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Abstract. We derive upper estimates of transition densities for Feller semigroups with jump intensities
lighter than that of the rotation invariant stable Lévy process.

1. Introduction and preliminaries

Let α ∈ (0, 2) and d = 1, 2, . . . . For the rotation invariant α-stable Lévy process
on R

d with the Lévy measure

ν(dy) = c

|y|α+d
dy, y ∈ R

d\{0}, (1)

the asymptotic behavior of its transition densities p(t, x, y) is well known (see, e.g.,
[2]), i.e.,

p(t, x, y) ≈ min

(
t−d/α,

t

|y − x |α+d

)
, t > 0, x, y ∈ R

d .

Estimates of densities for more general classes of stable and other jump Lévy pro-
cesses gradually extended. We would like to mention some of the recent results. Esti-
mates for general stable processes were obtained in [4,32] and for tempered and layered
stable processes in [28] and [30]. Other estimates of Lévy and Lévy-type transition
densities are discussed by Knopova and Kulik in [21], by Knopova and Schilling in
[22] and by Jacob et al. in [20]. Estimates of heat kernels on metric measure spaces
having the volume doubling property were obtained by Barlow et al. [1], Chen and
Kumagai [7,8], and Grigor’yan et al. [10]. Upper estimates for heat kernels of sym-
metric jump processes with small jumps of high intensity were obtained by Mimica
in [25]. In [24,27], the derivatives of stable densities have been considered, while
bounds of heat kernels of the fractional Laplacian perturbed by gradient operators
were studied by Bogdan and Jakubowski in [3].
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In [29], estimates of semigroups of stable-dominated Feller operators are given.
The corresponding Markov process is a Feller process and not necessarily a Lévy
process. The name stable-dominated refers to the fact that the intensity of jumps for
the investigated semigroup is dominated by (1). In the present paper, we extend the
results obtained in [29] and give estimates from above for a wider class of semigroups
with the intensity of jumps lighter than stable processes. We will now describe our
results.

Let f : R
d ×R

d �→ [0,∞] be a Borel function. We consider the following assump-
tions on f .

(A.1) There exists a constant M > 0 such that

f (x, y) ≤ M
φ(|y − x |)
|y − x |α+d

, x, y ∈ R
d , y �= x,

where φ : [0,∞) → (0, 1] is a Borel measurable function such that
(a) φ(a) = 1 for a ∈ [0, 1] and there is a constant c1 = c1(φ) such that

φ(a) ≤ c1φ(b), |a − b| ≤ 1,

(b) φ ∈ C2(1,∞) and there is a constant c2 = c2(φ, α, d) such that

max
(∣∣φ′(a)

∣∣ , ∣∣φ′′(a)
∣∣) ≤ c2φ(a)

for every a > 1.
(c) there is c3 = c3(φ, α, d) such that∫

|x−z|≥1,|y−z|≥1

φ(|y − z|)
|y − z|α+d

φ(|z − x |)
|z − x |α+d

dz ≤ c3
φ(|y − x |)
|y − x |α+d

,

for every |x − y| > 2.
(A.2) f (x, x + h) = f (x, x − h) for all x, h ∈ R

d if α ≥ 1.
(A.3) f (x, y) = f (y, x) for all x, y ∈ R

d .
(A.4) There exists a constant c4 = c4(φ, α, d) such that

inf
x∈Rd

∫
|y−x |>ε

f (x, y)

φ(|y − x |) dy ≥ c4ε
−α, ε > 0.

Denote

bε(x) =
∫

|y−x |>ε

f (x, y) dy, ε > 0, x ∈ R
d .

It follows from (A.1) that there is also the constant c5 = c5(φ, M, α, d) such that

b̄ε := sup
x∈Rd

bε(x) ≤ c5ε
−α, 0 < ε ≤ 1.

Thus, (A.4) is a partial converse of (A.1) and we have

bε := inf
x∈Rd

bε(x) ≥ c6ε
−α, 0 < ε ≤ ε0,
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for constants ε0 = ε0(φ, M, α, d), c6 = c6(φ, M, α, d), since

bε(x) =
∫

|y−x |>ε

f (x, y)

φ(|y − x |) dy −
∫

|y−x |>1

f (x, y)

φ(|y − x |) (1 − φ(|y − x |)) dy

≥ c4ε
−α − M

∫
|y−x |>1

|y − x |−α−d dy

= c4ε
−α − Mc(α, d) ≥ c6ε

−α,

provided εα ≤ c4−c6
Mc(α,d)

.
We note that the assumption (A.1)(c) is satisfied for every nonincreasing function

φ : (0,∞) → (0, 1] such that

φ(a)φ(b) ≤ c φ(a + b), a, b > 1,

for some positive constant c. Therefore, it is easy to verify that all the assumptions on φ

are satisfied, e.g., for functions φ(s) = e(1−sβ)∧1, where β ∈ (0, 1], φ(s) = (1∨s)−γ ,
where γ > 0, φ(s) = 1/ log(e(s ∨ 1)), φ(s) = 1/ log log(ee(s ∨ 1)), and all their
products and positive powers.

