y2, yu) in arbitrary gauge as stated before.

To illustrate the cancellations of the rapidity singularities from l+ = 0 and of the

pinched singularities from the Wilson-line self-energy corrections to the pion wave function

– 5 –
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in eq. (2.1), we present the explicit expression for the sum of φ
C(1)
a , φ

C(1)
b , and S

(1)
a ,

φC(1)
a + φ

C(1)
b + S(1)

a = −
αsCF

2π
Dred δ(k+ − k′+) δ(kT − k′

T ) (2.8)

−
αsCF

2π2

{

θ(k′+ − k+) θ(k̄
′
+)

(k+ − k′+)
[

(

k′
T − kT

)2
−

k+−k′+
p+−k′+

k′ 2
T

]

−
θ(k′+ − k+) θ(k̄

′
+)

(k+ − k′+)
[

(

k′
T − kT

)2
+ 2 e−2y2 (k′+ − k+)2

]

+
θ(k′+) θ(k+ − k′+)

(k′+ − k+)
[

(

k′
T − kT

)2
−

k′+−k+

k′+
k′ 2
T

]

−
θ(k′+) θ(k+ − k′+)

(k′+ − k+)
[

(

k′
T − kT

)2
+ 2 e−2y2 (k′+ − k+)2

]

}

⊕

,

with the factor

Dred = 2

(

1

ǫ̂
+ ln

µ2

k2T

)

+ ln2
(

k+
mg

)

+ ln2
(

k̄+
mg

)

+ ln

(

k2T
m2

g

)

· ln

(

k2T
k+k̄+

)

−
1

2
ln2

(

2 e−2y2
)

− ln
(

2 e−2y2
)

· ln

(

k+k̄+
m2

g

)

+ 4−
π2

6
, (2.9)

and 1/ǫ̂ ≡ 1/ǫ− γE + ln(4π). The “⊕” subtraction is defined as

[

f(k+, k
′
+,kT ,k

′
T )
]

⊕
= f(k+, k

′
+,kT ,k

′
T )− δ(k+ − k′+) δ(kT − k′

T )

×

∫ +∞

−∞

dq+

∫ +∞

−∞

d2−2ǫqT f(k+, q+,kT ,qT ) . (2.10)

It is evident that eq. (2.8) is free of the rapidity divergence from k+ = k′+, and contains only

the ordinary logarithmic soft divergence regularized by the gluon mass. This logarithmic

divergence is cancelled precisely by that in the sum of φ
C(1)
d , φ

C(1)
e , and S

(1)
b ,

φ
C(1)
d + φC(1)

e + S
(1)
b =

αsCF

2π

{

Dred +
Γ(ǫ)

2 ǫ

(

2 e−2y2
)−ǫ

[(

4π µ2

k2+

)ǫ

+

(

4π µ2

k̄2+

)ǫ]}

× δ(k+ − k′+) δ(kT − k′
T ) . (2.11)

Evaluation of figure 2(c) gives

φC(1)
c (k′+, k

′
T ) = −

αsCF

4π

[

1

ǫ̂
+ ln

µ2

k2T
+ 1

]

δ(k+ − k′+) δ(kT − k′
T )−

αsCF

2π2

1

p+

×

{

θ(k′+) θ(k+ − k′+)
(

k′
T − kT

)2
+

k+−k′+
k′+

k′ 2
T

+
θ(k′+ − k+) θ(k̄

′
+)

(

k′
T − kT

)2
+

k′+−k+

p+−k′+
k′ 2
T

}

⊕

, (2.12)

which does not contain a soft divergence.
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We then obtain the next-to-leading-order (NLO) TMD pion wave function from figure 1

and figure 2,

φC(1)(k′+, k
′
T , y2) = −

αsCF

4π

{

1

ǫ̂
+ln

µ2

k2T
+1−

Γ(ǫ)

ǫ

(

2 e−2y2
)−ǫ

[(

4π µ2

k2+

)ǫ

+

(

4π µ2

k̄2+

)ǫ]}

× δ(k+−k′+) δ(kT−k′
T )−

αsCF

2π2

{

θ(k′+−k+) θ(k̄
′
+)

(k+−k′+)
[

(

k′
T−kT

)2
−

k+−k
′

+

p+−k
′

+
k′ 2
T

]

−
θ(k′+ − k+) θ(k̄

′
+)

