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Abstract The pairwise comparisons method is a powerful tool used for establishing
the relative order between different concepts in situations in which it is difficult (or
sometimes even impossible) to provide explicit rating. Appropriate ratings are deter-
mined by solving eigenvalue problem for the pairwise comparisons matrix. This study
presents a new iterative heuristic rating estimation algorithm that tries to deal with the
situation when exact estimations for some concepts (stimulus) CK are a priori known
and fixed, whilst the estimates for the others (unknown concepts CU ) need to be com-
puted. The relationship between the local estimation error, understood as the average
absolute error E(c) over all direct estimates for the concept c ∈ CU and the pairwise
comparisons matrix inconsistency index is shown. The problem of convergence of sub-
sequent intermediate results is discussed and the convergence conditions are given.

Keywords Decision analysis · Pairwise comparisons · Iterative algorithms ·
Data inconsistency

1 Introduction

The pairwise comparisons (PC) method was introduced in its early form by Fechner
(1966), then it was popularized and developed by Thurstone (1994). The introduc-
tion of hierarchical structures by Saaty (2008) was another important contribution to
the PC method, providing the methodology and practical ways to deal with the large
amounts of criterion parameters. Initially the PC method was used in the scientific
study of psychometrics and psychophysic (Thurstone 1994), however, it then came to
be used in other areas of applications, such as complex decision theory (Saaty 2008),
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economics (Peterson and Brown 1998), voting systems (Tideman 1987) and others.
Since the data, which are input to the PC method are the result of human judgment, it
is very easy for inaccuracy to occur. Hence, the input data set is frequently ambiguous
and does not allow users to draw firm conclusions. There are several indexes of the data
inconsistency (Bozóki and Rapcsak 2008), including the best known Saaty’s eigenvec-
tor method (Saaty 1980), Least Squares Method, Chi Squares Method, Koczkodaj’s
distance based inconsistency index (Koczkodaj 1993), and others. Using these indexes,
the reliability of the data can be assessed, hence, the confidence in the result can be
evaluated. The answer to the question of how much input data must be consistent to
ensure the result reliability is the subject of empirical research. For instance, according
to Saaty’s recommendation every occurrence of the consistency ratio greater than or
equal to 0.1 should be the subject of re-examination of the pairwise judgments until
the inconsistency becomes less than or equal to the desired value (Bozóki and Rapcsak
2008; Triantaphyllou et al. 1990). The main criticism of this approach relates to its
separation from the data and lack of localizing the most problematic matrix elements
(Bozóki and Rapcsak 2008; Koczkodaj 1993; Triantaphyllou et al. 1990). In contrast,
Koczkodaj’s inconsistency index has a meaningful interpretation and provides infor-
mation about the inconsistency location, but it does not provide an exact answer to the
question of how good the average data sample is. Inconsistency identified as too high,
must be reduced to an acceptable level (ideally to zero). Since the ratio coefficients,
which are the input to the PC method, frequently represent experts’ judgements, thus
a natural way of inconsistency reduction is to call the expert panel once again and ask
the professionals gathered to agree on the opinion (Gomes 1993). Because such a solu-
tion is usually time-consuming and expensive, heuristic algorithms of inconsistency
reduction have been proposed (Koczkodaj and Orłowski 1999; Koczkodaj and Szarek
2010; Gomes 1993; Xu and Wei 1999; Bozóki 2008; Temesi 2006; Cao et al. 2008).
The result of these algorithms is a new set of data, which preserves most of the decision
maker’s original judgment structure and significantly reduces the data inconsistency.

The proposed innovative solution approaches the problem differently. It does not
attempt to minimize inconsistency in the data, but rather proposes a way of using the
data, which takes into account their inconsistency. Hence, knowing the exact values for
a few concepts1 and some inconsistent set of ratios between them, the data analyst is
able to estimate values of all other concepts with errors depending on the degree of data
inconsistency. The presented approach is comparable to the inconsistency reduction
methods mentioned above, since the set of concepts for which the estimates are known
can be easily transformed into a consistent set of data (as addressed in Sect. 8).

The first and second sections of the article focus on the presentation of the necessary
facts and definitions concerning the pairwise comparisons methods. Section three
formulates formally the problem considered in the work. The fourth and fifth, sections
provide the Heuristic Rating Estimation (HRE) algorithm together with a numerical
example demonstrating the algorithm application in practice. The sixth section shows
the relationship between errors of estimations obtained by using the HRE algorithm
and the data inconsistency. The next, seventh section addresses the case of which

1 Thurstone (1994) originally called them stimulus.
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the subsequent estimation sets converge to some limit. Finally, the last two sections
contain the closing discussion and summary.

2 A pairwise comparisons method

A crucial part of the PC method is M = (mi j ) ∧ mi, j ∈ R+ ∧ i, j ∈ {1, . . . , n} a
PC matrix that expresses some quantitative relation R over the finite set of concepts

C
d f= {ci ∈ C ∧ i ∈ {1, . . . , n}} where C is a non empty universe of concepts and

R(ci , c j ) = mi j , R(c j , ci ) = m ji . Traditionally, these concepts are interpreted as
subjective stimuli (Thurstone 1994), whilst the values mi j and m ji are considered as
the relative importance indicators (stimulus intensities), so that according to the best
knowledge of an expert the significance of ci equals mi j c j .

