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downstream analyses.

Background: Formalin fixed, paraffin embedded tissues are most commonly used for routine pathology analysis
and for long term tissue preservation in the clinical setting. Many institutions have large archives of Formalin fixed,
paraffin embedded tissues that provide a unique opportunity for understanding genomic signatures of disease.
However, genome-wide expression profiling of Formalin fixed, paraffin embedded samples have been challenging
due to RNA degradation. Because of the significant heterogeneity in tissue quality, normalization and analysis of
these data presents particular challenges. The distribution of intensity values from archival tissues are inherently
noisy and skewed due to differential sample degradation raising two primary concerns; whether a highly skewed
array will unduly influence initial normalization of the data and whether outlier arrays can be reliably identified.

Findings: Two simple extensions of common regression diagnostic measures are introduced that measure the
stress an array undergoes during normalization and how much a given array deviates from the remaining arrays
post-normalization. These metrics are applied to a study involving 1618 formalin-fixed, paraffin-embedded HER2-
positive breast cancer samples from the N9831 adjuvant trial processed with lllumina's cONA-mediated Annealing

Conclusion: Proper assessment of array quality within a research study is crucial for controlling unwanted variability
in the data. The metrics proposed in this paper have direct biological interpretations and can be used to identify
arrays that should either be removed from analysis all together or down-weighted to reduce their influence in

Keywords: High-dimensional array quality, Formalin-Fixed, Paraffin-embedded tissue, Outlier detection

Background

Many institutions have large archives of formalin-fixed
paraffin-embedded (FFPE) tissue. Compared to the general
availability, sample collection protocols, and time-sensitive
nature of fresh-frozen tissue, these large archives of FFPE
tissues are easily assessable and provide a unique opportun-
ity for understanding genomic signatures of disease on a
large scale as well as the ability to evaluate long-term prog-
nostic associations [1,2]. These FFPE samples have been
relatively untouched by high dimensional platforms due to
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RNA degradation and cross-linking of nucleic acids due to
formalin fixation process [3]. However, Illumina introduced
their cDNA-mediated Annealing Selection extension and
Ligation (DASL) assay that is specifically designed to enable
whole genome expression profiling using degradated RNA
and is used in conjunction with their BeadArray technology
[4-7]. Similarly, the Ovation® FFPE WTA system is avai-
lable from NuGEN for processing archival tissues to be
analyzed by the Affymetrix platform. Although sequencing-
based technologies are seen by many as a better alternative
to microarray-based methods, sequencing is limited by
difficult sample preparation protocols for FFPE samples
and the cost of large-scale studies. In addition, several
works have reported on the validity of microarray-based

© 2013 Mahoney et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.



https://core.ac.uk/display/81286919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mahoney@mayo.edu
http://creativecommons.org/licenses/by/2.0

Mahoney et al. BMC Research Notes 2013, 6:33
http://www.biomedcentral.com/1756-0500/6/33

approaches to FFPE relative to fresh-frozen tissue and
the growth for this technology will most likely increase
rapidly [8-10].

The prevailing consensus in the literature is that
normalization is a necessary step for microarray platforms
in order to adjust for the influence of factors extraneous
to the primary biological question such as sample
preparation, scanner efficiency, and cross hybridization of
probes [11,12]. A fundamental premise of many of the
normalization routines is an assertion that the true overall
distribution of RNA abundance will be essentially identical
from sample to sample, since only a minority of genes will
be differentially expressed. Quantile normalization, for
instance, forces the marginal distributions across arrays to
be equivalent, while other routines use feature specific
estimates as a normalization target in order to estimate
non-linear bias correction functions [13,14]. Typically, the
distribution of pre-normalized data is well behaved and the
normalization corrections are numerically small. For array
data using FFPE samples, our experience is that the distri-
butional properties of pre-normalized intensity values are
extremely variable in the amount of abundance, skewness,
and spread that is present in the data (Figure 1). A primary
challenge for proper analysis of these data is defining a
reasonable target distribution to normalize against without
adding unwanted variation to the biological signals by
including outlier arrays in the normalization process.

