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Abstract The effect of a delay feedback control

(DFC), realized by displacement in the Duffing

oscillator, for parameters which generate strange

chaotic Ueda attractor is investigated in this paper.

First, the classical Duffing system without time delay

is analysed to find stable and especially unstable

periodic orbits which can be stabilized by means of

displacement delay feedback. The periodic orbits are

found with help of the continuation method using the

AUTO97 software. Next, the DFC is introduced with a

time delay and a feedback gain parameters. The proper

time delay and feedback gain are found in order to

destroy the chaotic attractor and to stabilize the

periodic orbit. Finally, chatter generated by time delay

component is suppressed with help of an external

excitation.

Keywords Duffing’s system � Time delay �
Chaos control � Chatter control

1 Introduction

The first proponent of the chaos theory was Henri

Poincaré, who in the 1880s, studying a three-body

problem, found nonperiodic orbits which are not

forever increasing nor approaching a fixed point. Since

that time chaos has been observed in a number of

experiments although it has not been defined. Yoshi-

suke Ueda on November 27, 1961 at Kyoto University

was experimenting with analog computers and noticed

‘‘randomly transitional phenomena’’ in the specific

Duffing’s oscillator. Currently scientists are looking

for efficient methods to avoid that interesting, but in

many cases—from technical point of view—danger-

ous phenomena. On the other hand, not only the

Duffing but also other nonlinear systems exhibit

instabilities and chaos. Therefore great attention has

been paid to stabilize them. Time delay effect is one of

the ideas to achieve this aim. Time delays are common

feature of many physical, biological and engineering

systems. There are systems where time delay is present

intrinsically due to processing time, mechanical

properties etc., for instance in technological cutting

processes. On the other hand, there are systems where

time delay is introduced externally in order to stabilize

unstable periodic orbits (UPO) and unstable steady

states (USS). Various methods of controlling unstable

and chaotic systems have been developed in the past

20 years and applied to real systems in physics,

chemistry, biology, and medicine [9]. Pyragas [24]

was the first who introduced delay feedback control
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(DFC) to stabilize UPO embedded in a chaotic

attractor. This method, known as time delay auto-

synchronization (TDAS), bases on constructing the

control force from the difference of the current state to

the state one period in the past, so that the control

signal vanishes when the stabilization of the target

orbit is attained. Next, the TADS method was

improved by introducing multiple delays (extended

TADS or ETADS) [9].

DFC is applied usually for stabilization of the UPO

[5, 7, 14, 23, 25] and also to control unstable fixed

points (FP) [3, 7, 9, 14, 33]. Separate class of delay

differential equations (DDE) are the neutral delay

differential equations (NDDE). Its stability and

asymptotic properties are described in [2, 13].

DFC method proposed by [24] works very well in

case of the UPO if time delay is precisely equal to the

period of the UPO and the feedback gain is strong

enough. Note that only the stability properties of the

orbit are changed, while the orbit itself and its period

remain unaltered. If the orbit has an odd number of the

real Floquet multipliers greater than unity, the delayed

feedback can never stabilize it [1].

Usually in the literature DFC is applied to stabilize

the Rössler system [1, 7, 14, 23] but only selected

papers are devoted to the Duffing’s oscillator [8, 10,

22] which in its various forms is used to describe many

nonlinear systems. The Ueda’s oscillator can be

considered as a special case of the Duffing’s system

which natural frequency equals to zero. Chaotic

vibrations for this system exist for some set of

parameters and initial conditions.

In general, dynamical systems with time delay are

important class of systems, especially in the control

theory, but on the other hand time delay is very often

encountered in various technical systems, such as

electric, pneumatic and hydraulic networks, chemical

and machining processes, etc. These problems are

described by DDE which indeed are a type of

differential equations where time derivatives at the

current moment of time depend on the solution and

possibly on its derivatives at previous moments. For

instance, in cutting processes the effect of time delay

generates harmful vibrations—a so called regenera-

tive chatter [6, 11, 12, 15, 26, 27, 30–32]. This one and

another kind of chatter in real processes are very often

investigated by means of various methods of nonlinear

time series analysis [16–21, 28].

The DDE exhibit much more complicated dynam-

ics than ordinary differential equations since a time

delay could cause a stable equilibrium to become

unstable and lead to chaotic motions. Therefore, this

is very important from practical point of view to

control chaotic systems by means of DFC method and

to control the systems which are time delayed by

nature, e.g. cutting processes with regenerative chatter

[27, 32].

In this paper, at the beginning we consider the effect

of time delay in the Ueda’s oscillator in order to

stabilize the chaotic attractor by a proper selection of

the DFC parameters: the time delay and the feedback

gain. Next, the problem, how the chatter vibrations

generated by the time delay system can be suppressed

by external excitation is presented.