Definition 1 A matrix M is said to be reciprocal if ∀i, j ∈ {1, . . . , n} : mi j = 1
m ji

,
and M is said to be consistent if ∀i, j, k ∈ {1, . . . , n} : mi j · m jk · mki = 1.

Since the knowledge stored in the PC matrix usually comes from different profes-
sionals in the field of relation R, it often results in inaccuracy. In such a case, reasoning
using the data gathered in M may give ambiguous results. This observation gave rise to
the research on the concept of data consistency. In the ideal case, M is consistent, and
there is no doubt as regards the value assigned to the concept c j if the value assigned
to ci and m ji is known. Unfortunately, in practice the knowledge in M is inconsis-
tent, and professionals using the PC method have to deal with this incoherence. Thus,
it is important to answer the question of how inconsistent the knowledge in the PC
matrix is. There are a number of inconsistency indexes, including Eigenvecor Method
(Saaty 2008), Least Squares Method, Chi Squares Method (Bozóki and Rapcsak 2008),
Koczkodaj’s distance based inconsistency index (Koczkodaj 1993) and others. For the
purpose of this article, the Koczkodaj’s distance based inconsistency index has been
adopted since it is the only localizing index amongst the above mentioned indexes.

Definition 2 Koczkodaj’s distance based inconsistency index K of n×n and (n > 2)

reciprocal matrix M is equal to

K (M) = max

{
min

{∣∣∣∣1− mi j

mikmkj

∣∣∣∣ ,
∣∣∣∣1− mikmkj

mi j

∣∣∣∣
}}

(1)

where i, j, k = 1, . . . , n and i �= j ∧ j �= k ∧ i �= k.

Intuitively speaking, since in an “ideal” matrix ∀i, j, k ∈ {1, . . . , n} : mi j · m jk ·
mki = 1 the Koczkodaj’s index localizes the worse triad (by the Euclidean distance)
from this ideal.

PC matrices may be over-complete, i.e. there is more than one estimation describing
one and the same relation between vi and v j , but they can be also incomplete, i.e. not
all values m ji are defined. While the first situation can be addressed in many ways,
for instance the estimates related to the same pair of concepts can be averaged, the
other is not desirable. It indicates that the model is lacking of knowledge, although
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the missing estimates can be somehow compensated (for example, by employing the
properties of reciprocity, consistency or transitivity) (Koczkodaj et al. 1999). Hence,
for further consideration, it will be assumed that the n × n PC matrix M is complete
in the sense specified below.

Definition 3 A matrix M (n × n) is said to be complete if ∀i, j = 1, . . . , n : mi j is
defined.

Due to the further consideration it is useful to define a graph structure over the set
C and matrix M.

Definition 4 Let a pairwise comparisons graph G = (C, E, M) be a weighted
directed graph over the matrix M, where

– C , is a set of vertices
– E ⊆ C × C so that (vi , v j ) = e ∈ E ⇔ m ji exists, is a set of edges

– M : E → R so that M(e)
d f= m ji ∧ e = (vi , v j ) is a function of experts’

assessments

Wherever it does not raise doubts, instead of M(e) ∧ e = (u, v) the function M
will be written with two arguments i.e. M(u, v).

3 Problem formulation

Since the concepts are linked to each other by a quantitative relation R, then assuming
that the exact values of some concepts are known, the values of the others should
be proposed. Thus, let μ : C � R+ be a partial function that assigns to some
concepts from C ⊂ C positive values from R+. Hence, the concepts for which the
actual value μ is known are denoted by CK ⊂ C and called known concepts, whilst
concepts for which μ need to be determined are denoted CU = C\CK and called
unknown concepts. The relation between different concepts in terms of the function
μ is represented in the form of the PC matrix M , so that m jiμ(vi ) = μ(v j ). Since
m ji usually aims to express how much greater or smaller vi is than v j with respect to
μ by convention it is assumed that elements of the n × n PC matrix are positive real
numbers, i.e. m ji ∈ R+ where i, j ∈ 1, . . . , n.

The presented method aims to provide an iterative heuristic estimation algorithm
that for all v ∈ CU proposes the appropriate value of μ(v). In this approach m jiμ(vi )

is treated as a sample of μ(v j ), hence the expected value of μ(v j ) is the arithmetic
mean of values m jiμ(vi ). The algorithm is iterative and sets the new expected values
based on the ones previously determined. It stops either when it reaches a fixed number
of iterations or (if convergent) when calculations reach the desired accuracy. Although
during the course of the algorithm the new values for μ(v) and v ∈ CU are calculated,
M remains unchanged and serves as reference data.