(k+ − k′+)
[

(

k′
T − kT

)2
+ 2 e−2y2 (k′+ − k+)2

]

+
θ(k′+) θ(k+ − k′+)

(k′+ − k+)
[

(

k′
T − kT

)2
−

k′+−k+

k′+
k′ 2
T

]

−
θ(k′+) θ(k+ − k′+)

(k′+ − k+)
[

(

k′
T − kT

)2
+ 2 e−2y2 (k′+ − k+)2

]

+
θ(k′+) θ(k+−k′+)

p+

[

(

k′
T−kT

)2
+

k+−k
′

+

k′+
k′ 2
T

]+
θ(k′+−k+) θ(k̄

′
+)

p+

[

(

k′
T−kT

)2
+

k′+−k+

p+−k
′

+
k′ 2
T

]

}

⊕

, (2.13)

indicating that the remaining infrared divergence in the NLO pion wave function is the

collinear one regularized by the parton virtuality k2T . To validate the kT factorization

theorem for the pion transition form factor, we show the infrared finiteness of the hard

kernel obtained from matching the QCD diagrams onto the effective diagrams φC(1). The

collinear logarithm ln k2T is extracted explicitly from the convolution of the NLO pion wave

function with the leading-order hard kernel H(0) of the pion transition form factor:

∫ +∞

−∞

dk′+

∫ +∞

−∞

d2−2ǫk′T φC(1)(k′+, k
′
T , y2)H

(0)(k′+, k
′
T )

= −
αsCF

4π

[

ln

(

k+
p+

)

+ 2

]

ln k2T H(0)(k+, kT ) + · · · , (2.14)

where the ellipsis represents the terms independent of ln k2T at leading power. It is indeed

the case that eq. (2.14) cancels the ln k2T term in the one-loop QCD diagrams for the pion

transition form factor given by eq. (20) of [19], as those from the self-energy corrections to

the external quarks are excluded.

3 TMD wave functions with non-dipolar Wilson lines

In view of the complicated structure of the soft subtraction in eq. (2.1), it is in demand

to construct factorization-compatible definitions of a TMD wave function with simper

subtraction factors for practical calculations. We start with the un-subtracted TMD wave

function in eq. (2.1), where the future-pointing or past-pointing light-like Wilson links

have been appropriately chosen to facilitate the kT factorization by avoiding the Glauber

region. Certainly, the Glauber region does not exist in a simple process [39, 40] like

– 7 –
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the pion transition form factor considered here. The Wilson links are then rotated away

from the light cone, as done in [26, 31], to regularize the rapidity divergence. The key of

our proposal is that the two pieces of Wilson links are rotated into different directions,

such that the pinched singularity in Wilson-line self-energy corrections, arising from the

integrand [(n · l + i0)(n · l − i0)]−1, is alleviated into [(n · l + i0)(n′ · l − i0)]−1. Hence, the

soft subtraction required to remove this ordinary infrared singularity with the non-dipolar

Wilson links is simpler. The technique of rotating the Wilson links has been also employed

to derive various resummations for a TMD wave function [41]. We then need to examine

whether the above rotation of Wilson links would change the collinear logarithms ln k2T ,

which have been absorbed into the un-subtracted TMD wave function. As postulated

in the Introduction and demonstrated by explicit calculations below, the new definition

reproduces the correct collinear logarithms.

We consider the case with two orthogonal pieces of off-light-cone Wilson links:

φW (k′+, k
′
T , y2) =

∫

dz−
2π

∫

d2zT
(2π)2

ei(k
′

+z−−k′
T
zT )

× 〈0|d̄(0)W †
n2
(+∞, 0) 6 n− γ5Wv(∞, z)u(z)|π+(p)〉 , (3.1)

where the gauge vectors n2 and v = (−ey2 , e−y2 ,0T) are introduced into the un-subtracted

wave function. Compared to eq. (2.1), the vector u in the first (second) piece of Wilson

links Wu (W †
u) has been rotated slightly into the space-like (time-like) direction v (n2) with

large −y2. The orthogonality n2 ·v = 0 implies that the contribution of figure 2(f) vanishes

in Feynman gauge, and that a soft subtraction factor is not required in this definition.

That is, eq. (3.1) will not cause double counting of soft gluons, when it is implemented into

a process more complicated than the pion transition form factor, which demands soft-gluon

factorization.