Although normalization will equalize the distribution
of feature intensities across the arrays, there remains a
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Figure 1 Plot of NUSE vs. median array expression. The circled
points represent arrays that were Figure 1: Plot of NUSE vs. median
array expression. The circled points represent arrays that were
considered to be of poor quality by Stress/dfArray and the horizontal
line represents the cutoff suggested for NUSE. The bead level
standard deviations information was available from one plate of the
experiment (n=96).
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need to assess the quality of the data. For example, of 7
FFPE experiments submitted to Gene Expression Ominbus
(GSE20140, GSE19977, GSE23368, GSE20017, GSE25727,
GSE28064, and GSE21921) only the latter two studies
acknowledged that array quality assessments were even
conducted and neither of these two studies reported their
findings [1,2,8,9,15-17]. Recently Chow et al. reported on
their workflow of assessing array quality for FFPE samples
using the lumi pipeline [18]. Although this work is an
important initial step towards assessing the quality of array
data using FFPE samples, the metrics used are based
on measures of multidimensional dissimilarity; a con-
cept that may be unfamiliar to the average researcher.
Furthermore, thresholds for declaring a sample to be
an outlier is study specific and thus make inter-study
interrogation difficult.

In this work, we introduce two metrics that easily can be
used to assess microarray quality regardless of the platform
under consideration and have direct clinical interpretations.
These two metrics are used 1) to measure how much data
from a single microarray needs to be “stretched” during the
normalization process in order to make its marginal distri-
bution match with the remaining arrays (Stress) and 2) a
measure of how much a single array deviates from the
remaining arrays within the experiment post-normalization
(dfArray). We compare our findings to currently available
metrics for FFPE samples using the DASL assay and show
the benefit of removing arrays of questionable quality
from an experiment where differential expression is
the primary objective.

Case study

The case study consisted of patients with resected
HER-2 positive breast cancer who were enrolled in
the adjuvant N9831 trial (NCT00005970), which was
a Phase III trial where patients were randomized to
three arms: (Arm A) doxorubicin and cyclophospha-
mide followed by weekly paclitaxel, (Arm B) same as
Arm A but followed by 1 year of sequential trastu-
zumab, or (Arm C) same as Arm A but with 1 year
concurrent trastuzumab started the same day as
weekly paclitaxel [19]. Patient consent was obtained
for additional translational work related to the tumor
specimens and the institutional review board of all
participating institutions approved the study. A total
of 1632 samples from 1460 unique patients were labeled
using the Whole-Genome DASL HT Assay and hybridized
on the HumanHT-12 v4 Expression BeadChip. Patient
samples were randomized onto 96-well plates, stratified
by treatment arm, year on N9831 study and nodal status.
The final dataset used herein consists of 1618 arrays after
removing subjects that had withdrawn consent post
data acquisition.
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Methods

Model specification

We begin with a description of a basic statistical model for
microarray data and will follow the notation as described
by McCall and others [20-23]. The basic physical architec-
ture of a microarray is that a specific probe is designed to
bind to a specific RNA transcript. The RNA is extracted
according to the manufacture’s protocol and hybridized to
an array. The observed intensity I;; of the i feature (i=1,

.., p) from the j™ sample (j=1, .., n) is expressed

I = Kij x 05 X 9;; + O (1)

The term Oy represents background intensity present in
the data due to scanner inefficiencies and non-specific
binding of probes. This background is typically subtracted
from the data using vendor-specific methods or user speci-
fied packages. We leave it up to the user to specify which
correction is to be used and simply move to the commonly
used log-linear model form of (1)

Yj =y + Sy + ¢ (2)

Where Y;; denotes the intensity values after background
correction, u; = log,6; represents the “true” relative amount
of a feature hybridized to the array and is the primary par-
ameter of interest in microarray experiments, Sij =
log,K;; represents systematic biases, and ¢; =log,0;
represents random variation with mean 0 and vari-
ance o; with the subscript indicating that the variance
is feature specific.