4 Heuristic rating estimation algorithm

The principle of operation of the rating estimation algorithm (Listing 1) is to iteratively
assign the value μ(u) to every unknown vertex u ∈ CU by calculating the mean of
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1 HRE(G, ε, level)
2 L ← {v : (u, v) ∈ E ∧ u ∈ CK } ∩ CU
3 l ← 0
4 tmp← ∅
5 Est ← ∅
6 while stop(μ, μold , ε, l, level) do
7 μold ← μ

8 while L �= ∅ do
9 u ← poll(L)

10 T ← {e = (v, u) ∈ E |μ(v)is defined}
11 tmp(u)← 1

#T
∑

(v,u)∈T
μ(v) · M(v, u)

12 end while
13 foreach u ∈ Dom(tmp)

14 μ(u)← tmp(u)

15 foreach v ∈ {v : (u, v) ∈ E} ∩ CU
16 L ← L ∪ {v}
17 Est ← Est ∪ {{μ(u) : u ∈ CU }}
18 l ← l + 1
19 tmp← ∅
20 end while
21 return chose_optimal_est(Est)

Listing 1: Heuristic ratio estimation algorithm

its samples, and then choosing from among all the calculated estimations the one
which is optimal. The idea of the procedure comes from the BFS algorithm (Cormen
et al. 2009), which, layer by layer, traverses the graph of interest. In the presented
approach, the estimates for the next layer are computed on the base of the previous
layer, assuming that vertex repetition in different steps is allowed. The algorithm stops
when either the appropriate layer is reached or if the algorithm converges for the given
G, then it stops when the distance in the sense of the chosen metrics (see Eq. 47)
between the subsequent estimates for elements in CU is smaller than some desired ε.
If the algorithm does not converge (when G is fixed) then the number of steps that need
to be made is explicitly set at the beginning of the estimation procedure. In the case
of standard complete PC matrices the graph is a directed clique, where every single
vertex is connected to each other. In such a case it appears that even in the first step all
the vertices are visited, whilst in the second step the computed estimations may take
into account all possible values2 gathered in M except those describing ratios between
elements in CK . Thus, when the algorithm is not convergent, a few iterations of the
HRE procedure seem to be a reasonable choice.

The main principle of the algorithm (Listing 1) seems to be quite straightforward. It
starts from assigning followers (in sense E) of all elements of CK to the set L (Listing:
1, line: 2). For each u, for which μ(u) is unknown, all its predecessors in E are scanned.
If μ(v) is already known then v becomes an element taken into account during the
mean computation (Listing: 1, line: 10). Then, within the two loops while the current

2 Following the reciprocity principle all the M values in the form M(ci , c j ) where ci ∈ CU ∧ c j ∈ CK

can be used to create expressions
μ(c j )

M(ci ,c j )
are treated as just one specimen of μ(ci ).
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level is traversed (the outer loop Listing: 1, lines: 6–20), and appropriate estimates are
computed (the inner loop Listing: 1, lines: 8–12). The predicate stop becomes false
when either the auxiliary variable l reaches the assumed number of levels or it holds
that l > 1 and ρ(xl , xl+1) < ε, where xl = (μold(cu1), . . . , μold(cuk )) and xl+1 =
(μ(cu1), . . . , μ(cuk )) where the concepts cui ∈ CU and ρ is one of the metrics defined
in (Eq. 47). Otherwise it is true, and the outer loop continues traversing G. As long as
L is not empty the inner loop proceeds as follows: removes one element from the set L
and assigns it to the variable u (Listing: 1, line: 9), forms the auxiliary set T containing
input edges for u so that their beginnings are predecessors of u in E for which μ is
already known, and for all u ∈ L adds to the auxiliary mapping tmp : CU → R+ a
pair (u, μ(v)M(v, u)) (Listing: 1, line: 11). When all the elements of L are processed
then the inner loop ends. Next the outer loop rewrites the auxiliary mapping tmp
to the result map μ (Listing: 1, lines: 13–14). Since for all the concepts that were
previously in L the function μ is known, the next level is devoted to μ calculation for
their followers in L , hence the set L is filled back (Listing: 1, lines: 15–16). At the end
of the outer loop the step counter is incremented and the auxiliary mapping tmp is
emptied. When the outer loop completes its operation, the set Est contains a sequence
of subsequent sets of estimates for concepts from CU . Then, at the end of the procedure
(Listing: 1, line: 21) an optimal set of estimates needs to be chosen. For the purposes of
this work it was assumed that the optimal set of estimates is one for which the average
of the absolute mean estimation errors is minimal (Eq. 4). Let us define the absolute
mean error e(u) as an error indicator for some concept u and mapping μ as follows:

eμ(u) = 1

n

n∑
i=0

|μ(u)− μ(vi ) · M(vi , u)| (2)

where u ∈ CU , (vi , u) ∈ E and μ(vi ) is already defined. Then the average error for
all unknown concepts with respect to μ is defined as:

eμ(CU ) = 1

#CU

∑
c∈CU

eμ(c) (3)

hence

chose_optimal_est(Est) = min
μ∈Est

{
eμ(CU )

}
(4)

In every iteration of the algorithm every weight M(v, u) (Listing: 1, line: 11) is consid-
ered exactly once. Hence, the running time of the outer loop is O(r · |E |) = O(r · n2)

where r is the number of iterations, and n is the size of C . Similarly, the calculation
of the average error (Eq. 3) requires the consideration of every M(v, u) exactly once,
hence computing formulae (Eq. 4) also requires at most r · n2 steps. Thus, the overall
running time of the HRE algorithm is also O(r · n2).