It is also reasonable to ask whether the conditions in the assumption (A.1) are
satisfied by more general functions of the form

φ(s) =
{

1 if s ∈ [0, 1],
e−msβ

sγ if s > 1, with m, β > 0, γ ∈ R.
(2)

In this case, both conditions (a) and (b) on φ hold for β ∈ (0, 1] with no further
restrictions on parameters m and γ , while, as proven in Sect. 3, the condition (c) is
satisfied when β ∈ (0, 1] and γ < d/2 + α − 1/2. Furthermore, this restriction on
parameters is essential (see Remark 1 in Section 3). Note also that this range of β

and γ in (2) covers, e.g., jump intensities dominated by those of isotropic relativistic
stable processes (see, e.g., [23, Lemma 2.3]).

For x ∈ R
d and r > 0, we let B(x, r) = {y ∈ R

d : |y − x | < r}. Bb(R
d) denotes

the set of bounded Borel measurable functions, Ck
c (Rd) denotes the set of k times

continuously differentiable functions with compact support, and C∞(Rd) is the set
of continuous functions vanishing at infinity. We use c, C (with subscripts) to denote
finite positive constants which depend only on φ, M, α, and the dimension d. Any
additional dependence is explicitly indicated by writing, e.g., c = c(n). The value
of c, C , when used without subscripts, may change from place to place. We write
f (x) ≈ g(x) to indicate that there is a constant c such that c−1 f (x) ≤ g(x) ≤ c f (x).

Under the assumptions (A.1) and (A.2), we may consider the operator

Aϕ(x) = lim
ε↓0

∫
|y−x |>ε

(ϕ(y) − ϕ(x)) f (x, y) dy

=
∫

Rd

(
ϕ(x + h) − ϕ(x) − h · ∇ϕ(x)1|h|<1

)
f (x, x + h) dh

+1

2

∫
|h|<1

h · ∇ϕ(x) ( f (x, x + h) − f (x, x − h)) dh, ϕ ∈ C2
c (Rd).
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Recall the following basic fact (see [29, Lemma 1]).

LEMMA 1. If (A.1) and (A.2) hold and the function x → f (x, y) is continuous on
R

d\{y} for every y ∈ R
d , then A maps C2

c (Rd) into C∞(Rd).

In the following, we always assume that the condition (A.1) is satisfied. For every
ε > 0, we denote

fε(x, y) = 1B(0,ε)c (y − x) f (x, y), x, y ∈ R
d ,

and

Aεϕ(x) =
∫

(ϕ(y) − ϕ(x)) fε(x, y) dy, ϕ ∈ Bb(R
d).

Note that the operators Aε are bounded since |Aεϕ(x)| ≤ 2‖ϕ‖∞bε(x) ≤
2b̄ε‖ϕ‖∞. Therefore, the operator

etAε =
∞∑

n=0

tnAn
ε

n! , t ≥ 0, ε > 0,

is well defined and bounded from Bb(R
d) to Bb(R

d). In fact, for every ε > 0, the
family of operators {etAε , t ≤ 0} is a semigroup on Bb(R

d), i.e., e(t+s)Aε = etAε esAε

for all t, s ≥ 0, ϕ ∈ Bb(R
d). We note that etAε is positive for all t ≥ 0, ε > 0 (see

(5)).
Our first result is the following theorem.

THEOREM 1. If (A.1)–(A.4) are satisfied, then there exists the constants C1 and
C2 such that for every nonnegative ϕ ∈ Bb(R

d) and ε ∈ (0, ε0 ∧ 1), we have

etAεϕ(x) ≤ C1eC2t
∫

ϕ(y) min

(
t−d/α,

tφ(|y − x |)
|y − x |α+d

)
dy + e−tbε(x)ϕ(x),

for every x ∈ R
d .

The proof of Theorem 1 is given in Sect. 2. To study a limiting semigroup, we will
need some additional assumptions.
(A.5) The function x → f (x, y) is continuous on R

d\{y} for every y ∈ R
d .

(A.6) A regarded as an operator on C∞(Rd) is closable and its closure Ā is a generator
of a strongly continuous contraction semigroup of operators {Pt , t ≥ 0} on C∞(Rd).

Clearly, for every ϕ ∈ C2
c (Rd) with supx∈Rd ϕ(x) = ϕ(x0) ≥ 0, we have Aϕ(x0) ≤

0, i.e., A satisfies the positive maximum principle. This implies that all Pt (t ≥ 0) are
positive operators (see [9, Theorems 1.2.12 and 4.2.2]). Thus, by our assumptions,
{Pt , t ≥ 0} is a Feller semigroup.

The following theorem is our main result.
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THEOREM 2. If (A.1)–(A.6) hold, then there is p : (0,∞) × R
d × R

d → [0,∞)

such that

Ptϕ(x) =
∫

Rd
ϕ(y)p(t, x, y) dy, x ∈ R

d , t > 0, ϕ ∈ C∞(Rd),

and

p(t, x, y) ≤ C1eC2t min

(
t−d/α,

tφ(|y − x |)
|y − x |α+d

)
, x, y ∈ R

d , t > 0. (3)

We note that A is conservative, i.e., for ϕ ∈ C∞
c (Rd) such that 0 ≤ ϕ ≤ 1, ϕ(0) = 1,

and ϕk(x) = ϕ(x/k), we have supk∈N ‖Aϕk‖∞ < ∞, and limk→∞(Aϕk)(x) = 0,
for every x ∈ R

d . It follows from Theorem 4.2.7 in [9] that there exists a Markov
process {Xt , t ≥ 0} such that E[ϕ(Xt )|X0 = x] = Ptϕ(x).