Computing all the one-loop graphs in figure 2 according to eq. (3.1), we derive

φW (1)
a (k′+, k

′
T , y2) =

αsCF

4π

[

ln2
(

2 e−2y2 k̄2+
k2T

)

−2 ln

(

2 e−2y2 k̄2+
k2T

)]

δ(k+−k′+) δ(kT−k′
T )

+
αsCF

π2

{

θ(k′+−k+) θ(k̄
′
+)

(k′
T−kT )

2−
(

k+−k
′

+

p+−k
′

+

)

k′ 2
T

e−2y2 (k+−k′+)

(k′
T−kT )

2−2 e−2y2 (k′+−k+)2

}

⊕

,

φ
W (1)
b (k′+, k

′
T , y2) =

αsCF

4π

[

ln2
(

2 e−2y2k2+
k2T

)

−2 ln

(

2 e−2y2k2+
k2T

)

+π2

]

δ(k+−k′+) δ(kT−k′
T )

−
αsCF

π2

{

θ(k′+) θ(k+−k′+)

(k′
T−kT )

2−
(

k′+−k+

k′+

)

k′ 2
T

e−2y2 (k′+−k+)

(k′
T−kT )

2+2 e−2y2 (k′+−k+)2

}

⊕

,

φW (1)
c (k′+, k

′
T , y2) = φC(1)

c (k′+, k
′
T ) ,

φ
W (1)
d (k′+, k

′
T , y2) =

αsCF

4π

[

1

ǫ̂
+ln

(

µ2

k2T

)

−ln2
(

2 e−2y2k2+
k2T

)

+ln

(

2 e−2y2k2+
k2T

)

−
π2

3
+2

]

× δ(k+−k′+) δ(kT−k′
T ) ,

φW (1)
e (k′+, k

′
T , y2) = φ

W (1)
d (k′+, k

′
T , y2)

∣

∣

k+→k̄+
−π2 δ(k+−k′+) δ(kT−k′

T ) . (3.2)
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It is trivial to confirm that the sum of all the graphs in figure 2 reproduces the ln k2T term

the same as in eq. (2.14), namely, the same as in [19].

4 Equivalence of TMD definitions

We first point out that the TMD wave functions in eqs. (2.1) and (3.1) approach to the

naive definition

φN (k′+, k
′
T , y2) = lim

yu→−∞

∫

dz−
2π

∫

d2zT
(2π)2

ei(k
′

+z−−k′
T
zT )

×〈0|d̄(0)W †
u(+∞, 0) 6 n− γ5Wu(+∞, z)u(z)|π+(p)〉 , (4.1)

in the limit of vanishing infrared regulators. It is easy to see S(z; y2, yu) = 1 following

eq. (2.2) and S(z; y1, y2) = S(z; y1, yu) for the rapidities y2 = yu, so that eq. (2.1) reduces

to eq. (4.1) as y2 = yu → −∞. In the same limit both the gauge vectors n2 and v approach

to u, and eq. (3.1) also reduces to eq. (4.1). The infinitesimal components v+ = −eyu and

u+ = eyu , being opposite in sign, serve as regulators for the rapidity divergences. It has

been known that the regularization of rapidity divergences, which do not exist in QCD

diagrams, is a matter of factorization schemes [24]. That is, eq. (3.1) collects the same

collinear divergences as eq. (2.1) which are associated with the initial pion in the limit

y2 = yu → −∞.

We then demonstrate that eqs. (2.1) and (3.1) collect the same collinear divergences

for arbitrary rapidity y2 as well. The TMD wave function in eq. (2.1) depends on the

Lorentz invariants p · n2, n2
2, and k2 = −k2T formed by the vectors p, k and n2. An

infrared divergence is regularized by the parton virtuality k2 into ln k2T in kT factorization

as indicated by the one-loop result in eq. (2.14). Because the argument of a logarithm is

dimensionless, kT appears in the ratio p2+/k
2
T or µ2/k2T . Equations (2.1) and (3.1) contain

the same infrared logarithm ln(µ2/k2T ), which is generated by a loop correction without

involving the Wilson links. Therefore, we just focus on the logarithm ln(p2+/k
2
T ) in the

two TMD definitions. Since the Feynman rule nµ
2/n2 · l associated with the Wilson link

is scale invariant in n2, p
2
+/k

2
T must arise from the ratio (p · n2)

2/(n2
2k

2) ∝ (p2+e
−2y2)/k2T

for eq. (2.1). Equation (3.1) depends on the additional vector v but with n2 · v = 0. The

arguments of its infrared logarithms are then given by (p · n2)
2/(n2

2k
2) and (p · v)2/(v2k2),

which are both proportional to (p2+e
−2y2)/k2T . To study the infrared behaviors of eqs. (2.1)

and (3.1) for arbitrary y2, we vary y2 below.