5 Numerical example

Let us illustrate the algorithm defined above by a simple numerical example. Some state
agency supports five innovative projects u1, . . . , u5. After a while the two of them u4
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and u5 come to an end and their actual cost becomes known μ(u4) = 6, μ(u5) = 2. As
both projects exceeded the initial budget, the agency wants to reestimate the expected
costs of the other projects using the already acquired knowledge. For this purpose the
agency organizes a panel of experts under which a PC matrix M is formed (Eq. 5)
reflecting the predicted cost relations between all the five projects.

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 3
5

3
4

1
2

4
3

5
4 1 5

4
11
12

5
2

6
5

4
5 1 1

2 2
3
2

6
5

6
5 1 3

2
3

3
5

4
7

1
3 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

Since experts were assigned to the pairs (ui , u j ) randomly and did not know each
other’s estimates, the matrix M is neither reciprocal nor consistent. Based on this data
the agency must calculate adequate estimates of the projects u1, u2 and u3 and take
appropriate decisions regarding the future of these projects. The reasoning presented
below shows how to calculate the estimated cost of the projects using a HRE procedure
(Listing: 1).

The matrix M is used for the generation graph G, the set of known concepts CK

is formed by the projects u4 and u5, and finally the unknown concept set is CU =
{u1, u2, u3}. Since all concepts are reachable in the first step, and during the second
step the μ mapping is computed for every c ∈ CU using all other concepts in C , then for
the practical demonstration of the algorithm the number of levels traversed is limited
to 2. In fact, for the matrix M as given (Eq. 5) the subsequent estimations calculated by
HRE converge. Thus, instead of limiting the number of steps, an appropriately small
ε can be chosen. This case will be discussed later, after the convergence criterion for
HRE is defined.

Let us assume that the first vertex considered during the first step of the algorithm
is u1. Then, according to the presented procedure μ(u1) is computed as follows:

μ(u1) = 1

2
· (μ(u4) ·M(u4, u1)+ μ(u5) ·M(u5, u1)) (6)

hence,

μ(u1) = 1

2
·
(

6 · 1

2
· +2 · 4

3

)
= 17

6
≈ 2.83 (7)

and further, in the same way:

μ(u2) = 1

2
·
(

6 · 11

12
+ 2 · 5

2

)
= 21

4
= 5.25 (8)

μ(u3) = 1

2
·
(

6 · 1

2
+ 2 · 2

)
= 7

2
= 3.5 (9)
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The first turn of the outer loop (traversing the first level of G) brings estimations for all
vertices in CU . Thus, although the estimation process can be terminated, the agency
concludes that it is better to take into account more data (for instance, due to the
excluding of accidental errors of some experts), then decides to perform the second
iteration of the algorithm. The new subsequent values μ(u1), μ(u2) and μ(u3) are
calculated below.

μ(u1) = 1

4
·
(

21

4
· 3

5
+ 7

2
· 3

4
+ 6 · 1

2
· 1

4
+ 2 · 4

3

)
= 1373

480
≈ 2.86 (10)

μ(u2) = 1

4
·
(

17

6
· 5

4
+ 7

2
· 5

4
+ 6 · 11

12
+ 2 · 5

2

)
= 221

48
≈ 4.6 (11)

μ(u3) = 1

4
·
(

17

6
· 6

5
+ 21

4
· 4

5
+ 6 · 1

2
+ 2 · 2

)
= 73

20
≈ 3.65 (12)

Recognizing the achieved result as optimal, the agency finishes the algorithm. It is
worth noting that in the matrix M (Eq. 5) the two estimates do not come from the
experts and have been introduced just for the matrix completeness. Namely, since
the values μ(v4) and μ(v5) were previously known, the values m4,5 and m5,4 were
calculated as ratios μ(v4)/μ(v5) and μ(v5)/μ(v4) respectively.

6 Data consistency and estimation error

For any algorithm, the result of which being inaccurate, a natural questions con-
cern the accuracy of the resulting solution, and what should be done to improve the
accuracy. The presented procedure is based on the fundamental sample mean esti-
mation equation (Walpole 2012), where for the purpose of the algorithm the prod-
uct μ(ui ) · M(ui , u j ) is treated as a sample, whilst μ(u j ) denotes the expected
value inferred from samples. In this case the natural measure of the algorithm output
accuracy is an estimation error understood as the distance between sample and the
mean. Of course, the smaller the error, the more accurate the result. According to
the popular adage “garbage in, garbage out” it is expected that even the best algo-
rithm is not able to provide good output if the input data are bad. Hence, it might
be expected that the estimation errors of HRE depend on data consistency, and are
smaller in correlation with data inconsistency. The reasoning below supports this
assertion.