It is known that every generator G of a Feller semigroup with C∞
c (Rd) ⊂ D(G) is

necessarily of the form

Gϕ(x) =
d∑

i, j=1

qi j (x)Dxi Dx j ϕ(x) + l(x)∇ϕ(x) − c(x)ϕ(x)

+
∫

Rd

(
ϕ(x + h) − ϕ(x) − h · ∇ϕ(x) 1|h|<1

)
ν(x, dh), (4)

where ϕ ∈ C∞
c (Rd), q(x) = (qi j (x))n

i, j=1 is a nonnegative definite real symmetric

matrix, the vector l(x) = (li (x))d
i=1 has real coordinates, c(x) ≥ 0, and ν(x, ·) is a

Lévy measure (see [17, Chapter 4.5]).
The converse problem whether a given operator G generates a Feller semigroup

is not completely resolved yet. For the interested reader, we remark that criteria are
given, e.g., in [13–16,18]. Generally, smoothness of the coefficients q, l, c, ν in (4)
is sufficient for the existence (see Theorem 5.24 in [12], Theorem 4.6.7 in [19] and
Lemma 2 in [29]). Other conditions are given also in [26].

Chen et al. [6] and Chen and Kumagai [7,8] investigate the case of symmetric jump-
type Markov processes on metric measure spaces by using Dirichlet forms. Under the
assumption that the corresponding jump kernels are comparable with certain rotation
invariant functions, they prove the existence and obtain estimates of the densities (see
Theorem 1.2 in [6]) analogous to (3). In the present paper, we propose completely
different approach which is based on general approximation scheme recently devised
in [29]. In Theorem 2, we assume the estimate (A.1) from above but we use (A.4) as the
only estimate for the size of f from below. We also emphasize that we obtain exactly
φ(|x − y|) in (3) and from [8,6] follow estimates with φ(c|x − y|) for some constant
c ∈ (0, 1). This seems to be essential especially in the case of exponentially localized
Lévy measures. Our general framework, including a layout of lemmas, is similar to
that in [29]. However, in the present case, the decay of the jump intensity may be
significantly lighter than stable, and therefore, much more subtle argument is needed.
Note that the new condition (A.1)(c), which is pivotal for our further investigations,
is necessary for the two-sided sharp bounds similar to the right-hand side of (3).
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2. Approximation

In this section, we apply an approximation scheme recently devised in [29] (we note
that an alternative approximation scheme is given in [5]). We recall that

fε(x, y) = 1B(0,ε)c (y − x) f (x, y), ε > 0, x, y ∈ R
d ,

and

bε(x) =
∫

|y−x |>ε

f (x, y) dy =
∫

fε(x, y) dy, ε > 0, x ∈ R
d .

We have

Aεϕ(x) =
∫

(ϕ(y) − ϕ(x)) fε(x, y) dy + (b̄ε − bε(x))

∫
(ϕ(y) − ϕ(x))δx (dy)

=
∫

(ϕ(y) − ϕ(x))ν̃ε(x, dy)

= 
εϕ(x) − b̄εϕ(x), ϕ ∈ Bb(R
d), x ∈ R

d ,

where

ν̃ε(x, dy) = fε(x, y) dy + (b̄ε − bε(x))δx (dy),

and


εϕ(x) =
∫

ϕ(y)ν̃ε(x, dy), ϕ ∈ Bb(R
d), x ∈ R

d .

This yields that

etAεϕ(x) = et (
ε−b̄ε I )ϕ(x) = e−t b̄ε et
εϕ(x). (5)

A consequence of (5) is that we may consider the operator 
ε and its powers instead
of Aε. The fact that 
ε is positive enables for more precise estimates.

For n ∈ N, we define

fn+1,ε(x, y) =
∫

fn,ε(x, z) fε(z, y) dz

+ (
b̄ε − bε(y)

)
fn,ε(x, y) + (

b̄ε − bε(x)
)n

fε(x, y),

where we let f1,ε = fε. By induction and Fubini–Tonelli theorem, we get∫
fn,ε(x, y) dy = b̄n

ε − (
b̄ε − bε(x)

)n
, x ∈ R

d , n ∈ N. (6)

Also, it was proved in [29, Lemma 3] that for all ε > 0, x ∈ R
d , and n ∈ N


n
ε ϕ(x) =

∫
ϕ(z) fn,ε(x, z) dz + (

b̄ε − bε(x)
)n

ϕ(x), (7)

whenever ϕ ∈ Bb(R
d).

The next lemma is crucial for our further investigation. It is essential that we obtain
precisely the constants equal to one before bε(y) below.
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LEMMA 2. We have the following.