The term S;; represents an arbitrary bias function for the
i feature on the j™ array and is assumed to be independent
of the remaining parameters in equation (2). Examples of
biases might be variations in sample dilution that would
add a constant value to probes on the array, or other more
complicated effects. The bias function is estimated using
any number of user-specified normalization routines of
which the most popular is quantile normalization and
is used throughout this work [14]. We denote the
post-normalized data as

Yy =Yy = Sj=p;+e (3)

Review of other metrics

Bolstad et al. [24] and McCall et al. [20] introduced metrics
to evaluate whether or not an array is an outlier based on
the post-normalized data Y. Bolstads first metric referred
to as the Relative Log Expression (RLE) is defined as

/

RLE = Y, — median (Y)
i i ij

and compares a given array’s feature intensity relative to the
median level of intensity for that feature across all j arrays.
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The array-specific distribution of RLE is used to determine
if a particular array has predominately low- or high-
expressed features as indicated by an overall shift. This
metric is easily applicable to any microarray platform.
However, for normalization routines that leverage
probe-specific information such as loess, RLE = 0 by
definition so one does not expect to see large shifts.
Moreover, the spread in the distribution of RLE is not inde-
pendent of feature variance o7. This makes distribution
summaries difficult to interpret for the purpose of outlier
detection as an outlier for a particular feature can be
masked by the other features with large variance.

The next metric, first introduced by Bolstad (Normalized
Unscaled Standard Error; NUSE) and later modified by
McCall (Global NUSE; GNUSE), was developed for
evaluating the quality of Affymetrix array data. Both
measure array quality relative to the standard error of the
estimated feature abundance. In the case of Affymetrix, the
primary feature of interest is gene level expression and is
estimated by taking a robust average of probe sequences
(average of 11 probes per gene on the HGU133plus2
array). Whereas RLE is used to look for overall shifts in the
distribution of intensity between arrays, NUSE and GNUSE
assess the variability of the estimated feature intensity
across arrays and is defined as

()
median; (SE (Y;) )

The two measures only differ in that the GNUSE
metric uses distributional information on Y}; from a large
collection of stored arrays to estimate the denominator
median,-(SE(Y},»)) whereas NUSE re-estimates this for each
new experiment. Regardless of which form is used, if the
median NUSE or GNUSE for a particular array is high,
this would be an indication that many of the features are
behaving poorly and thus the array should be considered
for removal. A value of 1.25 for the median NUSE or
GNUSE has been suggested by McCall as a guideline for
identifying bad arrays as this suggests that the variation
for the array is 25% higher than an average array.

One drawback for NUSE and GNUSE is that they are
tailored towards the Affymetrix platform as multiple probes
per gene are needed in order to estimate SE ( Yl{j). For the
[umina platform, depending on the gene annotation used,
between 45 to 55% of genes have only one probe per gene
making calculation of SE (Y at the gene level meaningless
for a high proportion of the array. Each probe on the
[lumina array has on average 30 to 40 beads per probe that
are used to quantify probe specific expression and various
authors have leveraged this aspect of the design in their
assessment of differential expression [25,26]. Potentially,
one could also use the bead standard error as an estimate

GNUSE; =
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of SE (Y}) for the calculation of NUSE. There are two fun-
damental flaws to this approach. First, as shown in
Figure 1, the NUSE metric is directly proportional to the
median expression for an array. This indicates that arrays
with samples having higher RNA concentrations will be
penalized more than arrays with samples closer to the over-
all median. Secondly, the criteria for determining an array
as poor quality is purely one-sided and does not detect
arrays where RNA concentrations are at the lower limits of
detection (Figure 1). This is especially important for FFPE
samples as there is a wide level of expression patterns with
many arrays towards the lower limit of detection (Figure 2).

Recently, Chow et al. described their quality assess-
ment workflow using the lumi package developed by Du
et al. for DASL arrays [18,27]. This workflow is summa-
rized in Table 1. The main metric used in the lumi
package is the “distance to the average array”, which
we will define as

lumiOutlier; = dissimilarity (Zij,Targeti)

Where Z; represents the feature mean centered and
scaled pre- or post-normalized expression data for the i
feature from the j"™ array and Target; represents a robust
estimate of the feature mean across all arrays and is a cor-
respondingly a pre- or post-normalized estimate (Table 1).
The dissimilarity function used is either the Euclidean dis-
tance of the j™ array from the Target or one minus the
correlation between the j™ array and the Target. The lumi
package considers an array as an outlier whenever
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lumiOutlier;> Th x median (lumiOutlier;) , where Th is a
user-specified threshold (default specified in the package is
Th =2). It is difficult to attribute a biologically meaningful
interpretation of this metric in such a way as to make it
easily transparent to the average researcher. Another
drawback is that the threshold is defined relative to
the current sample of arrays. Thresholds that are
sample dependent are problematic in practice as they
vary from batch-to-batch and provide no sense of glo-
bal quality of an array beyond the average array
within the current batch. If, for example, the average
array is also of poor quality, the researcher is left
with an experiment containing many poor arrays
jeopardizing the validity of the study.