Theorem 1 For a complete PC matrix M, and PC graph G over M it holds that

K (M)→ 0⇒ eμ(u)→ 0 (13)

where K (M) is Koczkodaj’s distance based inconsistency index for M, e(u) is the
mean absolute estimation error for u ∈ CU , and μ is any estimation provided by the
HRE procedure.
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Fig. 1 Triads of vertices with u

Proof Let us consider some element u ∈ C representing an initially unknown concept
i.e. u ∈ CU . Let v1, . . . , vn be its predecessors in G so that (vi , u) ∈ E∧i = 1, . . . , n,
for which the value μ(vi ) is known. Since the matrix M is complete there must exist
edges (v1, v2), . . . , (v1, vn) ∈ E so that b2 = M(v1, v2), b3 = M(v1, v3), . . . , bn =
M(v1, vn). Moreover, let us denote edges between vi ’s and u as a = M(v1, u), and
c2 = M(v2, u), . . . , cn = M(vn, u) (see Fig. 1). Following the Eq. 1, Koczkodaj’s
distance inconsistency index K (M), in short K , means that the maximal local incon-
sistence for some maximal triad of three vertices t1, t2, t3 ∈ C is K . Thus, in the case
of triads composed of the concepts v1, vi , u it must hold that:

K ≥ min

{∣∣∣∣1− a

bi ci

∣∣∣∣ ,
∣∣∣∣1− bi ci

a

∣∣∣∣
}

(14)

for all i = 2, . . . , n. This implies that one of the following two statements is true:

a ≤ bi ci ∧K ≥ 1− a

bi ci
(15)

bi ci ≤ a ∧K ≥ 1− bi ci

a
(16)

Let us denote α
d f= 1−K then the statements above can be written in the form:

a ≤ bi ci ∧ 1

α
· a ≥ bi ci (17)

bi ci ≤ a ∧ bi ci ≥ αa (18)

Combining these two expressions (Eqs. 17 and 18) we obtain:

a ≤ bi ci ≤ 1

α
· a ∨ αa ≤ bi ci ≤ a (19)
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Let us denote β1
d f= a and βi

d f= bi · ci , thus

a ≤ βi ≤ 1

α
· a ∨ αa ≤ βi ≤ a (20)

Since α ≤ 1 (see Eqs. 15 and 16) thus the statement (Eq. 20) implies:

αa ≤ βi ≤ 1

α
· a (21)

and of course

αaμ(v1) ≤ βiμ(v1) ≤ 1

α
· aμ(v1) (22)

During the first step of the algorithm the μ is defined only for known concepts v ∈ CK .
Thus, all the concepts v1, . . . , vn are in CK since only such elements are taken into
account when calculating the value of μ(u). It is assumed that the value of the ratio
M(vi , v j ) = m ji for two a priori known concepts vi , v j ∈ CK , corresponds to the
actual fraction μ(v j )/μ(vi ), thus it holds that μ(v1) · bi = μ(vi ). Therefore the update
equation for μ(u) (Listing: 1, line: 11) can be written in the form:

μ(u) = 1

n
(β1 + · · · + β2) μ(v1) (23)

Since every component βi is bounded (Eq. 21) their mean must also be within the
same bounds, which leads to the conclusion that:

α · a · μ(v1) ≤ μ(u) ≤ 1

α
· a · μ(v1) (24)

The absolute estimation error for some u with respect to μ at the end of the first step
of the algorithm (Listing: 1) can be written and bounded from above as follows:

e1(u)= 1

n

n∑
i=0

|μ(u)−βiμ(v1)| ≤ max
j=1,...,n

∣∣μ(u)−β j · μ(v1)
∣∣=|μ(u)− βk · μ(v1)|

(25)

where k ∈ {1, . . . , n}. Because both components of the absolute difference on the
right side of the expression 25 have the same lower and upper bounds (Eqs. 22 and
24), then the maximal possible distance between them is limited by the difference
between their upper and lower bounds. Thus,

|μ(u)− βk · μ(v1)| ≤ 1

α
aμ(v1)− αaμ(v1) = aμ(v1)

(
1

α
− α

)
(26)

then the absolute mean error for the purpose of traversing the first level of G is upper
bounded by:
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e1(u) ≤ aμ(v1)

(
1

α
− α

)
(27)

The second level is a bit more complicated. Under the conditions of the algorithm there
is u ∈ CU , and M is complete. Thus, there exists at least one known concept v ∈ CK

which precedes u in E i.e. (v, u) ∈ E . Let us put v1 = v. This means that during
the first step of the algorithm either vi (for i = 2, . . . , n) was in CK thus obviously
μ(v1) · bi = μ(vi ) or μ(vi ) can be bounded using Eq. 24 (note that in order to use
Eq. 24 a needs to be replaced by bi ). This leads to the following inequality:

α · bi · μ(v1) ≤ μ(vi ) ≤ 1

α
· bi · μ(v1) (28)

thus,

α · βi · μ(v1) ≤ ci · μ(vi ) ≤ 1

α
· βi · μ(v1) (29)

Since the Eq. 21 is valid for each triad, hence

α2 · a · μ(v1) ≤ ci · μ(vi ) ≤ 1

α2 · a · μ(v1) (30)

and then,

α2 · a · μ(v1) ≤ (c1 · μ(v1)+ · · · + cn · μ(vn))

n
≤ 1

α2 · a · μ(v1) (31)

which provides the estimation for μ(u) for the purpose of the second step of the
algorithm:

α2 · a · μ(v1) ≤ μ(u) ≤ 1

α2 · a · μ(v1) (32)