(1) If (A.1), (A.2) and (A.4) hold then there is a constant c7 = c7(φ, M, α, d) and
the number κ ∈ (0, 1) such that

∫
B(y,κ|y−x |)

|z − x |−α−d fε(y, z)dz ≤ (bε(y) + c7) |y − x |−α−d ,

for every ε ∈ (0, 1) and for every x, y ∈ R
d .

(2) If (A.1) and (A.2) hold then there is a constant c8 = c8(φ, M, α, d) such that

∫
B(y,1)

φ(|z − x |)
|z − x |α+d

fε(y, z)dz ≤ (bε(y) + c8)
φ(|y − x |)
|y − x |α+d

,

for every ε ∈ (0, 1) and for every |x − y| > 2.

Proof. First, we prove the statement (1). We have

∫
B(y,κ|y−x |)

|z − x |−α−d fε(y, z)dz

=
∫

B(y,κ|y−x |)

[
|z − x |−α−d − |y − x |−α−d

]
fε(y, z)dz

+|y − x |−α−d
∫

B(y,κ|y−x |)
fε(y, z)dz.

We only need to estimate the first integral on the right-hand side of the above equality.
Denote θ(z) := |z − x |−α−d , |z − x | > 0.

∂ jθ(z) = (α + d)|z − x |−α−d−2(x j − z j ),

and

∂ j,kθ(z) = (α + d)|z − x |−α−d−2
[
(α + d + 2)

(x j − z j )(xk − zk)

|x − z|2 − δ jk

]
.

This yields

sup
z∈B(y,κ|y−x |),

j∈{1,...,d}
|∂ jθ(z)| ≤ (α + d)(1 − κ)−α−d−1|y − x |−α−d−1, (8)

and

sup
z∈B(y,κ|y−x |),

j,k∈{1,...,d}
|∂ j,kθ(z)| ≤ (α + d)(α + d + 3)(1 − κ)−α−d−2|y − x |−α−d−2, (9)
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for every κ ∈ (0, 1). We consider now two cases. Let first α < 1. Using the Taylor
expansion for θ , (8) and (A.1), we get

∣∣∣∣
∫

B(y,κ|y−x |)

[
|z − x |−α−d − |y − x |−α−d

]
fε(y, z) dz

∣∣∣∣
=

∣∣∣∣
∫

B(0,κ|y−x |)
(θ(y + h) − θ(y)) fε(y, y + h) dh

∣∣∣∣
≤ C(1 − κ)−α−d−1|y − x |−α−d−1

∫
B(0,κ|y−x |)

|h| fε(y, y + h) dh

≤ Cκ1−α(1 − κ)−α−d−1|y − x |−α−d |y − x |−α.

Let now α ≥ 1. Again, using the Taylor expansion for θ , (9), (A.1) and (A.2), we
obtain ∣∣∣∣

∫
B(y,κ|y−x |)

[
|z − x |−α−d − |y − x |−α−d

]
fε(y, z) dz

∣∣∣∣
=

∣∣∣∣
∫

B(0,κ|y−x |)
(θ(y + h) − θ(y) − ∇θ(y) · h) fε(y, y + h) dh

∣∣∣∣
≤ C(1 − κ)−α−d−2|y − x |−α−d−2

∫
B(0,κ|y−x |)

|h|2 fε(y, y + h) dh

≤ Cκ2−α(1 − κ)−α−d−2|y − x |−α−d |y − x |−α.

We thus see that by the two above estimates and by (A.4), we finally have
∣∣∣∣
∫

B(y,κ|y−x |)

[
|z − x |−α−d − |y − x |−α−d

]
fε(y, z) dz

∣∣∣∣
≤ |y − x |−α−d

(
1{|y−x |<ε0}

∫
|z−y|>κ|y−x |

f (y, z) dz + c71{|y−x |≥ε0}
)

,

for sufficiently small κ ∈ (0, 1). This ends the proof of (1).
We now show the statement (2). Let |x − y| > 2. Similarly as before, we have
∫

B(y,1)

φ(|z − x |)
|z − x |α+d

fε(y, z) dz =
∫

B(y,1)

[
φ(|z − x |)
|z − x |α+d

− φ(|y − x |)
|y − x |α+d

]
fε(y, z)dz

+ φ(|y − x |)
|y − x |α+d

∫
B(y,1)

fε(y, z)dz.

Observe that it is enough to estimate the first integral on the right-hand side of the
above-displayed equality. Denote η(z) := φ(|z − x |)|z − x |−α−d . Clearly, by (A.1)
(a)–(b), we have

max

⎛
⎜⎝ sup

z∈B(y,1),
j∈{1,...,d}

|∂ jη(z)|, sup
z∈B(y,1),

j,k∈{1,...,d}
|∂ j,kη(z)|

⎞
⎟⎠ ≤ Cη(y). (10)
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Using the Taylor expansion for η, (10), (A.1) and (A.2), we obtain
∣∣∣∣
∫

B(y,1)

[
φ(|z − x |)
|z − x |α+d

− φ(|y − x |)
|y − x |α+d

]
fε(y, z) dz

∣∣∣∣
=

∣∣∣∣
∫

B(0,1)

(η(y + h) − η(y)) fε(y, y + h) dh

∣∣∣∣
≤

∣∣∣∣
∫

B(0,1)

(η(y + h) − η(y) − ∇η(y) · h) fε(y, y + h) dh

∣∣∣∣
+

∣∣∣∣
∫

B(0,1)

∇η(y) · h
fε(y, y + h) − fε(y, y − h)

2
dh

∣∣∣∣
≤ c8η(y).

which ends the proof.
�

We now obtain the estimates of fn,ε(x, y). Our argument in the proof of the follow-
ing lemma shows the significance of assumptions on the dominating function φ.