Consider the derivative

d

dy2
φC =

n2
2

2p · n2
pα

d

dnα
2

φC , (4.2)

which is a straightforward consequence of the chain rule [42]. The differentiation d/dnα
2

applies to the Wilson links in the direction of n2, leading to the Feynman rule

n2
2

2p · n2
pα

d

dnα
2

nµ
2

n2 · l
=

n̂µ
2

n2 · l
, (4.3)
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with the special vertex [43]

n̂µ
2 =

n2
2

2p · n2

(

pµ −
p · l

n2 · l
nµ
2

)

. (4.4)

Equation (4.2) then yields

d

dy2
φC = lim

y1→+∞
yu→−∞

1

2

[

S ′(z; y1, y2)

S(z; y1, y2)
−

S ′(z; y2, yu)

S(z; y2, yu)

]

φC , (4.5)

in coordinate space, where the primed soft functions S ′ include the diagrams from those

in the soft functions S, with an original vertex nµ
2 being replaced by a special vertex n̂µ

2 on

the Wilson links in the direction of n2.

In the leading-power approximation, the accuracy at which eq. (2.1) is defined, the

diagrams in S ′(z; y1, y2) are organized into a product of the soft function S(z; y1, y2) with

a soft kernel K(z; y1, y2) following the argument in [21, 43]. The soft kernel K(z; y1, y2)

contains the same set of diagrams as the soft function S(z; y1, y2) at each order of the

strong coupling constant, but with a special vertex on the Wilson links in the direction of

n2 [21, 43]. Similarly, S ′(z; y2, yu) is expressed as a product of S(z; y2, yu) and K(z; y2, yu)

at leading power, so eq. (4.5) is simplified into

d

dy2
φC = lim

y1→+∞
yu→−∞

1

2
[K(z; y1, y2)−K(z; y2, yu)]φ

C . (4.6)

Because the special vertex suppresses collinear dynamics [21, 43], the soft kernels

K(z; y1, y2) and K(z; y2, yu) collect only the single logarithms ln(n2 ·n1) and ln(n2 · u), re-

spectively. With the relation between the infrared logarithms in the limit y1 = −yu → ∞,

ln(n2 · u) = − ln(n2 · n1), which holds for arbitrary finite y2, we have K(z; y1, y2) ≈

−K(z; y2, yu) up to different infrared finite pieces, and

d

dy2
φC ≈ lim

y1→+∞
K(z; y1, y2)φ

C , (4.7)

from eq. (4.6).

Both the variations with respect to n2 and v are related to the variation of y2 via

the chain rule, so the above derivation applies to the TMD wave function in eq. (3.1).

We obtain

d

dy2
φW ≡

[

n2
2

2p · n2
pα

d

dnα
2

+
v2

2p · v
pα

d

dvα

]

φW , (4.8)

where the first (second) term on the right hand side includes the diagrams from those in

φW , with an original vertex nµ
2 (vµ) being replaced by a special vertex n̂µ

2 (v̂µ) on the

Wilson link in the direction of n2 (v). The definition of the special vertex v̂µ is similar to

n̂µ
2 in eq. (4.4) but with the vector n2 being replaced by v. A subset of diagrams, in which

the gluon emitted by the special vertex n̂µ
2 (v̂µ) carries a small momentum, is factorized

out of the first (second) derivative in eq. (4.8). The resultant soft kernel is composed of

– 10 –
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a pair of Wilson links in the direction of n1, which are collimated to the initial quarks in

the limit y1 → ∞ [21, 43], a Wilson link in the direction of n2, and a Wilson link in the

direction of v. A special vertex n̂µ
2 (v̂µ) appears on the Wilson link in the direction of

n2 (v) in the first (second) soft kernel. Due to the suppression from the special vertices

on collinear dynamics, the first and second soft kernels collect only the single logarithms

ln(n2 · n1) and ln(v · n1), respectively. It is obvious that these two logarithms are equal in

the limit y1 → ∞, and can be combined into the soft kernel K(z; y1, y2).