Once again, the absolute error with respect to μ at the end of the second step can be
written and upper bounded as follows:

e2(u)= 1

n

n∑
i=0

|μ(u)−μ(vi ) · ci | ≤ max
i=1,...,n

|μ(u)−μ(vi ) · ci |=|μ(u)− μ(vk) · ck |

(33)

where k ∈ {1, . . . , n}. Then, similarly as in the first step, both components have the
same upper and lower bounds (Eqs. 30 and 32), thus the distance between them must
not be greater than the distance between these limits. So,

e2(u)≤|μ(u)−μ(vk) · ck |≤ 1

α2 aμ(v1)− α2aμ(v1)=aμ(v1)

(
1

α2−α2
)

(34)
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which means that the absolute mean error in the second step of the algorithm is bounded
from above as follows:

e2(u) ≤ aμ(v1) ·
(

1

α2 − α2
)

(35)

Let us consider the r ’th step of the algorithm. Similarly as in the second step we
consider u ∈ CU ∧ v1 ∈ CK where (v1, u) ∈ E (See Fig. 1). Let us assume by
induction that every vi for i = 2, . . . , n is bounded as follows:

αr−1 · bi · μ(v1) ≤ μ(vi ) ≤ 1

αr−1 · bi · μ(v1) (36)

(compare with Eq. 28). Then by repeating the same reasoning as for the second step
(Eqs. 29–35) we come to the conclusion that:

er (u) ≤ aμ(v1) ·
(

1

αr
− αr

)
(37)

Due to the principle of induction the above inequality holds for eve r ∈ N+.
Since every er (u) is a sum of absolute values then it cannot be negative i.e.

0 ≤ er (u) (38)

Moreover, the definition of α implies

K → 0⇒ α→ 1 (39)

Thus, due to the (1/αr − αr ) component on the right side of the inequality 37, when
α → 1 then the whole right side of Eq. 37 also approaches to 0. Therefore, it holds
that for every step r > 0 it is true that:

K → 0⇒ er (u)→ 0 (40)

The above assertion, in the light of the arbitrary choice of u ∈ CU , satisfies the thesis
of the theorem. ��

7 Convergence of solution

One of the immediate questions to come up is about the optimal number of iterations.
The answer is not obvious, since the result of the algorithm depends on the input data.
In particular, it is easy to construct simple graphs over the inconsistent PC matrix M
in cases where every further step of the algorithm significantly increases the absolute
error of estimation. For instance, the graph G such that G = (CK ∪ CU , E, M)

where CK = v1, CU = v2, v3 and {(v1, v2), (v1, v3), (v2, v3), (v3, v2)} ⊆ E where
the values M(v1, v2), M(v1, v3), M(v2, v3), M(v3, v2) or all are less than or greater
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than 1. In the first case the subsequent estimates μ(v2) and μ(v3) tend to 0, and
reversely, if all the values are greater than 1, then μ(v2) and μ(v3) tends to∞. In the
general case, the inequality 37 (Th. 1) suggests that with every subsequent step errors
may increase. This leads to the conclusion that the optimal strategy is “the fewer steps
the better”. Therefore, if the algorithm is not convergent, traversing at most one or two
levels seems like a good idea.

If there are some edges with weights below 1 and some edges with weights above
1, the behavior of the algorithm is not so obvious. During the conducted experiments,
it turned out that very often the subsequent iterations produce series of estimations
convergent to some fixed positive results. To explain this phenomenon let us write
the algorithm in the form of an appropriate system of equations, describing the on-
step calculations (for the second step and the following ones). For this purpose, let
us assume that the first iteration of the procedure was performed, hence the values
μ(v) are assigned to all the concepts v ∈ C . For simplicity, let us assume that CU =
{c1, . . . , ck}, CK = {ck+1, . . . , cn} and denote bi for all i = 1, . . . , k as

bi = 1

n − 1
M(ck+1, ci )μ(ck+1)+ · · · + 1

n − 1
M(cn, ci )μ(cn) (41)

Thus, during the second and subsequent iterations the algorithm calculates the new
estimation value μ(ci ) for each unknown concepts ci ∈ CU according to one of the
following equations:

μ(c1)= 1

n − 1
M(c2, c1)μ(c2)+ · · · + 1

n − 1
M(ck , c1)μ(ck)+ b1

μ(c2)= 1

n − 1
M(c1, c2)μ(c2)+ 1

n − 1
M(c3, c2)μ(c3)+· · ·+ 1

n − 1
M(ck , c2)μ(ck)+b2

· · · (42)

μ(ck) = 1

n − 1
M(c1, ck)μ(c1)+ · · · + 1

n − 1
M(ck−1, ck)μ(ck−1)+ bk

Let us denote:

ai j = 1

n − 1
M(c j , ci ) ∧ i �= j and aii = M(ci , ci ) = 1 and μ(ci ) = xi (43)

Then, the equation system takes the form:

x1 −(1− a11)x1 −a12x2 − . . . −a1k xk = b1
x2 −a21x1 −(1− a22)x2 − . . . −a2k xk = b2
. . . . . . . . . . . . . . . . . .

xk −ak1x1 −ak2x2 − . . . −(1− akk)xk = bk

(44)

Let us define the operator T : Rk → R
k (see Bronstein et al. 2005) as follows:

T x =
(

x1 −
k∑

r=1

a1r xr + b1, . . . , xk −
k∑

r=1

akr xr + bk

)T

(45)
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The considered equation system can be written in the form of a fixed point problem
in the metric space R

k :

x = T x (46)