LEMMA 3. If (A.1)–(A.4) hold then:

(1) there exists a constant c9 = c9(φ, M, α, d) such that

fn,ε(x, y) ≤ c9n
(
b̄ε + c7

)n−1 |y − x |−α−d ,

for every x, y ∈ R
d , ε ∈ (0, 1), n ∈ N,

(2) there exists the constants c10 = c10(φ, M, α, d) and c11 = c11(φ, M, α, d) such
that

fn,ε(x, y) ≤ c10n
(
b̄ε + c11

)n−1 φ(|y − x |)
|y − x |α+d

,

for every x, y ∈ R
d , ε ∈ (0, 1), n ∈ N.

Proof. We use induction. Clearly, for n = 1, both inequalities hold with constants
c9 = M , c10 = M (and an arbitrary positive c11), respectively. Consider first the
inequality in (1). We will prove that it holds with constant c9 = Mκ−α−d , where
κ ∈ (0, 1) is the number from previous lemma.

Let ∫
fn,ε(x, z) fε(z, y)dz =

∫
B(y,κ|y−x |)c

+
∫

B(y,κ|y−x |)
= I + I I.

By (A.1) (a) and (6), we have

I ≤ κ−α−d M |y − x |−α−d
∫

fn,ε(x, z)dz

= κ−α−d M |y − x |−α−d [
b̄n
ε − (b̄ε − bε(x))n]

.
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By symmetry of f (see (A.3)), induction, and Lemma 2 (1), we also have

I I ≤ c9n(b̄ε + c7)
n−1

∫
B(y,κ|y−x |)

|x − z|−α−d fε(y, z)dz

≤ c9n(b̄ε + c7)
n−1(bε(y) + c7)|x − y|−α−d .

We get

fn+1,ε(x, y) = I + I I + (
b̄ε − bε(y)

)
fn,ε(x, y) + (

b̄ε − bε(x)
)n

fε(x, y)

≤ Mκ−α−d
[
b̄n
ε − (

b̄ε − bε(x)
)n

]
|y − x |−α−d

+c9n(b̄ε + c7)
n−1(bε(y) + c7)|x − y|−α−d

+ (
b̄ε − bε(y)

)
c9n(b̄ε + c7)

n−1|x − y|−α−d

+ (
b̄ε − bε(x)

)n
M |x − y|−α−d

≤ c9(n + 1)(b̄ε + c7)
n|x − y|−α−d ,

which ends the proof of part (1).
We now complete the proof of the inequality in (2). We will prove that it holds with

constants c10 = c1 max(c9, 2α+d M) and c11 = max(c7, c8+Mc3). When |x−y| ≤ 2,
then it directly follows from the part (1) and (A.1)(a). Assume now that |x − y| > 2.
We have ∫

fn,ε(x, z) fε(z, y)dz =
∫

B(x,1)

+
∫

B(x,1)c
= I + I I.

By (A.1) (a) and (6), we get

I ≤ 2α+d Mc1
φ(|x − y|)
|y − x |α+d

∫
fn,ε(x, z)dz

= 2α+d Mc1
φ(|x − y|)
|y − x |α+d

[
b̄n
ε − (b̄ε − bε(x))n]

.

By symmetry of f (see (A.3)), induction, and Lemma 2 (2) and (A.1) (c), we also
have

I I ≤ c10n(b̄ε + c11)
n−1

∫
B(x,1)c

φ(|x − z|)
|x − z|α+d

fε(y, z)dz

≤ c10n(b̄ε + c11)
n−1(bε(y) + c8 + Mc3)

φ(|x − y|)
|x − y|α+d

.

We get

fn+1,ε(x, y) = I + I I + (
b̄ε − bε(y)

)
fn,ε(x, y) + (

b̄ε − bε(x)
)n

fε(x, y)

≤ 2α+d Mc1

[
b̄n
ε − (

b̄ε − bε(x)
)n

] φ(|y − x |)
|y − x |α+d

+c10n(b̄ε + c11)
n−1(bε(y) + c8 + Mc3)

φ(|x − y|)
|x − y|α+d
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+ (
b̄ε − bε(y)

)
c10n(b̄ε + c11)

n−1 φ(|x − y|)
|x − y|α+d

+ (
b̄ε − bε(x)

)n
M

φ(|x − y|)
|x − y|α+d

≤ c10(n + 1)(b̄ε + c11)
n φ(|x − y|)
|x − y|α+d

.

�
LEMMA 4. Assume (A.1), (A.3), and (A.4). Then, there exists c12 = c12(φ, M, α, d)

such that

fn,ε(x, y) ≤ c12b̄d/α
ε

(
b̄n
ε − (

b̄ε − bε(x)
)n

)
, x, y ∈ R

d , ε ∈ (0, ε0), n ∈ N.