Proposed methods
To address the shortcomings of the metrics purposed thus
far, we propose two metrics that combine the essence of
RLE, NUSE/GNUSE, and the lumiOutlier, yet are flexible
enough to be implemented on a broad spectrum of
microarray platforms with direct biological interpretation.
Importantly for the analysis of archival tissues, the
proposed metrics allow for the identification of poor arrays
that have undue influence during the normalization
process. Such arrays are fairly obvious to identify when
evaluating data from fresh-frozen samples; however, it is
less obvious to determine a threshold for determining poor
samples with archival samples.

From Equation (3), S; can be viewed as an estimate
for the amount that each feature on an array needs to be
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Figure 2 Arrays from the breast cancer case study were grouped into four quadrants according to their IQR range (IQR = Q3-Q1) and
skewness (skew = (Q2-Q1)/IQR; symmetric distributions will have skew=0.5). Quadrant R1 consists of arrays with IQR>2 and skew>0.2.
Quadrant R2 consists of arrays with IQR>2 and skew<0.2. Quadrant R3 consists of arrays with IQR<2 and skew>0.2. Quadrant R4 consists of arrays
with IQR<2 and skew<0.2. The percent of the 1618 arrays that fall into each quadrant are summarized along the top of the figure. Panel (A)
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Table 1 Quality assessment strategies for Formalin Fixed Paraffin-Embedded tissues analyzed with Illumina’s DASL

assay

Mahoney et al.

Chow et al.

Normalize Data

Calculate Stress and dfArray

(Plot Stress vs dfArray)

Stage 1: Remove arrays with Stress = 1.5
Renormalize data after removing bad arrays
Calculate dfArray on renormalized data
Stage 2: Investigate arrays with dfArray = 2

Final normalization after removing all outlying arrays

Calculate Qutlier using un-normalized raw data

Stage 1: Remove arrays with Qutlier = Th*median(Outlier) (Default Th = 2)
Renormalize data after removing bad arrays
Calculate Qutlier on renormalized data

Stage 2: Remove arrays with Qutlier = Th*median(Outlier) (Default Th = 2)

shifted for normalization; we refer to this as the Stress
measure due to its similarity to the same concept in
multidimensional scaling. The overall distribution of
Stress captures the amount of deformation that was
applied to an array during normalization. Since we are
not concerned about arrays that differ from other arrays
by a constant shift (e.g., the scanner was 50% brighter
for one array compared to the others) the array-specific
mean of S is subtracted, which leads to our first metric
called Stress and is defined as

log, (Stressj) = median(’Slj — 3_', ’)

and is calculated across all i features on a specific array.
The log, is used here to indicate that the index will need to
be transformed to the fold-change scale. Also, by taking
the absolute value, features that are up or down regulated
by “x-fold” are considered equally Stressed. Various distri-
butional summaries and figures can be generated on
Stress;, but we found the median to be the most useful.
Arrays can be rank ordered according to their Stress values,
and the arrays with the highest or more disparate Stress
values would be considered as suspect for inclusion in the
study. As an example, if the median Stress of an array is 2,
this would indicate that half of the features had to be
adjusted by 100% or more relative to their initial values.
For many studies, a 2-fold change is the biological effect
size of interest. Any final result becomes highly suspect
when it is of the same order of magnitude as the biases that
were removed from the data.

Although Stress provides a biologically meaningful
measure of how much the global distribution of a sam-
ple will change during normalization, it does not lever-
age feature-specific information. From Equation (3), and
under the assumption that a preponderance of features
on a microarray are not differentially expressed, an esti-
mate of intensity for the i feature is simply the mean of

that feature across the n arrays ji, = Y,. Let fi_j denote

the mean and sd (ﬂi(_j)) denote the sample standard

deviation of the i feature by excluding the j™ array. We
define our next metric dfArray (Deviation oF Array) as