Let us assume one of the following metrics:

ρ(x, y)=
√√√√ k∑

i=1

|ξi − ηi |2, ρ(x, y)= max
1≤i≤n

|ξi−ηi |, ρ(x, y)=
k∑

i=1

|ξi−ηi | (47)

and x = (ξ1, . . . , ξk), y = (η1, . . . , ηk). It holds that if one of the following conditions
Q1, Q2 or Q3 is less than 1,

Q1 =
√√√√ k∑

i, j=1

|ai j |2, Q2 = max
1≤i≤n

k∑
j=1

|ai j |, Q3 = max
1≤ j≤n

k∑
i=1

|ai j | (48)

then T turns out to be a contracting operator (Bronstein et al. 2005). According to the
Banach fixed point theorem, there exists only one such point. Hence, in such a case
there is only one set of values μ(c1), . . . , μ(ck) which is the limit of the sequence of
HRE estimations.

Due to the fraction 1/n−1 the smaller ai j is the larger C is and the smaller M(c j , ci )

is. Moreover, the conditions (Eq. 48) can be more easily met with fewer concepts
in CU (that is because the summations embedded in the conditions (Eq. 48) include
fewer elements). In other words, the estimation procedure has a high chance to be
convergent if

1. The set CU is relatively small (CK is relatively large),
2. The estimated values μ(v) are similar.

Both of these conditions are quite intuitive and, in practice, are likely to be satisfied.
The first of them reflects the natural desire to provide the experts with rather more
than the lower number of known, reference concepts. The second corresponds to the
common-sense observation that all the considered concepts should be similar to each
other, because then, it is easy to compare them. In other words, the expert estimates
are more reliable when the compared projects are more similar.

The convergence of the algorithm implies the convergence of the estimation error.
Unfortunately, the limit towards which the estimation error tends is not necessarily
the smallest possible error value. Hence, in order to minimize the error, the user needs
to choose the best estimation from all the estimations generated during the course of
the algorithm (Listing: 1, line: 21).

In the case of the previously considered example (Sect. 5) all the three conditions
Q1, Q2 and Q3 are below 1. Thus, the algorithm is convergent and the computed limits
for μ(v1), μ(v2) and μ(v3) are 2.758, 4.578 and 3.493, respectively. The absolute
average estimation errors converge to eμ(v1) = 0.12, eμ(v2) = 0.631 and eμ(v3) =
0.338, and are minimal with respect to the mean of errors eμ(v1)+eμ(v2)+eμ(v3)/3.
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8 Discussion

The idea underlying the HRE algorithm is the assumption that experts work inde-
pendently and try to do their job as best as they can. Thus, they may be wrong in a
random manner, and if so, it makes sense to accept their estimates as a part of samples,
and the expected value of the sample (the arithmetic mean) as the alleged value of
the estimated μ for the unknown concept. The absolute average estimation error may
indicate how good such an estimation is. Depending on the data, the algorithm may
or may not converge. If the algorithm does not converge (subsequent estimates are
getting bigger) or converges to 0, selecting from among the first few estimates the one
with the smallest error seems to be the best choice. If the algorithm converges to a
non 0 value, it is very often useful to generate subsequent estimates until the current
estimate does not differ from the limit (fixed point) with some ε, then to choose a
set of estimations (among those generated) for which the average estimation error is
minimal. Of course, this is not the only possible strategy. For instance, if some subset
of CU is particularly important, only errors for its elements may be taken into account
while determining the optimal set of estimations.

However, the problem considered in the work relies on determining values of μ

for elements from CU = {c1, . . . , ck} on the basis of concepts CK = {ck+1, . . . , cn}
using the matrix M , it can be reformulated as computing a consistent approximation
of a matrix M where certain elements are fixed. Indeed, at the end of the presented
algorithm all the concepts c ∈ C have assigned some values μ(c). Thus, defining
m′i j = μ(ci )

μ(c j )
allows the construction of a new matrix M ′ = [m′i j ], which is a consistent

approximation of M where mi j = m′i j for ci , c j ∈ CK . In the case of the previously
considered example, assuming the values of μ(v1), μ(v2) and μ(v3) corresponding
to the smallest average absolute mean error eμ(CU ), the matrix M ′ equals:

M′ =

⎡
⎢⎢⎢⎢⎣

1 0.602 0.789 0.46 1.379
1.66 1 1.311 0.763 2.289
1.266 0.763 1 0.582 1.746
2.175 1.311 1.718 1 3
0.725 0.437 0.572 0.333 1

⎤
⎥⎥⎥⎥⎦ (49)

In particular it holds that m45 = m′45 = 3 and m54 = m′54 = 1
3 .