(11)

Proof. For n = 1 by (A.1) and (A.4), we have

fε(x, y) ≤ M

εα+d
≤ M

(
bε(x)

c6

)(α+d)/α

≤ M

(
bε(x)

c6

) (
b̄ε

c6

)d/α

,

and so (11) holds with c12 = M c6
−d/α−1. Let (11) holds for some n ∈ N with

c12 = M c6
−d/α−1. By induction and the symmetry of fε, we get

fn+1,ε(x, y) ≤ c12b̄d/α
ε

(
b̄n
ε − (

b̄ε − bε(x)
)n

) (∫
fε(y, z) dz + b̄ε − bε(y)

)

+ (
b̄ε − bε(x)

)n
c12b̄d/α

ε bε(x)

= c12(b̄ε)
d/α

(
b̄n+1
ε − (

b̄ε − bε(x)
)n+1

)
.

�

In the following lemma, we will need some additional notations. For a function g,
we denote bg

ε (x) := ∫
|y−x |>ε

g(|y − x |) fε(x, y)dy and b̄g
ε = supx∈Rd bg

ε (x). We note
that it follows from (A.1) that

b̄
1
φ
ε ≤ c13ε

−α.

LEMMA 5. If (A.1), (A.3), and (A.4) are satisfied, then there exists c14 =
c14(φ, M, α, d) and c15 = c15(φ, α, d) such that

fn,ε(x, y) ≤ c14
(
b̄ε + c15

)n+d/α
n−d/α, x, y ∈ R

d , ε ∈ (0, ε0 ∧ 1), n ∈ N.

(12)

Proof. We may choose n0 ∈ N such that

(1 − c6/c5)
n(n + 1)d/α <

1

n + 1
(13)
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for every n ≥ n0. For n ≤ n0 by Lemma 4, we have

fn,ε(x, y) ≤ c12b̄d/α
ε b̄n

ε ≤ c12b̄n+d/α
ε n−d/αnd/α

0 ,

which yields the inequality (12) with c14 = c12nd/α
0 in this case. For n ≥ n0,

we use induction. We assume that (12) holds for some n ≥ n0 with c14 =
max(c12nd/α

0 , M η−α−dc6
−1−d/α) and c15 = b̄

1
φ
−1

1 , where

p = d 2max(d/α,1)−1

α
, and η =

(
c2

4/(c13(c5 + c15))

2 + 2p

) 1
α

.

We have

∫
fn,ε(x, z) fε(z, y) dz =

∫
B(y,ηε(n+1)1/α)c

+
∫

B(y,ηε(n+1)1/α)

= I + I I.

By (A.1), (A.4), and (6), we get

I =
∫

B(y,ηε(n+1)1/α)c
fn,ε(x, z) fε(z, y) dz

≤ M
∫

B(y,ηε(n+1)1/α)c
fn,ε(x, z)|y − z|−α−d dz

≤ M η−α−dε−α−d(n + 1)−1−d/α

∫
fn,ε(x, z) dz

≤ M η−α−dc6
−1−d/α b̄1+d/α

ε (n + 1)−1−d/α
[
b̄n
ε − (

b̄ε − bε(x)
)n

]
.

By induction, the symmetry of fε and (A.4), we obtain

I I =
∫

B(y,ηε(n+1)1/α)

fn,ε(x, z) fε(z, y) dz

≤ c14
(
b̄ε + c15

)n+d/α
n−d/α

∫
B(y,ηε(n+1)1/α)

fε(y, z)

φ(|z − y|) dz

= c14
(
b̄ε + c15

)n+d/α
n−d/α

(
b

1
φ
ε (y) − b

1
φ

ηε(n+1)1/α (y)

)

≤ c14
(
b̄ε + c15

)n+d/α
n−d/αb

1
φ
ε (y)

(
1 − c4η

−α

c13(n + 1)

)
.

By (13), we also have

(
1 − bε(x)

b̄ε

)n

(n + 1)d/α ≤ (1 − c6/c5)
n(n + 1)d/α ≤ 1

n + 1
. (14)
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Using the fact that φ(a) = 1 for a ∈ [0, 1] and b
1
φ
ε (y) − bε(y) = b

1
φ
−1

1 (y) ≤ c15, we
get

fn+1,ε(x, y) = I + I I + (
b̄ε − bε(y)

)
fn,ε(x, y) + (

b̄ε − bε(x)
)n

fε(x, y)

≤ c14b̄1+d/α
ε (n + 1)−1−d/α

[
b̄n
ε − (

b̄ε − bε(x)
)n

]

+c14
(
b̄ε + c15

)n+d/α
n−d/αb

1
φ
ε (y)

(
1 − c4η

−α

c13(n + 1)

)

+c14
(
b̄ε + c15

)n+d/α
n−d/α

(
b̄ε − bε(y)

)
+c14b̄1+d/α

ε

(
b̄ε − bε(x)

)n

≤ c14
(
b̄ε + c15

)n+1+d/α
(n + 1)−d/α

[
1

n + 1

(
1 −

(
1 − bε(x)

b̄ε

)n)

− b
1
φ
ε (y)

b̄ε + c15

(
1 + 1

n

)d/α c4η
−α

c13(n + 1)
+

(
1 + 1

n

)d/α

+
(

1 − bε(x)

b̄ε

)n

(n + 1)d/α

]
.