/ A~

Yy — by

dfArray; = (4)

sd (ﬂiw))

and is analogous to common diagnostic tests in linear
regression modeling known as Cooks distance [28]. The
numerator of dfArray is similar to the RLE metric proposed
by Bolstad, but dfArray is scaled by the standard deviation
of the remaining arrays so that features are scaled both
within and across arrays as the distribution of each feature
will have a mean of zero and a standard deviation of one.
Recalculation of Equation (4) for each array is computa-
tionally tedious especially for large experiments and a more

efficient approach is to replace j;_; and sd (ﬂi(ﬁ.)) with
their corresponding robust estimates, which only need to

be calculated once. In this work, we used the median
expression of the i feature in place of fi—; and the

median absolute deviation in place of sd (ﬂi(fj)). We

have found various distribution summaries and figures
of dfArray to be useful for quality assessment purposes,
but as a single summary of this metric we use

dfArray = quantile (|afArrayy|,0.75) (5)

as values that fall above or below ;_; are viewed as
equivalent errors. For this work we consider any array with
25% of the features having expression levels larger than
twice the standard deviation above the median expression
as suspect. This threshold can certainly be modified by the
user and by expressing the cutoff in terms of standard
deviations above the median expression level allows for a
better reference of understanding amongst researchers
with basic statistical training.

As we show in the results, dfArray is highly correlated
with the dissimilarity metric used in the [umi package.
Since the dissimilarity metric is used in clustering
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procedures, this indicates that arrays with a large
dfArray index may be associated to clinical subclasses not
accounted for in the normalization process. Our proposed
quality assessment strategy for FFPE samples analyzed is
outlined in Table 1 and the R package Stress.dfArray is
freely available at http://mayoresearch.mayo.edu/mayo/
research/biostat/splusfunctions.cfm.

Results

Distributional characteristics of arrays

As described above, the case study used throughout con-
sists of 1618 HumanHT-12 v4 Expression BeadChip
DASL assays that were generated as part of an ongoing
breast cancer study that analyzed FFPE archival tissues.
Boxplots of the log, transformed intensity values showed
that the quality of the data varied dramatically between
the samples. Specifically, it was apparent that some of the
samples failed completely, while there were other samples
for which it appeared that some of the probes worked
while other probes did not. Figure 2A displays box-plots
of the pre-normalized expression values for 40 samples,
representing various array qualities. For presentation
purposes, samples were assigned to 4 array-quality groups
based on the interquartile range (IQR=Q3 — Q1) and
skewness (skew = (Q3-Q1)/IQR; symmetric distribution
will have skew = 0.50) in order to represent the extremes
in array quality and 10 representative samples are shown
for each group. Approximately 15% of the 1618 FFPE
samples examined exhibited large skewness (shown in
quadrant R2), a small IQR (quadrant R3), or both (quadrant
R4). Unlike data from fresh-frozen samples where only a
couple of arrays might be poor and are obvious to detect,
the distribution of intensity values from archival samples
vary dramatically and there is not a clear threshold for
determining which arrays are of poor quality.

Association of quality metrics with array characteristics

The IQR and skewness thresholds used in Figure 2A to
identify potentially poor-quality samples are ad hoc; how-
ever, they do provide a reasonable first-pass look into the
data. As discussed above, GNUSE or NUSE cannot be
applied as the majority of the features on the DASL array
do not have multiple probes nor is there a comprehensive
archive of the HumanHT-12 v4 Expression Beadchip DASL
assay to define a reference distribution. Figure 2B displays
box-plots of the RLE metric on the same set of arrays
shown in Figure 2A. From our experiences, it is difficult to
detect striking deviations in the RLE across good and
poor-quality samples. Thus, we applied the metrics
Stress, dfArray, and lumi Outlier in an attempt to identify
poor-quality samples. First, we compared Stress against the
IQR (Figure 3A) and skewness (Figure 3A); Stress was
calculated using quantile normalization. Arrays with a low
IQR have a high median Stress indicating that the global
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distribution for these arrays would require the most
“stretching” during normalization (Figure 2A). Similarly,
there is a general tendency for arrays with higher levels of
skewness to also have high median Stress (Figure 3B). Using
15 as a threshold, we removed all arrays with median
Stress > 1.5 and subsequently calculated dfArray and further
compared dfArray to IQR (Figure 3C) and skewness
(Figure 3D). Even after removing arrays based on their
global distributions using Stress, dfArray shows that arrays
of questionable quality might remain. Specifically, we see
that there are arrays with large IQR that might be of poor
quality (Figure 3C). Additionally, there are arrays of various
skewness levels that might be of poor quality (Figure 3D).