2 Ueda’s attractor

The classical Duffing’s oscillator is defined by the

nonlinear non-autonomous equation

€xþ d _xþ x2
0xþ cx3 ¼ f cosðktÞ: ð1Þ

This model describes the dynamics of a periodically

driven point mass in a single or double-well potential,

depending on the parameters. The Ueda’s oscillator is

a special case of Duffing’s oscillator where the natural

frequency is equal to zero (x0 = 0). With additional

assumption of d = 0.05, k = 1 and c = 1 the

Fig. 1 Bifurcation diagram of the Ueda’s oscillator for

d = 0.05, k = 1, c = 1 and x0 = 0
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bifurcation diagram with the external force amplitude

(f) as a branching parameter shows the regions of

regular and chaotic motion (Fig. 1). The chaotic

regions are emphasized by the largest Lyapunov

exponent (LLE) depicted by the blue line. The shaded

region underneath means positive value of the LLE.

For further investigation, the typical Ueda’s chaotic

attractor, obtained for f = 7.5, has been chosen

(Fig. 2). According to the theory of the DFC, the

UPO can be stabilized, providing they exist. To find

the UPO the continuation method has been applied. In

this aim the AUTO97 software has been engaged [4].

The results are depicted in the bifurcation diagram

(Fig. 3) where the external excitation amplitude (f) is

used as the bifurcation parameter, and a stands for the

vibrations’ amplitude. In the region where the chaotic

Ueda’s attractor exists (f = 7.5) there are three UPOs,

with periods 1, 2 and 4 T, note that: T ¼ 2p
k .

Increasing the external force amplitude (f) from

zero (Fig. 3) leads to the saddle-node bifurcation

occurrence. One unstable and two stable solutions

exist in the range of excitation amplitude from 0.12 to

0.43, depending on initial conditions. For f = 2, the

first period doubling bifurcation (PDB) appears.

Simultaneously, the 1 T period solution losses its

stability (dashed line) and the new solutions of period

1 and 2 T occur. The next PDBs lead to 2, 4 and 8 T

period solutions, that are marked by the colour lines.

Finally, the cascade of PDBs leads to chaos which

cannot be observed in Fig. 3 but is visible in Fig. 1,

where the positive largest Lyapunov exponent (LLE)

is shaded. At the external force amplitude equal ca. 8

some of the solutions regain stability. Then, the stable

periodic orbits (solid line) coexist with the UPO

(dashed lines, Fig. 3).

According to the DFC theory, the Ueda’s chaotic

attractor can be stabilized with the help of time delay

which corresponds to the period of the selected UPO

(1, 2, 4 or 8 T). The choice of time delay seems to be

quite obvious, but the feedback gain should be

discussed. The analysis of chaos control is presented

thoroughly in the next section.

3 Chaos control

In order to control the Ueda’s chaotic attractor the time

delay s with feedback gain a is added to the original

Duffing’s system (1). Thus a modified Ueda’s oscil-

lator with the DFC is defined by the equation

€x tð Þ þ d _x tð Þ þ x2
0x tð Þ þ cx tð Þ3

¼ f cosðktÞ þ axðt � sÞ: ð2Þ

For the excitation amplitude’s value f = 7.5 the

chaotic attractor exists (Fig. 2) together with four

UPOs of periods 1, 2, 4, and 8 T. Therefore, the

feedback gain a is tested here, in case when the time

delay s equals to 1, 2, 4, and 8 T, respectively (Fig. 4).

Fig. 2 Chaotic Ueda’s attractor obtained for the parameters

d = 0.05, k = 1, c = 1, x0 = 0, f = 7.5 and the initial

conditions x0 ¼ 0; _x0 ¼ 0

Fig. 3 Bifurcation diagram of periodic solutions of Ueda’s

oscillator for d = 0.05, k = 1, c = 1, x0 = 0
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The numerical simulation of Eq. (2) is conducted in

Matlab-Simulink using 4-th order Runge–Kutta pro-

cedure with variable integration step and the relative

tolerance of 10-6. In order to calculate the maximal

Lyapunov exponent (LLE, the blue line in Figs. 4, 5)

of the system with time delay, the method of

synchronization, developed by Stefanski [29] is

applied.

The unstable T-periodic orbit can be successfully

stabilized (Fig. 4a), when the feedback gain a is

greater than 0.065 and lesser than 0.13. When

a[ 0.13 various scenarios of motion are possible,

depending on initial conditions, that is periodic of

period 3 T or quasi-periodic motion. This situation

lasts till a = 0.215, and next the DFC system works

only partially, because a chaotic attractor exists

together with a quasi-periodic motion for some initial

conditions. Stabilization of 2 T period orbit with the

time delay s = 2 T looks promisingly, as well

(Fig. 4b). In the region when 0.25 \ a\ 0.4 chaos

is fully suppressed and the system response frequency

is exactly equal to the external force frequency k = 1.