By (A.1), (A.4), (14), and the following inequality

b
1
φ
ε (y)

b̄ε + c15
≥ c4ε

−α

c5ε−α + c15
≥ c4

c5 + c15
,

the last expression is bounded above by

c14
(
b̄ε + c15

)n+1+d/α
(n + 1)−d/α

×
[

2

n + 1
+

(
1 + 1

n

)d/α
(

1 − η−αc2
4/(c13(c5 + c15))

n + 1

)]

and, finally, by the inequality

(
1 + 1

n

)d/α

≤
(

1 + p

n

)
,

this is smaller or equal to

c14
(
b̄ε + c15

)n+1+d/α
(n + 1)−d/α

×
[

2

n + 1
+

(
1 + p

n

) (
1 − η−αc2

4/(c13(c5 + c15))

n + 1

)]

≤ c14
(
b̄ε + c15

)n+1+d/α
(n + 1)−d/α

×
[

1 − 1

n + 1

(
η−αc2

4/(c13(c5 + c15)) − 2 − 2p
)]

,
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which gives

fn+1,ε(x, y) ≤ c14
(
b̄ε + c15

)n+1+d/α
(n + 1)−d/α.

�

Using the above lemmas, we may estimate 
n
ε and in consequence also the exponent

operator etAε = e−t b̄ε et
ε .

LEMMA 6. Assume (A.1)–(A.4). Then, for all x ∈ R
d and all nonnegative ϕ ∈

Bb(R
d) such that x /∈ supp(ϕ), we have

etAεϕ(x) ≤ c10t exp(c11t)
∫

ϕ(y)
φ(|y − x |)
|y − x |α+d

dy, ε ∈ (0, 1).

Proof. By (7) and Lemma 3 for every ϕ such that x �∈ supp(ϕ), we get


n
ε ϕ(x) ≤

∫
ϕ(y)c10n

(
b̄ε + c11

)n−1 φ(|y − x |)
|y − x |α+d

dy,

and

etAεϕ(x) ≤ c10e−t b̄ε

∞∑
n=1

tnn
(
b̄ε + c11

)n−1

n!
∫

ϕ(y)
φ(|y − x |)
|y − x |α+d

dy

= c10e−t b̄ε t
∞∑

n=0

tn
(
b̄ε + c11

)n

n!
∫

ϕ(y)
φ(|y − x |)
|y − x |α+d

dy

= c10t exp (c11t)
∫

ϕ(y)
φ(|y − x |)
|y − x |α+d

dy.

�
LEMMA 7. Assume (A.1), (A.3), and (A.4). Then, there is a constant c16 =

c16(φ, M, α, d) such that for every nonnegative ϕ ∈ Bb(R
d) ∩ L1(R

d), we have

etAεϕ(x) ≤ c16 exp(c15t)t−d/α

∫
ϕ(y) dy + e−tbε(x)ϕ(x),

for x ∈ R
d , ε ∈ (0, ε0 ∧ 1), t > 0.

Proof. We directly deduce from Lemma 5 that for every ϕ ∈ Bb(R
d) ∩ L1(R

d)


n
ε ϕ(x) ≤ c14(b̄ε + c15)

n+d/αn−d/α

∫
ϕ(y) dy + (

b̄ε − bε(x)
)n

ϕ(x),

and, consequently, by [29, Lemma 9], we obtain

etAεϕ(x) ≤ e−t b̄ε

[
c14

∫
ϕ(y) dy

∞∑
n=1

tn(b̄ε + c15)
n+d/α

n!nd/α
+ et(b̄ε−bε(x))ϕ(x)

]

≤ c16 exp(c15t)t−d/α

∫
ϕ(y) dy + e−tbε(x)ϕ(x).

�
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Proof of Theorem 1. Let t > 0, ϕ ∈ Bb(R
d), and x ∈ R

d . Denote D ={
y ∈ R

d : φ(|y − x |)|y − x |−α−d < t−1−d/α
}
. Using Lemma 6 for 1Dϕ and Lemma

7 for 1Dcϕ, we obtain

etAεϕ(x) = etAε [1Dϕ](x) + etAε [1Dcϕ](x)

≤ C1eC2t
[∫

D
ϕ(y)

tφ(|y − x |)
|y − x |α+d

dy +
∫

Dc
ϕ(y)t−d/α dy

]

+ e−tbε(x)ϕ(x)

≤ C1eC2t
∫

ϕ(y) min

(
t−d/α,

tφ(|y − x |)
|y − x |α+d

)
dy + e−tbε(x)ϕ(x).