Concordance of quality metrics

lumiOutlier has been proposed as a quality-control metric
specifically for Illumina microarrays and thus we evaluated
the concordance between dfArray, Stress, and lumi Outlier.
As displayed in Figure 4A, Stress and lumi Outlier are cor-
related; the suggested threshold for outlier determination
for each method is indicated. Using the suggested thresh-
olds, Stress identified most of the samples that lumi Outlier
did as well as additional arrays. Similarly, we see the direct
association between dfArray and lumi Outlier as anticipated
as both metrics are functions of Equation 4 (Figure 4B).
Cleary, dfArray and lumi Outlier could be calibrated to the
same scale, but dfArray is already on a scale of biological
relevance as it expressed the deviation of an array in units
of standard deviation of the features being measured. This
is a natural metric for deciding intuitive threshold values a
prior and holds across studies. Conversely, there is vague-
ness in determining a threshold value for a distance metric
such as that used by lumi Outlier and the threshold is data
dependent. Figure 4C displays the correlation between
dfArray and Stress using quantile normalization on all 1618
arrays, where the open circles indicate arrays that are
considered outliers by [umi Outlier. Arrays with the
highest Stress also tend to have relatively large dfArray
values and together they capture all the arrays that would
be considered outliers by lumi Outlier.

Benefit of conducting quality assessment on array data

Lastly, to understand the impact of questionable arrays, we
estimated the bias and variance of feature level expression
by considering the 1378 arrays that were of good quality
for all three metrics (Stress/dfArray/lumiOutlier) as the
reference sample. There were 100 arrays that were consi-
dered as outliers by all three methods and 140 arrays that
were considered as outliers only by dfArray and Stress, but
not lumi Outlier. At each stage, when additional samples
are added to the reference sample of 1378 arrays, the data
were re-normalized using quantile normalization and the
corresponding feature mean and variance was recalculated
and compared to the estimates from the reference sample.
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Figure 3 Plot of IQR (A) and skewness (B) of un-normalized data versus Median Stress for all 1618 arrays. Plot of IQR (C) and skewness
(D) of un-normalized data versus median dfArray for the 1410 arrays with median Stress < 1.5.

Median Stress

1.6

Skew

3.0 35
]

p75 [diArray|
25

2.0

1.5

1.0

0.1 02 0.3 0.4 05 0.6 0.7

Skew

Figure 5A displays the ratio of the feature variances relative
to the feature variance of the 1378 reference arrays when
additional arrays are included. When none of the questio-
nable arrays are excluded (i.e., adding the 100 + 140 arrays
that were considered as bad quality for any of the three
methods; light gray line), the feature variance is at least
25% larger than the variance in the reference sample and
becomes increasingly larger for both low- and high-
intensity values. When excluding only the 100 arrays that
were considered as outliers by all three methods (or when
including the 140 arrays that were considered questionable
by only Stress/dfArray) , Figure 5A shows that the relative
increase in variance is approximately 5% to 10% higher for
low-intensity features but is 50% larger for high-intensity

features (dark grey line). Similarly, the bias in the estimated
feature abundance is highest when including all of the
questionable arrays and is lower, but still present, when
excluding only the 100 arrays that were considered ques-
tionable by all three methods. Again, biologically we antici-
pate that only a relatively small number of features are
truly differentially expressed between samples and there-
fore we would not expect to see any shifts in the estimated
mean or variance of feature intensities when including or
excluding any number of arrays.

Discussion
The use of microarrays in understanding disease patho-
genesis has seen extraordinary growth over the last decade.
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dfArray (C) with dashed lines indicating the respective threshold for outlier detection. Open circles indicate outliers as identified by lumi Outlier.

Historically, data generated by this technology has been
used for class comparisons (comparing gene expression
profiles between known disease states), class prediction
(prediction of disease state), and class discovery (identifica-
tion of new subclasses of disease base on gene expression
profiles). Recently, interest has moved from the bench
to the bed side where treatment decisions based on
gene-expression profiles obtained from microarrays
are being considered [29]. In fact, this is the objective
of the current case study; to define a molecular signature
to predict response to trastuzumab for HER2-positive
breast cancer patients.