Note that the Wilson links along n2 and v attach to the energetic quarks, instead of

to other Wilson links. In addition to the soft kernel K factorized above, another subset of

diagrams, in which the gluon emitted by the special vertex and attaching to the quark line

carries a large (but not collinear) momentum, can also be factorized [42]. This factorization

follows the argument in [21], and the resultant hard kernel G(z, y2) contains a special vertex

on the Wilson link in the direction of n2 or of v. Hence, the two terms in eq. (4.8) are

summed into the product

d

dy2
φW = lim

y1→+∞
[K(z; y1, y2) +G(z, y2)]φ

W . (4.9)

The functions K and G correspond to the known soft and hard kernels in the typical

Sudakov resummation [42], both of which can be evaluated order by order according to

their definitions described above, with their one-loop expressions being found in [21]. We

have confirmed that the resultant rapidity evolution equation is the same as the one derived

in [19] in the small k′+ limit, namely, in the so-called small x limit, where the kT factorization

theorem is an appropriate theoretical framework for exclusive processes. Note thatK andG

depend on a factorization scale µ, which cancels in their sumK+G. The µ-dependent kernel

in eq. (4.7) was also observed in the rapidity evolution kernel for the TMD fragmentation

function (see eq. (13.55) of [31]), and calls for a simultaneous treatment of the rapidity

and factorization-scale evolutions.

We have shown that φC and φW reduce to the naive TMD wave function as y2 =

yu → −∞. Apparently, the hard kernel G does not depend on the infrared logarithm

ln kT , and can be regarded as a finite piece. Equations (4.7) and (4.9), governed by the

identical soft kernel K, then imply that φC and φW have the same infrared logarithms

at leading power for arbitrary y2. However, they are established in different factorization

schemes represented by the infrared finite piece G. We claim that the two TMD definitions

considered in this work are equivalent in the infrared behavior at all orders of the strong

coupling constant, and supersede the one presented in [21].

5 Conclusion

In this paper we have first investigated the infrared behavior of a TMD pion wave function

with the dipolar Wilson links and the complicated soft subtraction, which was originally

developed for a TMD parton density. The TMD wave-function definition with non-dipolar

off-light-cone Wilson links was then proposed, which was shown to realize the kT factoriza-

tion of hard exclusive processes appropriately as well. It is free of the rapidity divergence
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and of the pinched singularity in the self-energy correction to the dipolar Wilson lines, and

demands simpler soft subtraction. We have illustrated its property by considering the spe-

cial case with two orthogonal gauge vectors, for which the soft subtraction is not needed in

Feynman gauge. It was explicitly demonstrated at one-loop level that this definition yields

the collinear logarithms ln k2T the same as in the one with the dipolar gauge links, which

cancel those in the QCD diagrams, albeit with a distinct ultraviolet structure. We then

illustrated the equivalence of the two definitions by showing that both of them reduce to

the naive TMD wave function as the non-light-like Wilson links approach to the light cone,

and that their evolutions with the rapidity of the non-light-like Wilson links are governed

by the same soft kernel. In this reasoning it also became clear that the two TMD wave

functions were established in different factorization schemes.

As stressed at the beginning of section 3, we started with the un-subtracted TMD

wave function in eq. (2.1), where the future-pointing or past-pointing light-like Wilson links

have been appropriately chosen to facilitate the kT factorization by avoiding the Glauber

region. Therefore, our proposal for a TMD wave function facilitates proofs of the kT
factorization theorem for hard exclusive reactions, and derivations of their various evolution

equations. It is then crucial to explore phenomenological consequences of applying the new

TMD definition, which includes evolution effects, to kT factorization formulas for exclusive

processes. It is straightforward to extend our proposal to the definition of the B meson

TMD wave functions in the heavy-quark effective theory, which will put the perturbative

QCD factorization approach to exclusive B meson decays on more solid ground. It is also

of interest to examine the impact of the new TMD definition on polarized processes, for

which Wilson-link interactions play an important role. We plan to study the above topics

in future publications.

Acknowledgments

We thank John Collins and Zhongbo Kang for illuminating discussions. HNL is supported

in part by the Ministry of Science and Technology of R.O.C. under Grant No. NSC-

101-2112-M-001-006-MY3. YMW acknowledges support by the DFG-Sonderforschungs-

bereich/Transregio 9 “Computergestützte Theoretische Teilchenphysik”.
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