�

Proof of Theorem 2. By Lemma 12 in [29], we have

lim
ε→0

‖Aϕ − Aεϕ‖∞ = 0

for every ϕ ∈ C2∞(Rd). A closure of A is a generator of a semigroup and from the
Hille-Yosida theorem, it follows that the range of λ − A is dense in C∞(Rd) and
therefore by Theorem 5.2 in [31] (see also [11]), we get

lim
ε↓0

‖etAεϕ − Ptϕ‖∞ = 0,

for every ϕ ∈ C∞(Rd). By Theorem 1, this yields

Ptϕ(x) ≤ C1eC2t
∫

ϕ(z) min

(
t−d/α,

tφ(|z − x |)
|z − x |α+d

)
dz,

for every nonnegative ϕ ∈ C∞(Rd). �

3. Discussion of examples

We now prove the condition (A.1) (c) for functions φ of the form (2) for restricted
set of parameters β and γ . First, we recall some well-known geometric fact, see, e.g.,
[23, Lemma 5.3].

LEMMA 8. The volume of intersection of two balls B(x, p + k) and B(y, n −
p) such that |y − x | = n ∈ N, 1 ≤ p ≤ n − 1, 0 < k ≤ n − p is less than

ck
d+1

2 (min {p + k, n − p}) d−1
2 .

PROPOSITION 1. Let the function φ be of the form (2). Then, the assumption (A.1)
(c) is satisfied if β ∈ (0, 1] and γ < d/2 + α − 1/2.

Proof. Let β ∈ (0, 1] and γ < d/2 + α − 1/2. First, note that there is an absolute
constant C = C(m, β, γ, α, d) such that φ(s)s−d−α ≤ Cφ(u)u−d−α for |s − u| ≤ 1
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whenever s, u ≥ 1. By this fact, with no loss of generality, we may and do consider
only the case when |x − y| = n for some even natural number n ≥ 4. Let∫

B(x,1)c∩B(y,1)c

φ(|y − z|)
|y − z|α+d

φ(|z − x |)
|z − x |α+d

dz

≤ 2
∫

B(x,1)c∩B(y,n−1)c
+

∫
(B(x,1)c∩B(x,n−1))∪(B(y,1)c∩B(y,n−1))

= 2I + I I.

We have

I ≤ φ(n − 1)

(n − 1)α+d

∫
B(0,1)c

φ(|z|)
|z|α+d

dz ≤ C
φ(|y − x |)
|y − x |α+d

with some constant C = C(m, β, γ, α, d).
To estimate the term II, we will need the additional notations. For 1 ≤ p < n/2

and 0 ≤ k < n − p, we denote

• Dp := {
z ∈ R

d : n − p − 1 ≤ |z − y| < n − p, |x − z| < |y − z|},
• Dp,k = Dp ∩ {

z ∈ R
d : p + k ≤ |z − x | < p + k + 1

}
,

• n p := max
{
k ∈ N : Dp,k �= ∅}

.

Clearly, Dp ⊂ ⋃n p
k=0 Dp,k and Dp,k ⊂ B(x, p + k + 1) ∩ B(y, n − p). We have

I I ≤ 2α+d−γ+1|y − x |−α−d+γ

∫
1≤|y−z|<n−1,|x−z|<|y−z|

e−m|x−z|β e−m|y−z|β

|x − z|α+d−γ
dz

= 2α+d−γ+1|y − x |−α−d+γ

n/2−1∑
p=1

∫
Dp

e−m|x−z|β e−m|y−z|β

|x − z|α+d−γ
dz

≤ 2α+d−γ+1|y − x |−α−d+γ

n/2−1∑
p=1

n p∑
k=0

∫
Dp,k

e−m|x−z|β e−m|y−z|β

|x − z|α+d−γ
dz

≤ 2α+d−γ+1|y − x |−α−d+γ

n/2−1∑
p=1

n p∑
k=0

e−m(p+k)β e−m(n−p−1)β

(p + k)α+d−γ
|Dp,k |.

Notice that (n − p)β − (n − p − 1)β ≤ β when β ∈ (0, 1]. Furthermore, since
p + k ≤ p + n p < n − p, we also have kβ + nβ ≤ (p + k)β + (n − p)β . These
inequalities and Lemma 8 thus yield

I I ≤ C
e−mnβ

|y − x |α+d−γ

n/2−1∑
p=1

n p∑
k=0

e−mkβ

k
d+1

2 (p + k)−α−d+γ (p + k)
d−1

2

≤ C
e−m|y−x |β

|y − x |α+d−γ

∞∑
p=1

p− d+1
2 −α+γ

∞∑
k=0

e−mkβ

k
d+1

2 ,

for some C = C(m, β, γ, α, d). We conclude by observing that for β > 0 and
γ < d/2 + α − 1/2, the last two sums are bounded by constant. �
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REMARK 1. (1) When β > 1, then the condition (c) in assumption (A.1) fails.
This can be shown by estimating from below the integral

∫
B((x+y)/2,1)

φ(|y − z|)
|y − z|α+d

φ(|z − x |)
|z − x |α+d

dz

for |y − x | big enough.
(2) Also, if β = 1 and γ = d/2 + α − 1/2, then at least for d = 1 the condition (c)

in assumption (A.1) does not hold. In this case we have

∫ x−1

1
e−(x−z)(x − z)−1e−z z−1 dz = 2 log(x − 1)e−x x−1, x > 2.
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