It has been expected, that time delay s = 2 T results in

stabilization of the orbit with period 2 T while the

system response period is 1 T.

The stabilization test of the 4 T period solution

leads to motion 3 T period (Fig. 4c) in spite of the fact,

that stabilization of the 4 T period orbit was expected

here. Comparing the bifurcation diagrams in Fig. 4a,

Fig. 4 Bifurcation diagram

of Ueda’s oscillator with

delay feedback control and

feedback gain a as a

bifurcation parameter, time

delay s is equal to 1 T (a),

2 T (b), 4 T (c), 8 T (d)

Fig. 5 Bifurcation diagram of Ueda’s attractor with delay

feedback control, time delay s is a bifurcation parameter. The

feedback gain a = 0.1
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c, one can notice that at the feedback gain a & 0.15

the same 3 T period solution exists, both for the time

delay s = 1 T and s = 4 T. When the time delay

s = 8 T there is no stabilization of any periodic orbits

in the analysed range of the feedback gain a. This orbit

has an odd number of the real Floquet multipliers

greater than unity. This problem will be studied in the

future.

On the other hand, chaos can be controlled by

adjusting time delay s. This is a second key parameter

of the DFC, which influences the system dynamics.

According to a typical approach to the problem only

the time delay which is equal to the period of UPO is

able to stabilize the orbit and avoid chaos. Therefore,

now the value of the time delay s is investigated at the

feedback gain a = 0.1. In this case, the solution of

period T is expected to be stable when s = T. This is

of course true but, the regular vibrations periodic or

quasi-periodic) are also possible for other time delays

in the places when the Largest Lyapunow Exponent

LLE equals zero (see Fig. 5). However the widest

region of synchronization and periodic motion appears

when s & 1/3 T and s & 3 T for the analysed

system. All these phenomena are illustrated in the

bifurcation diagram presented in Fig. 5, where for

convenience, the upper scales of the period T corre-

sponding to time delay s is added.

In the case of s & 1/3 T, a periodic solution also

exists, even though the vibrations’ amplitude is the

smallest one. This can have applicable aspects in

mechanical systems which should be controlled in

order to avoid chaos and large amplitudes of

vibrations.

4 Chatter control

An orthogonal cutting process can be depicted as a one

degree of freedom model (see Fig. 6) with an equiv-

alent mass of the tool (it is assumed m = 1), visco-

elastic properties represented by the dash-pot (d) and a

nonlinear spring of Duffing’s type. The spring force is

denoted as Fs (Eq. (5)). The chip thickness (h) is the

difference between the current positions of the cutting

tool x(t) and its position in the time instant corre-

sponding to one revolution earlier x(t - s) in case of

turning or one flute earlier in case of milling. The time

delay s is connected with the spindle’s speed X. The

instantaneous chip thickness h(t) is given by:

hðtÞ ¼ h0 � xðtÞ þ xðt � sÞ ð3Þ

where h0 is the initial chip’s thickness. The delay

differential equation of motion is written as:

€x tð Þ þ d _x tð Þ þ Fs ¼ Fr ð4Þ

Fr is the cutting force generated by the regenerative

mechanism, Fs is the stiffness force given by the

equations:

Fs ¼ kxðtÞ þ cx3ðtÞ;
Fr ¼ a h0 � xðtÞ þ xðt � sÞð Þ: ð5Þ

Equation (4) with substitution (5) can be converted

to the form:

€x tð Þ þ d _x tð Þ þ x2
0 þ a

� �
x tð Þ þ cx tð Þ3¼ axðt � sÞ

ð6Þ

Equation (6) is solved numerically in Matlab-Simu-

link using 4-th order Runge–Kutta procedure with

variable integration step and the relative tolerance of

10-6. The same numerical procedure is used in the

previous section solving Eq. (2).

Investigation of Eq. (6) leads to the so called

stability lobes diagram (SLD) presented in Fig. 7. The

colour map shows maximal displacement (called

vibrations amplitude) of the system in the plane

of X and a, obtained for parameters: x2
0 ¼ 2 , d = 0.1,

c = 0.25 and initial conditions x(0) = 3.5, x’(0) =

v0 = 0. The red colour corresponds to the biggest

amplitude. In contrast to the linear system in the

considered model, vibrations depend on initial condi-

tions (x0, v0). For example, the parameters of point 1

(X = 2.5 and a = 0.25) give the limit cycle repre-

sented by the green line or the trivial solution

represented by the blue point of equilibrium in

Fig. 8. The basin of attraction of these solutions is

shown in Fig. 9. If the initial conditions of numerical

Fig. 6 Scheme of cutting process with regenerative mechanism
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simulations are chosen from the blue region (in

Fig. 9), then we get the blue trivial solution (Fig. 8).