As the use of microarrays has increased, so to have the
concerns about the validity of this technology [30-33].
Some of these concerns broadly revolve around proper
analytical methods, the concordance of results between
publications, centers, or laboratories, and the concor-
dance of results between different platforms, to name just a
few. Several research initiatives have formed over the years
to investigate these concerns dating back to the early days
of “Affycomp” [34] to the more recent formation of the
External RNA Control Consortium and the MicroArray
Quality and Countrol projects [30]. These efforts have
facilitated greater communication between researchers as
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well as the development of standard practices to increase
the validity of microarray technologies. The overarching
theme resulting from these efforts is that microarray tech-
nologies are reliably reproducible across many different
settings with proper laboratory procedures, data handling,
and scrutiny. Several investigations have reported on the
gain in analytic efficiency when poor-quality microarrays
are removed [20,35]. However, most and if not all of this
work has centered on analysis of fresh-frozen samples.

Analysis of archival tissues presents a new challenge
and is complicated by poor RNA quality and significant
variation among FFPE samples that have been preserved
over the course of many years and under different
conditions. As we have shown here, this variation in
sample quality for FFPE samples creates large variation
in the expression profiles across arrays that are typically
not seen when dealing with fresh-frozen samples. This
has spurred many questions regarding the normalization,
quality assessment, and analysis of array based studies
using FFPE samples [10].

The choice of normalization routine may have an impact
on downstream analyses when it comes to FFPE samples.
Many of the FFPE samples in the present study exhibit a
high prevalence of “dead probes” where little or no signal is
generated beyond background. Many of the more popular
normalization routines (e.g., quantile, loess) used in
practice were developed on data where the prevalence
of dead probes was very small. Therefore, we believe
additional studies are required to determine the best

normalization strategy for data that is generated from
the FFPE samples.

It is important to note that normalization is not the end
all step to preprocessing microarray data and certainly not
a solution for poorly-designed studies. Assessing the quality
of microarray data is essential and the two metrics
proposed here, Stress and dfArray, are easily applicable to
any microarray platform for this purpose. For studies using
FFPE samples, removing arrays that are of poor quality
from the normalization process reduces the bias in the
estimated feature abundance and the noise level in the data
and thus increases the ability to detect biologically-
meaningful differences. Some have suggested that the infor-
mation provided by the quality metrics could also be used
to weight downstream analyses towards arrays with better
quality [36]. This is potentially a viable option for studies
using FFPE samples, but more research is needed. We
anticipate that the arrays identified by the Stress metric as
being an outlier have the greatest influence on the
normalization process and therefore will need to be
excluded. However, the Stress metric could be recomputed
after removing outliers and either the newly-computed
Stress metric or dfArray could be used to down weight
arrays during differential-expression analyses.

As more high dimensional data become publicly
available, there is an increasing interest to pool data
across studies, or at the very least, mine these repositories
for promising biomarker signatures prior to initiating a
research project. At our institution, such an endeavor is
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being implemented through the creation of the Biologically
Oriented Repository Architecture (BORA), which is an
informatics warehouse of “-omics” data that is linked to
the tissue pathology and clinical characteristics of the
patient. These types of initiatives require robust quality
metrics to accurately assess high dimensional data
across multiple studies especially when the data has
been preprocessed and summarized prior to storage.

Findings

Two robust quality control metrics are presented that pro-
vide the end-users with valuable information regarding the
quality of the arrays within their study. These metrics are
directly applicable to any high-dimensional platform and
can be easily implemented into preprocessing pipelines.

Availability and requirements

Package name: Stress.dfArray

Package source: http://mayoresearch.mayo.edu/mayo/re-
search/biostat/splusfunctions.cfm

Requirements: R-2.14.0 or later (http://www.r-project.
org/)

Abbreviations

RLE: Relative Log Expression; NUSE: Normalized Unscaled Standard Error;
GNUSE: Global Normalized Unscaled Standard Error; dfArray: Deviation of
array; DASL: cDNA-mediated Annealing Selection extension and Ligation;
Th: Threshold; FFPE: Formalin-Fixed, Parriffin-Embedded; Q1,Q3: First and
third quartiles; IQR: Interquartile range; SE: Standard Error; sd: Standard
deviation.
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