Although the presented considerations in (Sect. 6 and 7) assume that the matrix M
is complete (see Def. 3), the HRE algorithm seems to work without this assumption.
For incomplete matrices, the value μ(u) for u ∈ CU can be determined as long as
a path exists in the pairwise comparisons graph G over M (Def. 4) between u and
some element v ∈ CK . Hence, there is a chance that the HRE algorithm may support
different pairwise comparisons techniques also when the input data are incomplete.
In particular, it might be useful for the AHP (Saaty 1977) approach. The properties
of the presented algorithm for the incomplete sets of input data will be the subject of
future research.
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9 Summary

The HRE algorithm presented here for computing estimations of initially unknown
concepts CU using information about known concepts CK and the matrix M proposes
a new approach to the pairwise comparisons method. It defines the intuitive algorithm
of using the pairwise comparisons matrix M for determining the most probable values
of unknown concepts (original stimulus) on the basis of the known concepts. The
presented procedure iteratively generates sets of estimations, then chooses the set
which has the smallest average absolute mean estimation error. According to the
proven theorem, the size of the estimation error depends on K —Koczkodaj’s distance
based inconsistency index shows that the lower the inconsistency index, the lower the
estimation errors. The theorem can be particularly useful when the number of iterations
of the HRE algorithm is small. In such cases, it may in practice be used to estimate
the size of the estimation errors.

For some input data sets, the subsequent estimations produced by the HRE algorithm
converges. If this happens, the estimation errors also converge to some limit, thus the
number of estimation sets produced by the HRE algorithm does not need to be limited
to a few elements. In such a case the sets of estimations can be generated until the limit
towards which the HRE results converge will not be close enough. Such a situation
has also been addressed in the paper. The given conditions of convergence have an
intuitive explanation and in many practical situations are likely to be met.

The HRE algorithm is suitable for any matrix with positive elements, i.e., even
in those situations where the applicability of the classical eigenvector method can
be limited (finding the largest absolute eigenvalue of a nonreciprocal matrix may be
difficult). The presented algorithm remains open for much more data than can be
stored in a single pairwise comparisons matrix. Due to the graph representation of the
problem, multiple values defining ratios between the same pairs of concepts can be
easily encompassed within the algorithm as multiple arcs between the same pairs of
vertices.

Acknowledgments The author would like to thank Prof. W.W. Koczkodaj, Laurentian University,
Sudbury, Ontario, Canada, for the inspiration and valuable Skype discussions about the pairwise compar-
isons method. The author is also grateful to the anonymous reviewers for their comments and suggestions
which have helped improve the quality and content of the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

Bozóki S (2008) Solution of the least squares method problem of pairwise comparison matrices. Central
European Journal of Operations Research 16(4):345–358

Bozóki S, Rapcsak T (2008) On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices.
Journal of Global Optimization 42(2):157–175

Bronstein IN, Semendjajew KA, Musiol G, Mühlig H (2005) Handbook of mathematics, 5th edn. Springer,
Frankfurt am Main

123



A heuristic rating estimation algorithm 203

Cao D, Leung LC, Law JS (2008) Modifying inconsistent comparison matrix in analytic hierarchy process:
a heuristic approach. Decis Support Syst 44(4):944–953

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. MIT Press,
Cambridge

Fechner GT (1966) Elements of psychophysics, vol 1. Holt, Rinehart and Winston, New York
Gomes L (1993) Efficient reduction of inconsistency in pairwise comparison matrices. Syst Anal Model

Simul 11(4):333–335
Koczkodaj WW (1993) A new definition of consistency of pairwise comparisons. Math Comput Model

18(7):79–84
Koczkodaj WW, Herman MW, Orlowski M (1999) Managing null entries in pairwise comparisons. Knowl

Inf Syst 1(1):119–125
Koczkodaj WW, Orłowski M (1999) Computing a consistent approximation to a generalized pairwise

comparisons matrix. Comput Math Appl 37(3):79–85
Koczkodaj WW, Szarek SJ (2010) On distance-based inconsistency reduction algorithms for pairwise

comparisons. Log J IGPL 18(6):859–869
Peterson GL, Brown TC (1998) Economic valuation by the method of paired comparison, with emphasis

on evaluation of the transitivity axiom. Land Econ 74:240–261
Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281
Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-

Hill International Book, New York
Saaty TL (2008) Relative measurement and its generalization in decision making. Why pairwise com-

parisons are central in mathematics for the measurement of intangible factors. The analytic hierar-
chy/network process. Stat Oper Res (RACSAM) 102:251–318

Temesi J (2006) Consistency of the decision-maker in pair-wise comparisons. Int J Manag Decis Mak
7(2):267–274

Thurstone LL (1994) A law of comparative judgment, reprint of an original work published in 1927. Psychol
Rev 101:266–270

Tideman TN (1987) Independence of clones as a criterion for voting rules. Soc Choice Welf 4:185–206
Triantaphyllou E, Pardalos PM, Mann SH (1990) A minimization approach to membership evaluation in

fuzzy sets and error analysis. J Optim Theory Appl 66(2):275–287
Walpole RE et al (2012) Probability & statistics for engineers & scientists, 9th edn. Prentice Hall, Englewood

Cliffs
Xu Z, Wei C (1999) A consistency improving method in the analytic hierarchy process. Eur J Oper Res

116(2):443–449

123


	A heuristic rating estimation algorithm for the pairwise comparisons method
	Abstract
	1 Introduction
	2 A pairwise comparisons method
	3 Problem formulation
	4 Heuristic rating estimation algorithm
	5 Numerical example
	6 Data consistency and estimation error
	7 Convergence of solution
	8 Discussion
	9 Summary
	Acknowledgments
	References