Whereas the initial conditions are selected from the

green area of Fig. 9 (big initial conditions), the green

solution is an output of the analysed system. This basin

of attraction is made by repeating simulations at the

same parameters starting from various initial condi-

tions (x0, v0).

According to our idea, chatter vibrations can be

suppressed by introducing external excitation treated

as chatter control system (CCS) with the amplitude f

and the frequency k. Then the equation of motion takes

the form

€x tð Þ þ d _x tð Þ þ x2
0 þ a

� �
x tð Þ þ cx tð Þ3

¼ axðt � sÞ þ f cosðktÞ ð7Þ

Equation (7) is similar to the Eq. (2), which is has been

analysed in the previous section for the sake of chaos

control by delay component. Equation (7) has only

modified natural frequency (x0) by adding a. Now,

chatter vibrations generated by the time delay com-

ponent can be supressed by external excitation. The

same excitation produces chaos in Sect. 3. The

question of selection of f and k is a key point at the

moment. For the parameters corresponding to point 1

(Fig. 7, X = 2.5 and a = 0.25) a set of parameters (f,

k) is tested numerically (in Matlab-Simulink as

mentioned above) in order to find these of them,

which reduce chatter vibrations’ amplitude. The

results of the simulations are presented in the map

(Fig. 10), where colours correspond to the value of

maximal displacement of x in the steady state. The

maximal displacement of x is called vibrations’

amplitude or chatter’s amplitude, because this kind

of vibrations in cutting process is known as chatter.

The minimum of the vibrations’ amplitude is obtained

for f = 0.35 and k = 1.6010 (white point), which is

taken to further analysis. The time series in Fig. 11

presents a response of the delay system both with

activated and not activated chatter control unit. The

Fig. 7 Dependence of vibrations’ amplitude on parameters X
and a for the initial condition x(0) = 3.5

Fig. 8 Trivial (blue) and non-trivial (green) solutions in the

phase space. (Color figure online)

Fig. 9 Attraction basin of trivial and non-trivial solutions
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chatter vibrations’ amplitude decreases about 10 times

when CCS is on. That proves the idea works properly.

However, CCS has a fault because it is difficult to

match the external excitation (k) and the frequency

(f) in order to suppress chatter vibrations. In the

analysed case the chatter frequency fc is read out from

the time series when CCS is off (Fig. 11). The value of

chatter frequency is 2p/3 at rotational speed X = 2.5

whereas, the external excitation frequency (f), which

fulfil assumption of chatter suppression is about p/2

(k = 1.6010).

However, not all initial conditions guarantee the

decrease of chatter vibrations. Only relatively small

initial conditions (x0, v0) chosen from the brown

region, presented in Fig. 12 give an improvement in

cutting process (see the brown time series in Fig. 11).

When initial conditions are selected from the green

basin the high amplitude of chatter vibrations still exist

in the system (see green time series in Fig. 11).

Interestingly, CCS suppresses vibrations even for big

initial conditions, which lie in the right branch of the

basin (Fig. 12). The basin of attraction is made

Fig. 10 Chatter vibrations

amplitude with respect to

external excitction

amplitude (f) and frequency

(k)

Fig. 11 Time series for a

regenerative system with

activated (f = 0.35 and

k = 1.6010) and

disactivated (f = 0) chatter

control unit
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classically by repeating simulations at the same

parameters starting from various initial conditions

(x0, v0). The green time series (Fig. 11) corresponds to

the green basin (Fig. 12) and the brown time series

(Fig. 11) refers to the initial conditions from the brown

basin (Fig. 12).

5 Conclusions

Delay feedback is one of control methods commonly

used in engineering. There are although systems where

time delay is present due to their natural properties and

then delay is a source which generates vibrations as

well. Here, DFC is applied in order to destroy chaotic

attractor and to stabilize the UPO. The classical

approach says, that time delay corresponding to the

period of unstable orbit can stabilize it and result in the

avoidance of chaotic solutions. The results presented

in this paper point out other possibilities. It has been

shown, that the time delay equal to 1/3 T can

successfully destroy strange attractor which trans-

forms into periodic solution. Then, the periodic orbit is

more beneficial because of its smaller amplitude.

Additionally, the idea of chatter vibrations avoid-

ance generated by the time delay effect in a manufac-

turing process is discussed here. It is demonstrated,

that by introducing external excitation with proper

frequency, amplitude and initial conditions, chatter in

regenerative model of cutting can be suppressed.

However, a selection of the external excitation

parameters is not a simple task. This can be done

numerically, as it is presented in the paper, but more

general conclusions can be drawn after the analysis of

periodic orbits stability.
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